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Abstract

Background

Immune response of triatomines plays an important role in the success or failure of trans-

mission of T. cruzi. Studies on parasite–vector interaction have shown the presence of try-

panolytic factors and have been observed to be differentially expressed among triatomines,

which affects the transmission of some T. cruzi strains or DTUs (Discrete Typing Units).

Methodology/Principal findings

Trypanolytic factors were detected in the hemolymph and saliva of R. prolixus against epi-

mastigotes and trypomastigotes of the Y strain (T. cruzi II). To identify the components of

the immune response that could be involved in this lytic activity, a comparative proteomic

analysis was carried out, detecting 120 proteins in the hemolymph of R. prolixus and 107 in

R. colombiensis. In salivary glands, 1103 proteins were detected in R. prolixus and 853 in R.

colombiensis. A higher relative abundance of lysozyme, prolixin, nitrophorins, and serpin as

immune response proteins was detected in the hemolymph of R. prolixus. Among the R.

prolixus salivary proteins, a higher relative abundance of nitrophorins, lipocalins, and tria-

bins was detected. The higher relative abundance of these immune factors in R. prolixus

supports their participation in the lytic activity on Y strain (T. cruzi II), but not on Dm28c (T.

cruzi I), which is resistant to lysis by hemolymph and salivary proteins of R. prolixus due to

mechanisms of evading oxidative stress caused by immune factors.
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Conclusions/Significance

The lysis resistance observed in the Dm28c strain would be occurring at the DTU I level. T.

cruzi I is the DTU with the greatest geographic distribution, from the south of the United

States to central Chile and Argentina, a distribution that could be related to resistance to oxi-

dative stress from vectors. Likewise, we can say that lysis against strain Y could occur at the

level of DTU II and could be a determinant of the vector inability of these species to transmit

T. cruzi II. Future proteomic and transcriptomic studies on vectors and the interactions of

the intestinal microbiota with parasites will help to confirm the determinants of successful or

failed vector transmission of T. cruzi DTUs in different parts of the Western Hemisphere.

Author summary

Some factors can facilitate or prevent T. cruzi transmission, i.e. vector immunity. Our

work has managed to detect a stronger immune response against T. cruzi II in R. prolixus
saliva and haemolymph, compared to that of R. colombiensis. Proteins from both species’

saliva and haemolymph were analysed for studying factors which might have been

involved in such response; most proteins were detected in both species’ haemolymph,

thereby indicating common immune mechanisms. Three proteins having oxidative

immune activity were only expressed in R. prolixus. Lipocalin diversity and abundance

predominated in R. prolixus saliva; these proteins are involved in nitric oxide metabolism

and their role in immunity could be key in host defence against T. cruzi. Recognising the

components modulating parasite transmission in a vector helps in understanding how

such factors act independently and how they would act synergistically against T. cruzi,
thereby enabling us to establish tools regarding Chaga’s disease epidemiology, aimed at

predicting T. cruzi distribution and creating transmission control mechanisms.

Introduction

In terms of parasite–vector interactions, four determinants of the transmission of Trypano-
soma cruzi have been recognized: i) the strain and discrete typing units (DTU) of the parasite,

ii) the triatomine species, iii) the cellular and humoral immune response of the vector, and iv)

the intestinal microbiota of the insect [1,2,3]. Three of these determinants are related to the

vector, which has directed special interest to the study of the tissues and mechanisms associ-

ated with the insect’s immune response, involving the hemolymph, hemocytes, fat bodies,

digestive tract, and salivary glands [2,4]. Vectors have an innate immune system consisting of

humoral and cellular components. The humoral system comprises lipid precursors known as

eicosanoids, the prophenoloxidase system, antimicrobial peptides (AMPs), the hemolymph

coagulation system, reactive oxygen species (ROS), and reactive nitrogen species (RNS). The

cellular immune system comprises hemocytes, whose function is to phagocytose microorgan-

isms such as bacteria, fungi, and protozoa. Hemocytes are also involved in wound repair by

nodulation, in addition to the production of AMPs, RNS, ROS, and prophenoloxidase [4].

Hemocytes additionally have the capacity to express high levels of nitric oxide synthetase,

which translates into the production of nitric oxide (NO), a molecule that is part of the consti-

tutive innate immunity in insects [5].
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Detailed studies on the saliva of hematophagous arthropods have been performed, focusing

on the function of salivary proteins and their role as bioactive molecules that facilitate success-

ful blood feeding, counteracting the coagulation cascade and the complement system of verte-

brate immune defense. Hematophagous arthropods have a wide arsenal of proteins with

redundant functions involving vasodilatory, antihemostatic, anti-inflammatory, and immuno-

modulatory activities [6,7].

In the salivary glands, there are also proteins that can stop the infection of pathogens transmit-

ted by these insects, such as T. cruzi. Although T. cruzi does not directly interact with the triato-

mine salivary glands because it restricts its life cycle to the insect’s intestine, the saliva components

that reach the stomach at feeding time may act to kill some genotypes of the parasites [8].

Several studies on parasite–vector interaction have shown the presence of trypanolytic fac-

tors (TFs) against some T. cruzi DTUs in the hemolymph, midgut, and saliva [8,9,10,11]. TFs

have been observed to be differentially expressed among triatomines, which affects the trans-

mission of some T. cruzi strains or DTUs, supporting the hypothesis that triatomines are bio-

logical filters and modulators of trypanosome transmission [1,10].

Our understanding of the nature of the TFs that are present in the hemolymph and saliva of

some triatomine species is still limited. Therefore, the first objective of this study was to con-

firm the differential lytic activity in the hemolymph and components of salivary glands of R.

prolixus and R. colombiensis against epimastigotes and trypomastigotes of T. cruzi I and T.

cruzi II. The second objective was to carry out a proteomic analysis of the hemolymph and

components of salivary glands of these two Rhodnius species to identify the immune response

proteins possibly related to the observed lytic activity.

Materials and methods

Ethical aspects

The Bioethics Committee of the Scientific Research and Development Office at the University

of Tolima has granted bioethical approval for the project, aligning with Resolution 008430 of

1993. This resolution establishes scientific, technical, and administrative standards for research

and health.

Trypanosoma cruzi strains

To evaluate the lytic activity of the hemolymph and saliva of R. prolixus and R. colombiensis,
reference strains of T. cruzi were used: the strain Dm28c representative of DTU I or TcI and

the strain Y representative of DTU II or TcII. The parasites were maintained in LIT/NNN

biphasic culture medium (Liver Infusion Tryptosa 10% SFB/Novy-McNealk Nicoll) with

weekly subcultures.

Insect colonies

Fifth-instar nymphs of R. prolixus and R. colombiensis were used. The insects were kept in plas-

tic containers and fed once a week on immobilized live hens. This process takes around 15–20

minutes.These were maintained under a photoperiod of 12 h light/12 h dark at an approximate

temperature of 28˚C and relative humidity of 80%.

Trypanolytic activity of the hemolymph of R. prolixus and R. colombiensis
on cultured epimastigotes of Dm28c (TcI) and Y (TcII)

Following the methodology described by Suarez et al. [10], the insects were fed on chicken

blood 8 days before the trypanolytic activity assays were carried out. The hemolymph of 20
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insects of each species was collected, mixed, and centrifuged at 14,000 rpm for 5 min. The cell-

free supernatant was used to detect trypanolytic activity following the methodology described

by Pulido et al. [12]. To prevent melanization of hemolymph, 2 μl of 50 mM phenylthiourea

was added to 100 μl of hemolymph. Cultured T. cruzi epimastigotes were washed three times

with saline solution, centrifuged at 7000 rpm for 5 min, and resuspended in 10% (v/v) LIT

medium. A total of 10 μl of hemolymph was added to 10 μl of parasite suspension at a final

concentration of 2.5–3.5 × 107 parasites/mL. To confirm the lytic activity, live parasites were

counted in a Neubauer chamber at 0 and 14 h of incubation. As a negative control, inactivated

hemolymph with 10 μl of pepsin solution (15 mg/mL in 1 M HCl) for every 100 μl of hemo-

lymph was used with subsequent incubation at 37˚C for 4 h. As a positive control, epimasti-

gotes of strain Y were used, which always presented lysis after incubation with the hemolymph

of R. prolixus. Similarly to sample treatment, both negative and positive controls were treated

with phenylthiourea. The experiment was performed in triplicate.

Trypanolytic activity of hemolymph of R. prolixus and R. colombiensis on

metacyclic trypomastigotes of Dm28c (TcI) and Y (TcII)

1x108 Dm28c and Y strain epimastigote/mL were cultured at 28˚C in 4 mL liver infusion

tryptose (LIT) medium, supplemented with 5% heat-inactivated FBS. The parasites were

kept in such conditions for 10 to 12 days; a significant increase in metacyclic trypomasti-

gotes was observed during such time due to nutritional stress. The medium was then

passed through a negatively-charged, Sepharose-DEAE (diethylaminoethyl resin) column

to retain the epimastgotes and separate them from the metacyclic trypomastigotes [13]. To

obtain cell-free hemolymph, the methodology described by Suárez et al. [10] and Pulido

et al. [12] was used. Evaluation of the resistance or sensitivity of the metacyclic forms of

Dm28c and Y was carried out by incubating 10 μL of trypomastigote suspension at a con-

centration of 2.5–3.5 ×107 per mL and 10 μL of cell-free hemolymph extract. The resistance

or sensitivity of the metacyclic forms was evaluated by estimating the number of parasites

by counting in the Neubauer chamber at 0 and 14 h of incubation. Each experiment was

done in triplicate.

Trypanolytic activity of components of salivary glands of R. prolixus and R.

colombiensis on cultured epimastigotes of Dm28c (TcI) and Y (TcII)

To evaluate the lytic activity of components of the salivary glands of R. prolixus and R. colom-
biensis against strains Dm28c and Y, salivary glands were obtained 8 days post-feeding by

manual extraction from R. prolixus and R. colombiensis. Once the glands had been extracted,

they were washed in 0.9% saline solution to avoid contamination with hemolymph. Subse-

quently, they were perforated to release the saliva, centrifuged at 14,000 rpm for 5 min at 4˚C,

and then the supernatant containing the saliva was recovered.

Incubations were performed with 10 μL of fresh saliva and 10 μL of culture forms of T.

cruzi suspended in LIT (10% FBS), leaving a final concentration of 2.5–3.5 ×107 parasites/mL.

To assess the sensitivity of strains Dm28c and Y to lysis, live parasites were counted in the Neu-

bauer chamber at 0 and 10 h post-incubation. Four replicates were performed for each experi-

ment. As a negative control, LIT (10% FBS) was used instead of fresh saliva. Although

conducting experiments using trypomastigote forms and insect saliva was considered, limita-

tions had to be faced regarding the available biological material. Collecting saliva from a single

insect only produces 1–2 μL and the insect must also be sacrificed; the experiment would thus

have needed a minimum of 60 insects per species.
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Statistical analysis of trypanolytic activity in hemolymph and saliva

Parasite counts were presented as means ± standard deviation and were graphing using the

Graphpad Prism 8.0 Program software. The design was aimed at comparing the treatments

and controls of incubations. The measurements are repeated, since the same individuals were

measured at two different times. For this analysis, a comparison of paired means was made,

taking as pairs the measurements of the two times for each treatment. Second, the differences

calculated in the previous step were analyzed by one-way ANOVA in which the 5 treatments

are compared to each other, using the Tukey test. All comparisons were made to 5%

significance.

Hemolymph and salivary gland protein sequencing by LC/MS/MS

Hemolymph extraction was performed 8 days after feeding the insects with chicken blood.

After a cut had been made in the tarsus of the third leg of the insect, the hemolymph was col-

lected with a micropipette in a 1.5 mL tube, kept on ice, centrifuged at 14,000 rpm for 5 min to

collect the cell-free supernatant, and then stored at −70˚C until use.

20 pairs of salivary glands were extracted 8 days after feeding the insects. They were washed

three times in saline solution (0.9% NaCl), collected in a microtube, and resuspended in saline

solution at a volume of 2 μL per pair of glands.

In order to extract the proteins from hemolymph and salivary glands, the tissues were

resuspended in lysis buffer (40 mM Tris-Base, 7 M urea, 2 M thiourea, 4% CHAPS, 1 mM

PMSF). Subsequently, the samples were incubated on an ice bed for 30 min, with vortexing for

1 min every 10 min. Finally, the cell lysis products were centrifuged at 14,000 rpm for 30 min

at 4˚C and the supernatant was removed and stored at −80˚C until use.

The proteins present in the samples were quantified by the Bradford method, using a cali-

bration curve with serial dilutions of bovine serum albumin. Subsequently, polyacrylamide gel

electrophoresis was run under denaturing conditions (SDS-PAGE) at 90 V for 10 min in order

to use the gel as a storage matrix. These samples were sent to the Proteomics Platform of the

CHU Research Center of the University of Laval in Quebec, Canada, where protein digestion

and mass spectrometry analysis coupled to high-performance liquid chromatography

(LC-MS/MS) were performed.

Protein digestion

The proteins were extracted from the gels and plated onto 96-well plates by washing with ultra-

pure water; protein digestion was carried out according to Shevchenko et al. [14]. with modifi-

cations suggested by Havlis et al. [15]. The proteins were reduced in 10 mM DTT and

alkylated with 55 mM iodoacetamide (IAA) and digested with 126 nM sequencing grade mod-

ified porcine trypsin (Promega Madison, WI) at 37˚C overnight. The digestion products were

extracted with 1% formic acid in 2% acetonitrile, followed by 1% formic acid and 50% acetoni-

trile. The extracts were vacuum centrifuged, dried and then suspended in 12 μl 0.1% formic

acid. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used for ana-

lysing 5 μl of the extracts.

LC-MS/MS analysis

Reversed-phase capillary nanoliquid chromatography (nanoLC) was used for separating the

peptides in the samples, which were then analysed by electrospray mass spectrometry (ES-MS/

MS). An Agilent 1200 nanopump connected to a 5600 mass spectrometer (AB SCIEX, Fra-

mingham, MA, USA), equipped with a nanoelectropulverisation ion source, was used for the
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experiments. The peptides were separated on a half-packed PicoFrit column (New Objective,

Woburn, MA) (3U, 100 A C18, 15 cm x 0.075 mm internal diameter); they were then eluted

with a 5–35% linear gradient with dissolvent B (acetonitrile, 0.1% formic acid) for 64 min at

300 nl/min. The mass spectra were obtained using the data-dependent acquisition mode with

Analyst software (SCIEX, version 1.7). Each full scan of the mass spectra (400 at 1,250 m/z)

was followed by the dissociation induced by the collision of the 20 most intense ions. Dynamic

exclusion was carried out for 12 s at 100 ppm tolerance.

Identification of proteins from hemolymph and salivary glands of R.

prolixus and R. colombiensis
For the identification of proteins from the hemolymph and salivary glands, the UniProt Triato-

minae database was used. The MGF files with the list of peaks were obtained with the software

(ABSciex), using the Paragon and Progroup algorithms [16]. Subsequently, these files were ana-

lyzed using Mascot (Matrix Science, London, UK; version 2.5.1). A value of 0.1 Da was set for

the peptide mass tolerance and for the fragment mass tolerance. As fixed modifications, carba-

midomethylation of cysteines was established, while as variable modifications, deamination of

asparagine and glutamine and oxidation of methionine were included. The information

obtained from the identified proteins was visualized through Scaffold version 4.8.3 software, val-

idating peptides and proteins with a false discovery rate (FDR) of less than 1%.

Quantitative analysis of R. prolixus and R. colombiensis hemolymph and

salivary proteins involved in the immune response

The hemolymph and salivary proteins involved in the immune response were filtered and a

semiquantitative profile of the relative abundance of the proteins in both species was created

using the label-free method. The normalized spectral abundance factor (NSAF) was used to

analyze the spectral count of the three replicates. The calculation obtained with Scaffold is rep-

resented by the following expression:

SAF ¼
Exclusive spectrum number

protein length ðaaÞ

The SAF value is normalized using Scaffold’s regular quantitative value normalization

scheme which takes into account the sum of the SAF values of the analyzed proteins:

NSAF ¼
SAF

X
SAF

Results

Effects of hemolymph from R. prolixus and R. colombiensis on

epimastigotes and metacyclic trypomastigotes of strains Dm28c (TcI) and

Y (TcII)

The incubation of the hemolymph of R. prolixus with epimastigotes and metacyclic trypomas-

tigotes of the strain Y showed significant decreases of the parasites at 14h post-incubation as a

consequence of parasite lysis (Fig 1A and 1C). The Incubation of R. prolixus hemolymph,

against epimastigotes and trypomastigotes of the Dm28c strain did not show a significant

decrease or lytic activity of the parasites.
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The incubation of R. colombiensis hemolymph did not show a significant decrease in the

number of metacyclic epimastigotes or trypomastigotes of Dm28c or Y during 14 h of incuba-

tion; therefore, this study concluded that there was no lytic activity during this time in this vec-

tor (Fig 1B and 1D).

Effects of R. prolixus and R. colombiensis salivary glands components on

epimastigotes of the strains Dm28c (TcI) and Y (TcII)

The results showed lytic activity of the components of salivary glands of R. prolixus against Y,

with the abundance of parasites showing a significant decrease at 10 h post-incubation, nor

Fig 1. Incubation of the hemolymph of R. prolixus and R. colombiensis with epimastigotes and metacyclic trypomastigotes of Dm28c (TcI) and Y (TcII).

The negative control for each experiment showed no lysis or a significant decrease in parasite numbers. The positive control of each experiment showed lysed

parasites with a significant decrease in parasite numbers (S1 Table).

https://doi.org/10.1371/journal.pntd.0011452.g001
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was there any lytic effect against the Dm28c (Fig 2A). The incubations with the saliva of R.

colombiensis did not show any lytic activity, nor a significant decrease in the number of para-

sites of the Dm28c and Y during the first 10 h of incubation (Fig 2B).

Proteomic analysis of the hemolymph of R. prolixus and R. colombiensis
A total of 120 proteins were identified in R. prolixus hemolymph and 107 in R. colombiensis
hemolymph (S2 Table). These two species shared a total of 92 proteins. Additionally, 28 pro-

teins were detected only in R. prolixus hemolymph and 15 only in R. colombiensis (S2 Table).

Of the total proteins identified in the hemolymph of R. prolixus and R. colombiensis, 40

were associated with an immune response and were grouped into six functional categories that

are presented in Fig 3. Quantitative profiling was performed on these proteins involved in the

immune response, with their relative abundance based on NSAF. Most of the proteins shared

by R. prolixus and R. colombiensis are involved in carbohydrate and lipid recognition, activa-

tion of proteolytic cascades, indicating the presence of common pathogen recognition mecha-

nisms and its products, and mechanisms of melanization and encapsulation through the

activation and regulation of the prophenoloxidase system. The relative abundances of proteins

of the prophenoloxidase system (A0A1B2G381, A0A1B2G385, T1HW22) were similar in the

two species (Fig 3).

Among the proteins related to the metabolism of NO and superoxide ions, we found the

nitrophorins Q7YT15 and Q94734, and a putative superoxide dismutase protein

(A0A0P4VG48) only in the hemolymph of R. prolixus. Nitrophorins are expressed mainly in

salivary glands; however, they can be found in other tissues such as testicles, ovary, intestine,

Malpighian tubules, and fat bodies [17]. They may also reach other tissues because the hemo-

lymph interacts with all of the organs of the insect due to its open circulatory system. PAMs

Fig 2. Incubation of R. prolixus and R. colombiensis components of salivary glands with epimastigotes of Dm28c (TcI) and Y (TcII). The negative

control for each experiment showed no lysis or a significant decrease in parasite numbers. The positive control of each experiment showed lysed

parasites with a significant decrease in parasite numbers (S1 Table).

https://doi.org/10.1371/journal.pntd.0011452.g002
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with higher relative abundance were also detected in R. prolixus. These PAMs and proteins

such as serine protease with the CLIP domain (T1I0A9), interferon gamma, and superoxide

dismutase (A0A0P4VG48) are proteins related to the induced immunity of the insect; that is,

they are expressed only after the host has been exposed to infection.

Proteomic analysis of salivary glands of R. prolixus and R. colombiensis
A greater number and more diverse functions of proteins were identified in R. prolixus than in

R. colombiensis, with totals of 1103 and 853, respectively (S3 Table). In the salivary glands of

both species, 748 proteins were shared, while 355 were detected only in R. prolixus and 105 in

R. colombiensis (S3 Table). Overall, 67 proteins involved in immune activity in the saliva of

these insects were classified into four categories to perform a comparative analysis between the

two species. The proteins with the highest relative abundance were the nitrophorins (NPs),

with the highest representation in R. prolixus. In this species, 21 NPs were quantified, com-

pared with 11 in R. colombiensis. In the category of evasion or tolerance of the host response,

R. prolixus presents relative quantification for 38 proteins compared with 10 for R. colombien-
sis (Fig 4). The results of the proteomic characterization in the present work show a more iden-

tified NPs and their higher expression of these proteins in R. prolixus from the

semiquantitative analysis.

Discussion

Lytic activity and proteomic analysis of hemolymph

Alvarenga & Bronfen [18] made the first observation of lytic activity against T. cruzi in the

hemolymph in two triatomine species: Dipetalogaster maxima and Triatoma infestans. These

researchers revealed that the parasites inoculated into the hemocoel of the insects did not sur-

vive after a few days, evidencing the inability of T. cruzi to establish itself in hemolymph.

Meanwhile, Mello et al. [19] showed lytic activity in the hemolymph of R. prolixus against

strains Dm28c and Y of T. cruzi; when these were inoculated in the hemocoel of R. prolixus,
they were rapidly eliminated. Moreover, via in vitro experiments, Suarez et al. [10] evidenced

TFs at the hemolymph of R. prolixus and R. robustus against DTUs II, V, VI, Tcbat, and T.

cruzi marinkellei after 14 h of incubation. However, when evaluating the hemolymphs of six

more species (R. colombiensis, R. pallescens, R. pictipes, T. dimidiata, T. maculata, and P. geni-
culatus), none presented in vitro lytic activity against T. cruzi DTUs, after 14 h of incubation.

In the present work, the hemolymph of R. prolixus, in addition to having lytic activity against

epimastigotes of Y strain, was confirmed to also lyse the metacyclic trypomastigotes of Y strain,

but not those of Dm28c. Regarding the origin of these TFs, they are considered to be part of

the remaining innate immunity generated against the intestinal microbiota that would affect

some T. cruzi genotypes [1,10].

The proteomic results provided our first approach to describing such immune factors. The

total amount of proteins identified in this work (120 in R. prolixus and 107 in R. colombiensis)
was less than that reported in other work, such as that by Ouali et al. [20], who mentioned the

detection of up to 269 constitutively expressed proteins.

We consider that two variables could explain our lowest value regarding the total number

of proteins identified: i) our filter for considering that a protein had been detected in the tissue

took the number of peptide sequences unique to a protein group as being at least 2, whilst the

Fig 3. Relative abundance of 40 proteins involved in immunity in the hemolymph of R. prolixus and R. colombiensis. Of these proteins, 32 were shared

between the two species, seven were detected only in R. prolixus, and one was detected only in R. colombiensis (S2 Table).

https://doi.org/10.1371/journal.pntd.0011452.g003
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work by Ouali et al. [20] reported proteins having a unique peptide number from 1 onwards. ii)
Our methodology required the haemolymph to be centrifuged to eliminate any cell type. We

thus expected that fewer proteins would be detected or at least, only those that are constitu-

tively secreted. 40 proteins related to immunity were the object of interest in our study; this

Fig 4. Relative abundance of 67 proteins involved in the immune response of R. prolixus and R. colombiensis in the salivary glands. Of these proteins, 25

were shared between the two species, 41 were detected only in R. prolixus, and one was detected only in R. colombiensis (S3 Table).

https://doi.org/10.1371/journal.pntd.0011452.g004
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number of proteins was close to that reported by Ouali et al. [20] who mentioned 58, such fig-

ure considered that they also included some proteins whose expression is induced.

Fig 3 shows the relative abundance of immunity-related proteins detected in the hemo-

lymph of R. prolixus and R. colombiensis. In accordance with the immune factors previously

described in R. prolixus, the lytic factors observed against Y strain could be associated with

AMPs, proteins involved in the metabolism of the prophenoloxidase system, proteins related

to hemolymph coagulation, ROS-generating proteins, and protein RNS generators.

Of the proteins related to the activation and regulation of proteolytic cascades (Fig 3), the

prophenoloxidase system stands out for the production of melanin, which functions in tissue

repair and the encapsulation of pathogens [2,4]. Throughout melanin production, a cascade of

free radicals such as ROS and RNS are generated, which are highly toxic against pathogens

such as trypanosomes [21]. However, in the lytic activity experiments with hemolymph in this

study, phenylthiourea was used as an inhibitor of the prophenoloxidase cascade, and thus the

lysis observed in our experiments was not related to the prophenoloxidase system. This sup-

ported the assertion that other proteins different from those involved in the prophenoloxidase

system additionally act as factors with trypanolytic activity.

Another protein in hemolymph related to the activation and regulation of proteolytic cas-

cades that stands out for its relative abundance is serpin (T1F83). Serpin is responsible for reg-

ulating protease activity and therefore oxidative activity because it acts as an inhibitor of

proteases, which activate the pathways of the prophenoloxidase system. This function would

have a protective role for the insect against an excess of cellular oxidative activity [4,21].

Within the category of carbohydrate recognition, some lectins and the A and C domains of

von Willebrand factor were identified in both R. prolixus and R. colombiensis. Several lectins

are conserved in Hemiptera and participate in the defense against flagellates in triatomines

[22,23], it has been shown that these binding molecules can induce the recruitment of hemo-

cytes for the encapsulation and melanization of pathogens [24]. Otherwise, as some authors

have pointed out, the agglutination processes mediated by these proteins could have a protec-

tive effect on parasites, promoting their survival and multiplication [23,25,26]. Because the

agglutinating and protective effects of lectins depend on the affinity for the glycoproteins pres-

ent in the parasite membrane, the affinity for sugars of the detected lectins needs to be exam-

ined to confirm their possible protective effect on the different T. cruzi DTUs.

The role of AMPs such as lysozyme, defensin, and prolixin cannot be ruled out in trypanolytic

activity of hemolymph, because they were more abundant in R. prolixus than in R. colombiensis.
AMPs can alter the structure of the cytoplasmic membrane, generating ion channels that

increase its permeability and subsequently induce cell death [27]. The composition of amino

acids, their net charge (generally cationic), and their amphipathic and size characteristics pro-

mote their interaction with lipid bilayers, mainly those that form the cytoplasmic membranes of

pathogens (bacteria, fungi, enveloped viruses, and parasites). Although few studies have focused

on the effect of antimicrobial peptides on parasites, some have shown that these molecules can

affect their development and trigger cell lysis. Magainin 2 was one of the first AMPs described to

show antiparasitic activity, specifically against protozoa. Tests carried out with this peptide in

Paramecium caudatum led to the lysis of this microorganism [28]. In Phlebotomus duboscqi, a

defensin active against promastigotes of Leishmania major was identified [29]. Additionally, a

recombinant attacin from Glossina was shown to have trypanolytic activity on T. brucei blood

trypomastigotes and epimastigotes in vitro and in vivo [30]. The negative effect of antimicrobial

peptides on T. cruzi has also been demonstrated, since Fieck et al. [31] observed trypanocidal

activity of four antimicrobial peptides (apidaecin, magainin II, melittin, and cecropin) on T.

cruzi, even at concentrations where they had no effect on Rhodococcus rhodnii. Subsequently, the

combined treatment of these peptides increased the toxicity on the parasites.

PLOS NEGLECTED TROPICAL DISEASES Comparative proteomic analysis of Rhodnius prolixus and R. colombiensis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011452 April 3, 2024 12 / 20

https://doi.org/10.1371/journal.pntd.0011452


An interesting finding in the hemolymph of R. prolixus was the detection of NPs and lipoca-

lins which are known to be synthesized in the salivary glands of insects; however, they may

reach the hemolymph because it interacts with all of the insect’s organs due to its open circula-

tory system. These proteins are related to the function of facilitating insect feeding when it

takes blood from its host because they have vasodilatory and anticoagulatory properties. Any

type of salivary gland-related contamination during haemolymph extraction was ruled out

since tissue collection was carried out independently. Firstly, the haemolymph was collected;

the insect was kept alive during such procedure and only a cut in one of its hind legs was

needed, as mentioned in the methodology, so that the salivary glands suffered no risk of rup-

ture during haemolymph collection at any time.

Other research has already identified NPs in R. prolixus haemolymph. Ouali et al. [20] ana-

lysed haemolymph protein expression regarding T. cruzi infection and, although these pro-

teins’ role concerning insect immunity was not discussed regarding the objective of their

work, it can be seen that 4 NP identifications were reported (Q7YT15, Q26239, T1HKP3,

R4G8M6). A recent study by Santos et al. [17] on lipocalins (which included nitrophorins)

mentioned that such proteins could be present in other types of tissue and could have multiple

functions. The authors suggested that central nervous system expressed lipocalins the can act

as neurotransmitters, as odorant-binding proteins (OBPs) when expressed in antennae and as

lipid transporters when expressed in the haemolymph.

Rhodnius prolixus’s specific lytic activity against the T. cruzi Y strain, but not against the T.

cruzi dm28C strain, is probably the result of the overexpression of genes such as nitrophorins

(NPs). These proteins are involved in the metabolism of NO, a free radical that acts in the con-

stitutive innate immunity of the insect [32].

Nitrophorin 4-A (NP4) was found in R. prolixus haemolymph in this work; NP4 is impor-

tant because nitric oxide (NO) from nitrophorins could be released in the foregut and act on

the genotypes of parasites which are sensitive to oxidative stress. In vivo experiments have

shown that increased NO production in R. prolixus hemolymph and digestive tract has corre-

lated with decreased in T. cruzi multiplication; on the contrary, the parasite manages to main-

tain and multiply itself when NO production becomes decreased [33].

Although the mechanism regarding how NPs are expressed in haemolymph remain

unknown, it is likely that they are secreted directly into the haemocoel as a factor of humoral

immunity [34]. Other immune factors, such as antimicrobial peptides, reactive nitrogen and

oxygen intermediates and complex enzymatic cascades (such as the prophenoloxidase system)

contributing to coagulation or melanisation in the haemolymph, also act as immune response

components for eliminating potential pathogens acquired during feeding [34].

Lytic activity and proteomic analysis of salivary glands

Fig 4 shows the relative abundance of proteins in the salivary glands of R. prolixus and R.

colombiensis. A large number of triabins, lipocalins, and nitrophorins are more abundant in R.

prolixus than in R. colombiensis. The main role of salivary proteins in blood-feeding arthro-

pods is to maintain blood flow in the mouthparts that successfully conduct blood to the diges-

tive tract. This process is successful due to the combination of numerous salivary proteins, in

some cases small molecules, that act together to inhibit the coagulatory cascade, limit platelet

activation, and prevent vasoconstrictive responses. In triatomine salivary glands, there are still

many families of proteins that have not been completely characterized and of which several

additional activities could be found. According to Arca & Ribeiro [7], up to 40% of salivary

peptides in hematophagous insects have unknown functions. When considering only the 155

described species of triatomines, there is proteomic information for just 16 species, supported
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by nine annotated sialotranscriptomes, six descriptive sialoproteomes, and seven sialomes

[35–46]. Added to this, in each of these studies, a large number of proteins were obtained with-

out being able to characterize them. Within the reports on these studies, transcriptomic and

proteomic data for R. prolixus are presented [36]. For R. colombiensis, this report presents the

first proteomic data on hemolymph and salivary glands.

The above-mentioned studies focused almost exclusively on the analysis of salivary proteins

related to anticoagulant, antiplatelet, and vasodilatory activities to respond to the hemostasis

of their vertebrate host, properties that could have pharmacological potential. The role that

these salivary proteins may have in the immunity of triatomines has not been discussed in

depth, despite there being evidence of them having antiparasitic, antibacterial, antiviral, and

antifungal activities [7,46].

The results of the present work on the effect of R. prolixus salivary proteins on T. cruzi epi-

mastigotes and trypomastigotes showed lytic activity against Y strain. This effect is similar to

that observed in an experiment carried out by Ferreira et al. [8] using the content of the salivary

glands of R. prolixus, which showed lysis of 20% of the trypomastigote forms of T. cruzi (strain

CL). The results of these experiments indicate that the proteins present in the salivary glands in

R. prolixus, in addition to fulfilling the functions that counteract the hemostasis of their verte-

brate host, can also modulate the infection and adaptation of pathogens and particularly some

DTUs of T. cruzi [8,9]. It might be thought that the effect of these lytic factors would not be rele-

vant to T. cruzi due to their absence from salivary glands during their life cycle in the vector.

However, part of the saliva that is ingested in the insect’s feeding process is known to reach the

intestine and thus interacts directly with the parasite. This innate immune response generated

in the salivary glands has been reported to affect some genotypes of T. cruzi [1].

The proteins in the salivary glands of triatomines that are related to immune functions

against pathogens include antimicrobial peptides, lysozyme, pattern recognition molecules,

and serine proteases, which act as activators of the prophenoloxidase system [4,7,47]. A pore-

forming lytic protein called trialysin was identified in the saliva of Triatoma infestans, which

lysed the trypomastigote forms of T. cruzi II (strain Y) [9]; however, no protein with similar

characteristics in the salivary glands of R. prolixus has been identified. Although there is evi-

dence of lytic activity against T. cruzi in the salivary glands of R. prolixus, the factors involved

in this lysis have remained unclear. We know that this lytic effect against Y strain observed in

the salivary glands of R. prolixus has also been observed in the hemolymph of R. prolixus and

R. robustus, while being absent from the salivary glands and hemolymph of R. colombiensis
and the hemolymph of R. pallescens [10]. In this sense, the question arises about the epidemio-

logical role of this lytic factor, which would only be present in the salivary glands of some

Rhodnius species.

In R. prolixus and R. colombiensis, proteins involved in NO metabolism and therefore in

ROS metabolism were found. The NO and ROS molecules are considered to be constitutive

immune components conserved in Hemiptera and thus they are relevant factors in the defense

of triatomines [5]. Although similar proteins were identified in both species in relation to NO

metabolism, such as the enzyme nitric oxide synthase (Q26240), R. prolixus presented a greater

diversity of lipocalins and nitrophorins that generate a greater machinery of oxidative activity

that reinforces its innate immune response [48,49].

In different studies on triatomine sialoma, it has been shown to contain a predominance of

lipocalins, triabins, and NPs [37,41,50]. In R. prolixus, the lipocalin family presents a very sig-

nificant component compared with the rest of the proteins present in saliva [48]. Specifically,

reference has been made to the great abundance of NPs in the saliva of R. prolixus [48,51]. NPs

have been very well characterized at the structural and biochemical levels. The main function

of NPs is related to the transport, storage, and release of NO. These molecules are considered
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cytotoxic factors against T. cruzi, and pathways involving the radical activity of ROS develop

around NO metabolism, also act against parasites [6,32,52,53]. Those lipocalins and nitrophor-

ins with higher relative abundance in R. prolixus than in R. colombiensis are candidate factors

responsible for the lysis observed.

Differential immune response of R. prolixus y R. colombiensis
Several studies have indicated that the immune response of triatomines plays an important

role in the success or failure of transmission of some T. cruzi DTUs. In the hemolymph and

saliva of some Rhodnius species, there are proteins that activate oxidative mechanisms that can

inhibit the infection of some T. cruzi DTUs. In this study, a comparative proteomic analysis of

the hemolymph and salivary proteins of R. prolixus and R. colombiensis was performed for the

first time. This analysis showed the relative abundance of nitrophorins in R. prolixus, which

act together with other proteins such as lysozyme, prolixin, lipocalins, and triabins to generate

a strong immune response in R. prolixus. This response should be responsible for the lytic

activity of hemolymph and saliva against epimastigotes and trypomastigotes of T. cruzi II,

detected in vitro. These findings complement the observations of lytic activity of hemolymph

on T. cruzi V, T. cruzi VI, T. cruzi bat, and T. cruzi marinkellei reported by Suárez et al. [10].

The resistance of strain Dm28c to the lysis of R. prolixus hemolymph and saliva proteins

observed in this work, together with the results of Suarez et al. [10], where they analyzed 20 dif-

ferent TcI strains with the same result, allows us to conclude that resistance would be occur-

ring at the DTU I level, due to possible mechanisms that allow it to evade oxidative stress. T.

cruzi I is the DTU with the widest geographical distribution, from the southern United States

to the center of Chile and Argentina, a distribution that could be related to the resistance to

oxidative stress of the vectors.

Similarly, we can say that lysis against strain Y could occur at the level of DTU II. The vigor-

ous immune response observed in R. prolixus against T. cruzi II was also observed in R. robus-
tus [10] and could be a determinant of the vectorial inability of these species to transmit T.

cruzi II. Studies carried out with R. robustus showed its inability to transmit T. cruzi II in

experimental infections [54]. Meanwhile, studies carried out in Colombia did not detect T.

cruzi II in the R. prolixus specimens examined [55,56].

The genus Rhodnius is made up of 21 species divided into three groups: the Pallescens

group with three species (R. colombiensis, R. ecuadoriensis, R. pallescens) [57], in which in vitro

assays have not detected trypanolytic factors in hemolymph or saliva; the Pictipes group with

seven species (R. amazonicus, R. brethesi, R. micki, R. paraensis, R. pictipes, R. stali, R. zeledoni),
in which in vitro tests have not been carried out to verify the presence of trypanolytic factors

in hemolymph or saliva; and the Prolixus group, with 11 species, of which R. prolixus and R.

robustus present trypanolytic factors in hemolymph and salivary glands. Therefore, new stud-

ies are needed to verify the presence of this vigorous immune response in the remaining nine

species of the Prolixus group (R. barretti, R. dalessandroi, R. domesticus, R. milesi, R. mara-
baensis, R. montenegrensis, R. nasutus, R. neglectus, R. neivai).

Despite the limitations of proteomic studies, related to reproducibility, analysis, and identi-

fication of a high number of proteins, the present work was able to show differences in the rela-

tive abundance of proteins involved in the immune response of R. prolixus and R.

colombiensis, which could be associated with the lytic activity observed in the hemolymph and

salivary glands of R. prolixus against epimastigotes and trypomastigotes of strain Y (TcII), but

not against Dm28c (TcI).

To more precisely identify the proteins involved in this immune response, new comparative

transcriptomic studies in triatomine species with and without lytic activity in hemolymph and
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salivary glands should be carried out, and the expression of proteins possibly involved in this

immune response by quantitative PCR needs to be evaluated. Meanwhile, studying the interac-

tion of the intestinal microbiota of the vectors with the parasites and investigating the mecha-

nisms of resistance to oxidative stress in the DTUs of T. cruzi (T. cruzi I–VI and T. cruzi bat)

are necessary, to understand innate immunity, parasite–vector interaction, and coevolution of

parasites and their vectors. Further study and investigation should then clarify the uneven geo-

graphical distribution of DTUs associated with the complex epidemiology of Chagas disease in

different parts of the Western Hemisphere.
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