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Abstract

Vector-borne pathogens (VBPs) causing vector-borne diseases (VBDs) can circulate

among humans, domestic animals, and wildlife, with cattle in particular serving as an impor-

tant source of exposure risk to humans. The close associations between humans and cattle

can facilitate the transmission of numerous VBPs, impacting public health and economic

security. Published studies demonstrate that cattle can influence human exposure risk posi-

tively, negatively, or have no effect. There is a critical need to synthesize the information in

the scientific literature on this subject, in order to illuminate the various ecological mecha-

nisms that can affect VBP exposure risk in humans. Therefore, the aim of this systematic

review was to review the scientific literature, provide a synthesis of the possible effects of

cattle on VBP risk to humans, and propose future directions for research. This study was

performed according to the PRISMA 2020 extension guidelines for systematic review. After

screening 470 peer-reviewed articles published between 1999–2019 using the databases

Web of Science Core Collection, PubMed Central, CABI Global Health, and Google Scholar,

and utilizing forward and backward search techniques, we identified 127 papers that met

inclusion criteria. Results of the systematic review indicate that cattle can be beneficial or

harmful to human health with respect to VBDs depending on vector and pathogen ecology

and livestock management practices. Cattle can increase risk of exposure to infections

spread by tsetse flies and ticks, followed by sandflies and mosquitoes, through a variety of

mechanisms. However, cattle can have a protective effect when the vector prefers to feed

on cattle instead of humans and when chemical control measures (e.g., acaricides/insecti-

cides), semio-chemicals, and other integrated vector control measures are utilized in the

community. We highlight that further research is needed to determine ways in which these

mechanisms may be exploited to reduce VBD risk in humans.

Author summary

Vector-borne diseases (VBDs) are caused by pathogens spread by blood-feeding arthro-

pods from an infected to an uninfected organism. These infections may be caused by
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pathogenic bacteria, viruses, or protozoans and arthropod vectors may spread these path-

ogens to humans, domestic animals, and wildlife. Humans and cattle spend a significant

amount of time in close proximity with each other through various activities such as agri-

culture, animal husbandry, trading, and animal farming, which can potentially increase

risk to human health. Previously published studies indicated cattle can impact vector-

borne pathogen (VBP) transmission both positively and negatively, however, there has

not been a recent synthesis of the scientific literature on this subject. Through this global

systematic review of the scientific literature, we found that cattle could have either harmful

or beneficial impacts on human health when it comes to VBDs, but most often increase

exposure risk to VBPs in humans. We identified various mechanisms from the scientific

literature by which cattle can impact VBP risk in humans. Further research is needed to

better understand specific ecological mechanisms by which cattle impact human health

and develop measures that will prevent and reduce VBP exposure risk in humans.

Introduction

The ability of hematophagous arthropods to spread various infectious agents, or vector-borne

pathogens (VBPs) between a wide range of organisms ultimately leads to the occurrence of

vector-borne diseases (VBDs) [1]. Important arthropod vectors of infectious diseases include

ticks (Ixodoidea), mosquitoes (Culicidae), sandflies (Phlebotominae), tsetse flies (Glossinidae),
black flies (Simuliidae), and kissing bugs (Triatominae). For over a century, vector-borne dis-

eases have been the subject of scientific research because of the severe concern they pose to

human and animal health [2–5]. VBDs account for more than one billion cases, one million

deaths, and one-sixth of worldwide disability and illnesses annually [6]. Common examples of

VBDs include malaria, Lyme disease, Rift Valley fever, Chikungunya, West Nile virus and

other bacterial, protozoal, and viral diseases [7]. Torto and Tchouassi [8] estimate ~80% of the

world’s human population is at risk of exposure to one or more VBPs. Along with their nega-

tive impacts on human and animal health, VBDs may have detrimental effects on sustainable

development and can cause significant economic losses [9]. When a VBD’s prevalence reaches

a critical level in a country, human mobility, trade, foreign investment, savings, and land use

are all likely to suffer unfavorable consequences [10]. As a direct result, VBDs are not only an

increasing public health problem, but also have a negative macroeconomic impact on society.

Therefore, it is vital to continue efforts to better understand, analyze, and manage health risks

due to VBDs and inform effective preventative measures.

Transmission cycles for many VBPs may involve humans, domestic animals, wildlife, and

various facets of their environment [11]. Environmental factors such as climate may strongly

affect the rate of transmission of VBPs; for example, changing temperatures and precipitation

due to climate change have been associated with an increase in vector prevalence and trans-

mission [12]. VBP exposure risk to humans is especially increased in low-income countries,

driven in part by people who are involved in occupations where they handle cattle and other

livestock, notably farmers, agricultural laborers, slaughterhouse workers etc. Additionally, peo-

ple who live in close proximity to cattle or are allied to animal husbandry, as well as those

involved in treating and caring for livestock, often are at higher risk of VBDs [13]. Socioeco-

nomic disparities have also been associated with increased disease incidence. Individuals in

disadvantaged areas may be unaware of these diseases or associated risk factors, lack access to

health facilities and infrastructure, and may follow few to no preventive measures, such as the

use of insecticide-treated bed nets or vaccines [14]. Finally, some tropical VBDs, such as
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leishmaniasis, are classified as neglected, and so do not receive sufficient public health atten-

tion and funding, complicating disease prevention efforts [15].

Cattle are among the most economically and culturally significant domesticated animals

globally [16]. There is considerable overlap between cattle and humans through our economic

activities, occupations, and cattle being a source of food and recreation [17]. Proximity

between humans and cattle through agriculture, animal husbandry, and trade provides oppor-

tunities for disease transmission. Biotic factors, including age, sex, and breed of cattle and their

interactions with domestic and wild animals, along with abiotic factors such as climate and

environmental conditions, may influence disease transmission. These factors interact with vec-

tor species abundance, longevity, feeding cycle and bloodmeal host choice as key predictors

for how VBP transmission occurs [18].

The overarching role of cattle in the spread of arthropods and VBPs in humans is a major

gap in our understanding of the ecology and epidemiology of these diseases. Thus, it is impor-

tant to determine if these human-cattle connections can impact human health via VBDs. Since

vectors such as ticks and mosquitoes often feed on multiple host species and may spread vari-

ous pathogens to humans, livestock, and wildlife, the role of cattle in VBP transmission is com-

plicated. Cattle have various roles to play when it comes to pathogens causing vector-borne

diseases. For example, they can function as bloodmeal hosts for arthropod vectors and thereby

increase the abundance of vector species [19–20], and as reservoir hosts for pathogens and

thereby increasing pathogen prevalence [21–22]. In contrast, cattle can be more attractive to

biting vectors than humans and thereby act as shields against vector bites to humans prevent-

ing pathogen transfer in specific circumstances [23–24].

Through this systematic review, we have been able to identify multiple VBPs for which cat-

tle have a direct or indirect role in infection transmission; however, for many VBPs, the exact

role of cattle in the ecology of these diseases remains undetermined. Arguably the most con-

tentious matter has been that of the zoo-prophylactic role of cattle (i.e., cattle acting as a barrier

against pathogen transmission by absorbing vector bites and thereby having a protective effect

on humans). There is a significant debate in the scientific literature over whether the presence

of cattle near humans can substantially reduce disease incidence. There are studies that have

both supported and failed to support the zoo-prophylactic effect of cattle on VBP risk to

humans, such as in the case of malaria [25–26].

Globally, there are numerous studies that directly investigate whether cattle increase or

decrease the risk of VBP exposure in humans, and yet currently, there is no synthesis of the

existing information on this subject. There are various ecological mechanisms identified in

previously published studies by which cattle may increase or decrease the risk of spread of

VBPs in humans. We hypothesize that certain ecological mechanisms may occur repeatedly in

nature across vector taxa and can significantly impact how VBPs occur in nature, but this

information has not been synthesized in the literature before. These gaps can impact public

health and epidemiological measures that countries can take to prevent VBPs. Thus, our goal

was to conduct a systematic review of the scientific literature to synthesize and present the

findings on the conditions by which cattle increase or decrease human risk of exposure to

VBPs and identify and narratively describe these ecological mechanisms which impact VBPs

and their spread to humans.

Methods

Search strategy

We conducted a systematic review of the published scientific literature to determine whether

studies report a positive, negative, or neutral impact of cattle on human exposure risk to
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vector-borne diseases (i.e., whether cattle increased, decreased, or had no effect, respectively)

based on a rubric provided below. Following the PRISMA 2020 (Preferred Reporting Items for

Systematic Reviews and Meta-Analyses) guidelines [27], we developed a search algorithm that

would enable us to extract scientific papers on this subject from various databases, using the

following search string:

TS = (cattle AND (tick-borne illness OR tick borne disease OR mosquito-borne illness OR

mosquito borne disease OR vector-borne illness OR vector borne disease) AND human

health) AND LANGUAGE: (English), year range 1999 to 2019. The decision to perform the

systematic review from 1999 onwards was with the goal of focusing on recent literature in this

subject and to easily access electronically available journal articles on this topic.

The initial step after developing the search string was to check if there were other systematic

reviews on this topic through the Cochrane Database of Systematic Reviews. We used the key-

word search comprising “cattle AND vector-borne diseases AND human health” on Cochrane,

which did not yield any systematic review; it did yield one article [28] which was outside the

scope of this study. Subsequently, we used the following databases to execute the search string

to identify relevant articles: CABI Global Health, Web of Science Core Collection, PubMed

Central and Google Scholar. Articles were also identified through forward and backward

searches from citations in both included and excluded articles. Titles and abstracts of the arti-

cles identified through keyword search, forward, and backward searches were screened against

the study inclusion criteria. Potentially relevant articles were retrieved for evaluation of the full

text and duplicates were removed.

Full-text articles were further screened and evaluated using the full study inclusion criteria,

which were: a) study should be published between 1999–2019 to ensure recency; b) study lan-

guage should be in English; c) study incorporates all of the key terms: vector (specifically

searched for the terms tick-borne, mosquito-borne), vector-borne disease, humans, and cattle;

d) study explores a possible connection between vector, cattle, and human; e) full texts of the

articles available (full texts were accessed through University of Illinois library, Google Scholar

and World Cat database). Articles were excluded from the study if they met any of the follow-

ing exclusion criteria: a) analysis excludes vector-borne diseases; b) study fails to mention a

vector arthropod that transmits disease; c) study does not include cattle involvement; d) con-

trol studies, vaccine studies, therapeutic studies, or review papers; e) studies involving only

experimental lab infection; f) studies whose full texts could not be accessed after multiple

attempts from various sources; g) non-English language articles; h) studies that only include

pathogens that do not cause human infection; i) studies conducted outside our time period.

This review had no geographical restrictions.

Two reviewers independently assessed inclusion and exclusion criteria. A third reviewer

assessed studies when the reviewers disagreed. We calculated Cohen’s Kappa statistic to esti-

mate inter-rater agreement between the first two raters. Article search was conducted between

September 30, 2019, and June 8, 2020.

Although our primary goal was to focus on performing a systematic review on articles after

1999 to capture recent information and trends, we also performed a non-systematic literature

review of articles prior to 1999 using the same aforementioned keyword search. We used the

databases Web of Science Core Collection, CABI Global Health and PubMed Central to per-

form this literature review. We used a similar approach to include and exclude articles as men-

tioned above but we did not include these articles in the pool of systematically reviewed

articles for further analysis owing to the differences in methodologies. Therefore, we did not

calculate inter-rating agreement and did not assess the study quality for these set of articles.

This article search was performed between August 10, 2023, and October 30, 2023.
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Data extraction and synthesis

Methodological and outcome variables from each selected study were collected in a database,

including article title, authors, publication year, country, study type, vector taxa, main implica-

tions of each study, and database source for this review. We summarized the common themes

and findings of the included studies narratively. To better illustrate the impact of cattle on

human health due to VBPs, we characterized the effect of cattle on VBP exposure risk to

humans into three specific categories. The rubric used to generate these three categories

included the following definitions, a) beneficial or positive impact: when cattle quantitatively

decrease the risk of exposure to VBPs for humans, (e.g. through a decrease in vector abun-

dance, human biting rate, or pathogen infection rate), b) harmful or negative impact: when

cattle quantitatively increase the risk of exposure to VBPs for humans (e.g. through an increase

in vector abundance, human biting rate, or pathogen infection rate), c) neither beneficial nor

harmful impact: when there is no measurable change in risk or no statistical effect observed on

human exposure risk to VBPs due to cattle.

We also identified and synthesized specific repeatedly occurring ecological mechanisms

that were either investigated or proposed by the authors that contributed to human risk of

exposure to VBPs by cattle. Vector taxa may have underlying differences due to their biology

and other factors, and these vectors in turn adhere to various ecological behaviors due to their

distinct feeding mechanisms, so we acknowledge that the mechanisms we identified through

the literature are at least partially accounted for by differences between vector taxa.

We used a similar approach to extracting the information from the articles in the non-sys-

tematic literature review as mentioned above, which were collated in a separate database than

the systematically reviewed articles.

Study quality assessment

To evaluate the quality of the studies identified in the systematic review, we used The Strength-

ening the Reporting of Observational Studies in Epidemiology (STROBE) Statement guide-

lines for reporting observational studies [29]. The first two authors independently rated each

included study. These articles were rated on a score ranging from 0–2, depending on whether

the criteria were unmentioned or <¼ met (0), ¼—¾ met (1), or >¾ met (2). The following

were the critical criteria used in rating the study quality: (a) was the research question clearly

stated? (b) what was the study design and study setting used? (c) what was the sample size

used? (d) were the subjects in the study representative of the target population? (e) were the

main findings clearly described? (f) were there any confounding variables? (g) did the

researchers use appropriate analytical methods? and (h) was the study located in the prede-

fined area of interest? The study quality score measured the strength of study evidence for

reporting here, but studies were not excluded based on quality.

Results

Study selection, Inter-rater agreement & Study quality assessment

We screened 470 articles through a keyword search using our search algorithm. The number

of articles identified from each database, and the number of articles included and excluded in

our review, are listed in Fig 1. After the removal of 12 duplicates, we identified 458 unique arti-

cles. Out of these, 331 did not meet the inclusion criteria. The remaining 127 articles are the

final pool of studies included in this systematic review. S1 Appendix provides the complete ref-

erence list of all studies that were finally included after performing the database search.

Cohen’s Kappa statistic for inter-rater agreement between two raters was calculated to be
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0.835, indicating strong agreement between the article reviewers [30]. Averaging the ratings

provided by two members who conducted the study quality assessment, the reviewed studies

averaged a score of 1.22 out of 2, with a standard deviation of 0.55 for 127 articles.

Information regarding the non-systematically reviewed articles is available in the S2 Appen-

dix. In the literature review of articles prior to 1999, we identified a total of 226 articles, and,

after screening, 36 articles met the inclusion criteria.

Study characteristics

The most common study methods used by researchers worldwide were observational studies,

studies that utilized molecular biology, phylogenetic, and genetic techniques, mathematical

modeling studies, and entomological studies. Several studies involved more than one research

method or study design to collect various kinds of data from the study population. In addition,

several articles that we reviewed published prior to 1999 tended to be review articles or

Fig 1. Flowchart for the systematic review process.

https://doi.org/10.1371/journal.pntd.0011152.g001
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perspective pieces that did not meet the inclusion criteria, which we did not include. From the

systematically reviewed articles, we had papers from 69 individual countries and the European

Union. Of note, only one study from the United States was in the final pool of included studies.

The majority of the papers included in this review were from the African continent (N = 82),

followed by Asia (N = 37), Europe (N = 24), and only a few papers from South America

(N = 4), North America (N = 4), and one study from Oceania/Australia (N = 1; Fig 2). Note

that there were several studies that were based in more than one country; for example, if a

study was conducted both in Cameroon and Nigeria, it was counted twice in Fig 2.

Based upon the findings reported by the study authors, the effects of cattle on human health

with respect to exposure to VBPs, were divided into three categories as per our rubric: benefi-

cial, harmful, or neither beneficial nor harmful (no association) (Fig 3 and Table 1). The most

beneficial impact of cattle was observed in the case of infections spread by mosquitoes and

sandflies. Cattle sometimes had a beneficial impact when it came to tick-borne diseases, espe-

cially in integrated cattle and wildlife communities. In such communities, when cattle were

treated with acaricides, they reduced the abundance of host-seeking ticks in the environment,

thereby reducing tick-borne disease risk for wildlife and humans [31–32]. However, effects of

cattle on tick-borne pathogen exposure risk were sometimes harmful as well. Cattle have been

found to be a major risk factor for humans when it comes to diseases spread by tsetse flies.

There were some studies for each vector taxon that stated that cattle had neither harmful nor

beneficial exposure impacts on human health, with the exception of tsetse flies. From this sys-

tematic review, we found that in the case of six VBDs and in the case of a few tickborne patho-

gens, cattle impacted VBP exposure risk in humans both positively and negatively. Cattle were

harmful for 14 major VBPs, and for 2 VBPs, cattle were beneficial (Table 1). Overall, we find

that cattle tend to increase the risk of exposure to VBPs in humans, but there are circumstances

when cattle can reduce or have no effect on VBP exposure risk as well.

Fig 2. World map representing countries and number of studies included in this systematic review. The direct link to the basemap layer from ESRI: https://

www.arcgis.com/home/item.html?id=b9b1b422198944fbbd5250b3241691b6>.

https://doi.org/10.1371/journal.pntd.0011152.g002
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As per our hypothesis, we identified various mechanisms repeated across these published

studies by which cattle can positively or negatively impact the human exposure risk to VBPs

(Table 2). We have defined these mechanisms briefly below and in Table 2. Seven mechanisms

were identified by which cattle have been shown to impact VBP exposure risk in humans. We

have developed a figure (Fig 4- graphical abstract) to illustrate these seven identified mecha-

nisms from the systematic review. We also recorded the number of times the papers within

our included studies invoked one or more of these mechanisms.

Mechanism I: Diversion and attraction of vector blood meals. There is considerable evi-

dence in the published literature to support scenarios in which there is a zoo-prophylactic

effect of cattle on human health. Zoo-prophylaxis occurs when the presence of cattle can func-

tion as a barrier against potential vector bites and as an alternative host that deflects blood

meals away from humans. This mechanism was observed 16 times in the included studies.

The opposite of zoo-prophylaxis is zoo-potentiation, whereby livestock contribute to an

increase in VBP transmission by attracting vector bites to humans; this often occurs where

livestock are housed within or near human sleeping quarters and for vector species that prefer

human hosts, such as with some species of mosquitoes that can spread human malaria [24].

We observed this mechanism within our included studies 18 times.

Mechanism II: Modification of the environment. A second mechanism by which cattle

may impact VBP risk is through physical modification of the environment. Cattle may modify

the environment, making it suitable or unsuitable for certain vectors, thereby impacting VBP

exposure. We found 6 instances when this mechanism was discussed in our pool of studies.

Mechanism III: Incompetent host. Cattle have been found to be an incompetent reser-

voir host species for certain vector-borne pathogens such as the causative agent for Lyme dis-

ease [56] and Japanese encephalitis [99]. This mechanism was only observed 3 times within

our pool of studies.

Mechanism IV: Competent host. In other cases, cattle may serve as competent reservoirs,

maintenance hosts, quality source of bloodmeals or amplifying hosts for several vector-borne

diseases. In some circumstances, cattle can maintain vector-borne pathogens in their system

that remain undetected, which may cause an outbreak when the right conditions arise [100].

Fig 3. Cattle impact on risk of exposure to vector-borne pathogens on human health, divided into beneficial, harmful and no effect by

major vector taxon, covered in this review.

https://doi.org/10.1371/journal.pntd.0011152.g003
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This was the most commonly observed mechanism (found 63 times) in our systematic review

and appears to be a better studied mechanism than some of the other mechanisms mentioned

here.

Table 1. Role of cattle on risk of exposure to vector-borne pathogens in humans from studies included in this systematic review.

Vector-borne disease Vector Role of cattle Selected Sources

Rift Valley fever (RVF) in humans Mosquitoes (primary vector-Aedes species, secondary vector

Culex species)

Harmful. (See Table 2: 4–6) [33–35]

Human malaria Mosquitoes (female Anopheles species) Both harmful and beneficial

effects observed. (See Table 2:

1, 4, 7)

[18,24,36–41]

Japanese Encephalitis (JE) Mosquitoes (Culex species) Beneficial and potentially

harmful effects observed. (See

Table 2: 1, 3)

[42–43]

Chagas disease Kissing bug (Triatoma brasiliensis brasiliensis) Potentially harmful (See

Table 2: 1, 4)

[44–45] (Not part of

included studies)

West Nile Virus (WNV) infection in

humans

Mosquitoes (Culex species) Possibly harmful but in rare

instances (debatable) (See

Table 2: 4)

[46–47,48] (Not part of

included studies)

St. Louis Encephalitis (SLE) infection in

humans

Mosquitoes (Culex species) Potentially harmful (See

Table 2: 4)

[49]

Human African Trypanosomiasis

(HAT) or sleeping sickness

Tsetse fly (Glossina species) Harmful & Beneficial. (See

Table 2: 4–7)

[50–54]

Lyme Disease Ticks (Ixodes scapularis, Ixodes pacificus, Ixodes ricinus) Beneficial (See Table 2: 2–3) [55–56]

Crimean-Congo hemorrhagic fever

(CCHF)

Ticks (primary vectorHyalomma species; secondary vector

Rhipicephalus, Haemaphysalis and Dermacentor species)

Harmful and Beneficial (See

Table 2: 4–5, 7)

[31,32,57–61]

Human anaplasmosis Ticks (Ixodes scapularis, Ixodes pacificus, Ixodes Ricinus, Ixodes
persulcatus)

Harmful (See Table 2: 4, 6) [62–65]

Human babesiosis Ticks (Ixodes scapularis, Ixodes ricinus) Harmful (See Table 2: 6) [66–69] (Not all papers

are part of included

studies)

Dugbe virus infection in humans Ticks (Hyalomma, Amblyomma and Rhipicephalus species) Harmful and Beneficial (See

Table 2: 4, 7)

[70–72]

[31,32]

Thogoto virus infection in humans Ticks (Rhipicephalus praetextatus) Potentially beneficial (See

Table 2: 7).

[31,32]

Alkhurma/Alkhumra hemorrhagic

fever (AKHV)

Ticks (Ornithodoros savignyi, Hyalomma dromedari) Harmful (See Table 2: 5) [73–75] (Not all papers

are part of included

studies)

Kyasanur Forest Disease (KFD) in

humans

Ticks (Haemaphysalis spinigera, Haemaphysalis turturis) Harmful (See Table 2: 4–6) [76–79] (Not all papers

are part of included

studies)

Human ehrlichiosis Ticks (Amblyomma americanum, Ixodes scapularis) Harmful (See Table 2: 4) [64,80]

Tickborne Encephalitis Virus (TBEV)

infection in humans

Ticks (Ixodes ricinus, Ixodes persulcatus, Haemaphysalis
punctata, Dermacentor marginatus)

Harmful (See Table 2: 4, 6) [81,82]

African tick bite fever (ATBF) in

humans

Ticks (Amblyomma variegatum, Amblyomma hebraeum) Harmful (See Table 2: 4) [83–85] (Not all papers

are part of included

studies)

Rocky Mountain Spotted Fever (RMSF) Ticks (Dermacenter variabilis, Amblyomma americanum,

Rhipicephalus sanguineus, Amblyomma cajennense)
Harmful (See Table 2: 4) [86]

Spotted fever group (SFG) rickettsioses

in humans

Ticks (Amblyomma maculatum, Rhipicephalus, Dermacentor,
Hyalomma and Ixodes species)

Harmful (See Table 2: 4) [22,83,87,88]

Q fever infection in humans Ticks (Dermacentor species, Hyalomma species, Haemaphysalis
species, Rhipicephalus species, Ixodes species)

Harmful (See Table 2: 4–5) [89–91]

Cutaneous Leishmaniasis and Visceral

Leishmaniasis (Kala azar) infections in

humans

Sandfly (Lutzomyia gomezi, Lutzomyia longipalpis, Lutzomyia
ovallesi, Phlebotomus argentipes, Phlebotomus papatasi
Phlebotomus sergenti, Sergentomyia squamipleuris)

Both harmful and beneficial

effects observed. (See Table 2:

2, 4, 7)

[92–98]

https://doi.org/10.1371/journal.pntd.0011152.t001
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Table 2. Mechanisms identified from included studies by which cattle impact vector-borne pathogen exposure risk in humans, their definitions, and sources.

Potential

mechanisms of

cattle

Definition of

mechanism

Select vector-borne

diseases

Effect on

human

health

Sources

1A. Diversion of

blood meals away

from humans.

1B. Attraction of

vectors to humans.

1A: Cattle serve as

barriers/shields

against vectors and

divert bloodmeals

away from humans

thereby having a

protective effect on

human health.

1B. Cattle can increase

the density or

abundance of vectors

in the environment in

the presence of

humans, thereby

having a negative

effect on human

health.

Malaria

Malaria

Beneficial

Harmful

[18,24,40,104]

[18,24,39]

2. Modification of

the environment.

2A. Cattle physically

modify the

environment around

them to make it

unsuitable for vectors,

thus having a positive

impact on human

health.

2B. Cattle physically

modify the

environment around

them to make it

suitable for vectors,

thus having a negative

impact on human

health.

Lyme disease,

Leishmaniasis

Leishmaniasis

Beneficial

Harmful

[55,93,94]

[96,97]

3. Incompetent

host

Cattle serve as

incompetent hosts for

vectors and pathogens,

having a protective

effect on human

health.

Lyme disease, Japanese

encephalitis

Beneficial [43,55,56,99]

4. Competent host

(maintenance/

reservoir of

pathogens, quality

source of blood

meals for vectors)

Cattle can serve as a

good bloodmeal host

for vectors, or act as a

reservoir for vectors to

acquire infection from

and spread that to

humans, or help

amplify vector-borne

pathogens in the

environment, having

negative impacts on

human health.

Tick-borne rickettsial

diseases, Human African

Trypanosomiasis (HAT),

Kyasanur Forest Disease

(KFD), Anaplasmosis,

African Tick Bite fever,

Rocky Mountain Spotted

fever, tick-borne Dugbe

virus, Malaria, Q fever,

Leishmaniasis, West Nile

virus, Ehrlichiosis, Chagas

disease, Japanese

encephalitis, St Louis

encephalitis, CCHF, Tick-

borne encephalitis,

Chandipura virus, Bhanja

virus, Calovo virus

Harmful [18,22,44,46,49,50,63,64,65,70,71,76,79,81,83,84,86,89,90,105,106,107,108,48,88]

(Continued)
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Table 2. (Continued)

Potential

mechanisms of

cattle

Definition of

mechanism

Select vector-borne

diseases

Effect on

human

health

Sources

5. Direct contact

between cattle or

cattle by-products

and humans

affecting pathogen

transmission

Humans come into

contact with cattle and

cattle by-products

through handling,

treating, caring,

processing, or through

consumption of such

substances, leading to

exposure to VBPs in

humans.

Crimean Congo

Hemorrhagic fever

(CCHF), Kyasanur Forest

Disease (KFD), tick-borne

encephalitis, Alkhurma/

Alkhumra hemorrhagic

fever, Q fever, Rift Valley

fever (RFV), Human

African Trypanosomiasis

(HAT).

Harmful [33,50,53,73,75,76,77,81,82,89,90,109,106,110,91]

6. Pathogen

transmission

through cattle

movements and

interaction with

wildlife/other

animals.

Cattle introduce new

vector-borne

pathogens or vectors

into geographic areas

which did not

previously have these

vectors, and/or

pathogens present; or

cattle interact with

other animals

resulting in pathogen

spillover; all of these

negatively impacting

human health.

Rift Valley fever, Kyasanur

Forest Disease, Human

African Trypanosomiasis,

Anaplasmosis, Tick-borne

encephalitis

Harmful [34,50,64,68,76,101,111,102,103,112,110,113]

7. Impact of

insecticidal/

acaricidal

treatment of cattle

on pathogen

transmission.

Cattle are treated with

pesticides specific to

vectors, reducing the

burden of VBPs in the

community and

having a protective

effect on human

health.

Malaria, Human African

Trypanosomiasis,

Onchocerciasis, tick-

borne pathogens,

Leishmaniasis, CCHF,

Thogoto virus and Dugbe

virus

Beneficial [31,32,37,38,50,51,114,115,116,117,118,119,120,121,122]

https://doi.org/10.1371/journal.pntd.0011152.t002

Fig 4. Figure depicting the seven mechanisms identified through the systematic review illustrating how cattle can

impact VBP exposure risk in humans.

https://doi.org/10.1371/journal.pntd.0011152.g004
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Mechanism V: Direct contact between cattle or cattle by-products and humans affecting

pathogen transmission. Direct contact of humans with cattle or cattle by-products such as

skin, body fluids, milk, meat, etc. which, if infected with vector-borne pathogens, can cause

various VBDs in humans. These contacts can occur through handling of cattle, through con-

sumption of milk and meat, through caring for and treating cattle, through slaughtering meat,

and while processing cattle carcasses and products without taking proper preventive measures.

This is the second most commonly observed mechanism in the reviewed literature, with a

count of 28 times.

Mechanism VI: Pathogen transmission through cattle movements and interaction with

wildlife/other animals. Movement of animals from disease-endemic to non-endemic places

and the interaction between cattle and other animal species during grazing activities can also

result in geographic spread of VBPs to new foci [101, 102, 103]. We observed this mechanism

26 times in our included pool of studies.

Mechanism VII: Impact of insecticidal/acaricidal treatment of cattle on pathogen trans-

mission. A major beneficial impact of cattle on VBP exposure risk in humans is through the

treatment of cattle with insecticides/acaricides. Treatment of cattle with pesticides specific to

vectors can significantly reduce the burden of VBPs in the environment thereby having a

major beneficial impact on the health of humans and animals [21,40,52]. We observed this

mechanism in our included pool of studies 17 times.

We also performed a non-systematic literature review of articles prior to 1999 across three

databases. There were several papers that did not meet the inclusion criteria or did not neces-

sarily investigate all three elements of this research topic i.e., vector, cattle, and a vector-borne

disease of humans, or whose full texts were inaccessible or were review papers. It was interest-

ing to note that early research on Q fever dismissed the vector-borne route of infection in

humans, but then later research indicated the important role played by both cattle and ticks in

causing Q fever in humans [91,123]. Papers that did meet inclusion criteria echoed that cattle

can have a positive or negative impact on VBP exposure risk in humans [e.g.,

48,54,91,99,104,108,123].

Discussion

Cattle and other livestock animals are principal elements in agriculture, animal husbandry,

trade, economic activities as well as in cultural practices of people around the world. People

who are in close contact with cattle due to employment, commerce, or for traditional reasons

often are at higher risk for contracting various vector-borne and zoonotic diseases [13,124].

We identified a critical gap in the scientific literature about the various roles cattle can play

in impacting vector-borne pathogen exposure risk in humans. We systematically reviewed

articles from the scientific literature to synthesize the available information to better under-

stand how cattle impact VBP exposure risk in humans. We categorized the impacts of cattle on

VBP exposure risk in humans based on the aforementioned rubric by effect (positive, negative,

neutral) and by vector taxa (mosquitoes, sandflies, ticks, tsetse flies). As per our hypothesis, we

also identified seven ecological mechanisms repeatedly described from the previously pub-

lished literature by which cattle positively or negatively impact VBP exposure risk in human

health. Research on this topic has been concentrated geographically in countries located in

sub-Saharan Africa and southern Asia. Cattle appear to have both beneficial and harmful

impacts on human health with respect to VBDs, but they tend to overwhelmingly increase the

risk of exposure to VBPs in humans. The effects of cattle on VBP exposure risk in humans

depends on various ecological conditions, on the vector taxa along with other environmental

factors.
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In order to understand the mechanisms by which cattle can impact the risk of human expo-

sure to vector-borne pathogens, we define some key terms here, which are sometimes used

inconsistently in the literature we reviewed. A reservoir is defined as one or more epidemiolog-

ically connected populations of host species in which the pathogen can be permanently main-

tained and from which infection is transmitted [125]. A maintenance population can be

defined as a host population in which a pathogen persists because the population size is greater

than the critical community threshold [125,126]. An amplifying host is an organism in which

an infectious agent (such as a virus or bacterium) that is pathogenic for some other species is

able to replicate rapidly and to high concentrations [127], as evidenced in the case of Japanese

encephalitis virus for which pigs are the amplifying host species [109]. The ability to obtain

and transmit pathogens to other organisms refers to the competence of the host in transmit-

ting that infection [128]. We discuss the seven identified mechanisms below and their implica-

tions on human health.

Mechanism I: Diversion and attraction of vector blood meals

The phenomenon of zoo-prophylaxis (cattle forming a protective barrier against vector blood-

meals) has been observed and studied greatly in the context of malaria [24,26,39,129,130].

Contrastingly, there is also evidence of instances when zoo-prophylaxis has not been observed

[25,39,114,104,130–134]. Multiples studies indicate that certain requirements/conditions need

to be present for zoo-prophylaxis to occur [24,26,38]. In the case of malaria specifically, these

conditions are a) zoophilic and exophilic vector, b) habitat separation between human and

host animal quarters, and c) augmentation of zoo-prophylaxis with insecticide treatment of

animals or co-intervention of long-lasting insecticide-treated nets and/or indoor residual

spraying. The presence or absence of these requirements might explain to a certain extent why

cattle may or may not always be observed to be zoo-prophylactic.

As opposed to zoo-prophylaxis, the improved availability of blood meals by increasing the

presence of cattle increases mosquito survival, which counters the beneficial impact of divert-

ing blood meals on endemic and epidemic malaria [114]. Tirados et al [130] showed in field

studies that in outdoor conditions, cattle had no prophylactic effect on humans, but the pres-

ence of cattle outside with humans indoors had some protective effect. Clearly, the mere pres-

ence of cattle may not always be sufficient to protect humans from malaria-carrying

mosquitoes. Cattle may attract more vectors [135], and they can increase the local abundance

of specific vectors which can lead to VBDs in both cattle and humans, such as tick-borne path-

ogens, malaria and leishmaniasis.

Mechanism II: Modification of the environment

Cattle can physically modify the environment around them to make it suitable or unsuitable

for vector survival. For example, cattle can modulate the risk for Lyme disease by reducing the

prevalence of questing vector ticks in a managed pasture [55]. In this study, cattle modified the

vegetation by their grazing, thereby rendering the microclimate more arid and making the

environment less suitable for the survival of ticks. Another instance where cattle may have a

beneficial impact on human exposure is the case of Leishmaniasis: Bern et al [93] found that

household cattle ownership was associated with a lower risk of contracting the infection and

the presence of large numbers of cattle around houses had a protective effect. Conversely,

research by Singh et al [97] found that one of the primary vectors of Leishmaniasis in India,

Phlebotomous argentipes, preferred to mate in cattle sheds and in soils that were more alkaline

than in human houses, whereas another vector P. papatasi preferred the soil of human houses

with neutral pH. Similarly, Chorley [136] demonstrated that Glossina pallidipes, vector of HAT
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are attracted to the scent of cattle dung and cattle urine, which can have a negative impact on

HAT exposure risk in humans. These serve as examples where cattle may modify environ-

ments to be more suitable for vector survival and where it can have a negative and positive

effect on human health depending on the ecological attributes of the vector.

Mechanism III: Incompetent host

As mentioned before, cattle are incompetent hosts for certain vector-borne pathogens, thereby

having a beneficial impact on human health such as in the case of Lyme disease and Japanese

encephalitis. Non-infected ticks that feed on cattle fail to acquire spirochetes, but also infected

ticks may even lose their infection during the course of blood meals from cattle [55]. Similarly,

Samuel et al [43] reported that a decrease in the cattle-to-pig ratio might be one of the reasons

for an increase in Japanese encephalitis virus (JEV) infection among children in India. Pigs are

competent reservoir hosts for JEV, whereas cattle are dead-end hosts for JEV, and the presence

of cattle may have a protective effect on humans.

Mechanism IV: Competent host

The ability of cattle to be a good source of bloodmeals for vectors and reservoirs of infection in

the environment has negative consequences on human health. For example, in the case of

Human African Trypanosomiasis (HAT), cattle along with pigs serve as reservoirs of human

infective Trypanosoma brucei rhodesiense and also serve as blood meal hosts for the tsetse fly

vector [50,137]. Cattle have been found to harbor all life stages of ticks that can spread Kyasa-

nur Forest Disease virus (KFDV) to humans and have also been found to maintain a low level

of the KFDV infection without succumbing to the disease [76,78,138]. Cattle are reservoirs for

the pathogens that cause human anaplasmosis and can be co-infected with two or more Ana-
plasma species simultaneously [63,139,140]. Cattle can be reservoirs for several species of tick-

borne rickettsial pathogens as well [22,87]. Cattle are also known to maintain tick-borne

Dugbe virus in the environment, which primarily affects children [71,72]. Cattle and other

ungulates are important reservoirs of the causative agent of Q fever, Coxiella burnetii
[141,142,91].

Mechanism V: Direct contact between cattle or cattle by-products and

humans affecting pathogen transmission

Several sources indicate that consumption of dairy products from infected cattle (i.e., after

they have been bitten by ticks) or consumption of infected meat itself are risk factors for dis-

eases spread by vector arthropods, such as Crimean Congo hemorrhagic fever (CCHF), tick-

borne encephalitis, Rift Valley Fever (RVF), and Alkhurma/Alkhumra hemorrhagic fever

[59,73,81,101,143]. Handling both live and dead infected cattle and contact with raw animal

skins and body fluids of infected cattle can also be risk factors for CCHF and RVF

[61,106,144]. Various studies have also shown that people working in professions in close con-

tact with cattle, such as veterinary professionals, abattoir workers, butchers, farm workers, live-

stock handlers, traditional pastoralists, tannery workers, and human health professionals, are

at risk of contracting CCHF, RVF, HAT, Q fever and other VBDs, either through direct con-

tact with cattle or indirectly via vector bites on the cattle [28,33,57,59,106,143,145,146]. In

addition, congregations of large herds of cattle with humans due to trade and religious festivals

at trading posts, live animal markets, quarantine facilities, and slaughterhouses, allow for more

opportunities for VBP transmission such as in the cases of RVF and CCHF [58,102,111,147].
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Mechanism VI: Pathogen transmission through cattle movements and

interaction with wildlife/other animals

Omondi et al [64] state that wildlife translocations from areas with vector presence to areas

without vector presence can also lead to VBP transmission. Diseases that typically are rare in

humans, such as babesiosis, have been found to increase due to the dissemination of pathogens

through cattle movement [68]. Movement of otherwise free-ranging cattle to forest and back

into villages have been hypothesized to be a risk factor in the spread of Kyasanur Forest Dis-

ease in India [78,79,148]. Rutto et al [50] showed that in areas where untreated cattle, humans

and other livestock come into contact with each other, especially during dry periods at water-

ing points, there can be risk of bovine and human trypanosomiasis transmission. Murase et al

[112] demonstrated that cattle might be contracting Anaplasma phagocytophilum from contact

with wildlife that could be easily transmitted to humans in Japan. In a review by Glover [54],

the author stated that cattle migrations are responsible for introducing different species of

tsetse flies in areas where they were previously absent. Similar to mechanism V, anthropogenic

activities, and areas such as trading posts, wet markets, religious festivals etc. where there are

congregations of cattle, humans, and other domestic or wild animals; afford opportunities for

spillover of pathogens from one species to another [111,147,149,150].

Mechanism VII: Impact of insecticidal/acaricidal treatment of cattle on

pathogen transmission

There is research that shows treatment of cattle with insecticides is associated with a significant

decrease of malarial vectors in the environment when used in conjunction with insecticide-

treated bed-nets, indoor residual spraying, and other vector control approaches

[37,38,114,115,151–154]. When cattle are treated with insecticides against tsetse flies or trypa-

nocides against the parasites, it reduces the abundance of vectors and parasites, thus prevent-

ing transmission of HAT [50–52,54,155]. Insecticidal or acaricidal treatment of cattle also have

positive impacts in controlling other mosquito vectors [116], blackflies [117], leishmaniasis

[118–120] and preventing tick-borne diseases in non-integrated ecosystems [121,122].

Acaricidal treatment of cattle can also have beneficial impacts on wildlife and livestock inte-

grated communities. Allan et al [31] and Keesing et al [32] describe that in such integrated

communities in Kenya, treatment of cattle with acaricides can reduce the abundance of host-

seeking ticks in the environment. This could also improve the health of wildlife, domestic ani-

mals and humans that co-occur in such shared ecosystems. Treatment of the cattle with spe-

cific acaricides reduced the abundance of host-seeking nymph and adult life stages of several

tick species (vectors of diseases such as CCHF, Thogoto virus and Dugbe virus), thereby reduc-

ing the potential for disease transmission. Interactions between cattle and wildlife can have

important epidemiological consequences. For example, Ruiz-Fons et al [156] found that in

game reserves in Spain, where cattle and ungulates coexist, cattle abundance influenced the

prevalence of B. burgdorferi sensu lato and A. phagocytophilum in I. ricinus nymphal ticks.

Increasing abundance of cattle seemed to increase the risk of other hosts becoming infected by

A. phagocytophilum, while reducing the risk of becoming infected by B. burgdorferi sensu lato.

Treatment of cattle with insecticides, either topically or through ingestion, can reduce the

circulating parasites in the environment along with the targeted vector species, thereby reduc-

ing the disease burden and vectorial capacity of the vectors. However, the efficacy of insecti-

cide treatment of cattle is dependent not just on the feeding preferences of the vector but also

on behavioral adaptations of vectors, potential development of resistance among the vectors

and parasites, and potential negative consequences for the environment [41,152,157–159]. If

the targeted vector species in an area are all anthropophilic, then there has to be a multi-
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pronged approach to control the vectors and VBPs in that area. We hypothesize that when cat-

tle are treated with insecticides and/or vectors preferentially feed on cattle, cattle likely reduce

VBP exposure risk in humans by deflecting vector blood meals away from humans and/or

reducing the abundance of vectors in the environment. Conversely, when vectors prefer to

feed on humans and/or cattle are not treated with insecticides, cattle are likely to increase VBP

exposure risk in humans by contributing to an increase in vector abundance, attracting vectors

to feed on humans, and/or serving as pathogen reservoir hosts that can transmit the infection

to vector arthropods. This intricate interaction between vector feeding/biting preferences and

insecticide treatment of cattle has important implications for human health.

Treatment of cattle with various insecticides to prevent pathogen transmission is a critical

step in vector control. As mentioned before, the complex interaction between vector feeding

preference and insecticidal treatment of cattle has important implications on human health and

not all barriers to insecticide application are biological in nature. For instance, factors such as

inadequate market infrastructure, poor awareness, the expensive nature of treatments, and local

policy enforcement failures can lead to low rates of cattle treatment [50,103]. There is research

underway to investigate alternative methods that can be used to control vectors and thereby,

vector-borne diseases, such as the use of plant-based odor baits [160] and semio-chemicals.

Semio-chemicals are organic compounds that function as signals and enable intra- and

inter-specific chemical communication [161]. The information conveyed is used for modulat-

ing physiological and behavioral activities through the olfactory and taste systems [161]. Mos-

quitoes use a variety of sensory cues to find their prey which can differ depending on the

specific life stages of the mosquito [162]. Various semio-chemicals have been identified that

mosquitoes use during oviposition, mating, sugar feeding and host-seeking [162]. When

semio-chemicals are applied to cattle and livestock, they can attract specific vectors to cattle

and then kill the vectors [163]; or they can disrupt mating in the vector [164]; additionally,

they can be used to repel vectors from finding their preferred hosts (e.g., humans) [164]. The

search is on for other alternative methods or compounds that can be used in vector control

methods that might be less environmentally harmful. For instance, Singh et al [97] evaluated

the application of plant products at potential sandfly breeding sites to reduce soil pH which

might help prevent vector mating and can be a useful alternative to chemical insecticides for

sandfly control/management. Other vector control approaches being developed include gene

drive technology [165], infection of Aedesmosquitoes with Wolbachia to prevent VBP spread

[166,167], and a variety of environmental modifications [167].

No effect/no association of cattle on VBP exposure risk

There were some papers that met our inclusion criteria and yet did not explicitly study the

impact of cattle on human exposure risk to VBPs [168,169]. In addition, other studies found

unclear associations between cattle and VBD risk in humans [170–176]. As we found few such

papers in our pool, this indicates the need for diversity of study designs and research method-

ologies that might better investigate the impact of cattle on VBP exposure risk in humans.

Limitations

It is important to consider study limitations. For the systematic review, we opted to focus on

more recent papers, i.e., papers published after 1999. For the non-systematic literature review

even though we did look at articles prior to 1999, there were papers whose full texts we were

not able to retrieve, papers that were predominantly reviews or perspective pieces or papers

that did not examine this topic. Hence, we chose 1999 as the cutoff point for the systematic

review, to access papers that investigated this topic and to easily access electronically the
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majority of peer-reviewed articles on this topic. There may be articles published on this topic

in languages other than English that we could not include, and there have been review articles

published which we did not include as well. In some articles, it was difficult to parse out the

effects of cattle from the effects of other livestock since some studies group cattle as part of

multiple livestock species, despite our specific use of the term ‘cattle’ instead of ‘livestock’ in

our search algorithm. Of note, since this systematic review encompasses information from

multiple fields such as ecology, epidemiology, parasitology etc., certain terms/jargons and con-

cepts are interchangeably used, making this a challenging question to answer. Finally, our eval-

uation of mechanisms by which cattle affect VBP exposure risk in humans was dependent on

mechanisms invoked by the authors of these studies, some of which were supported by experi-

mental evidence, but others based on field observations or informed opinions.

Future recommendations and research

The role of cattle in VBP exposure risk in humans can be complicated and can prove to be bene-

ficial or harmful in the context of specific VBPs and in specific settings. We recommend future

studies explicitly study the various mechanisms by which cattle impact vector-borne pathogen

exposure risk in humans, as more than one mechanism may operate in specific environmental

contexts. We encourage researchers to use a wider variety of study designs than just modeling,

serology, molecular analyses, cross-sectional, and retrospective methods. Apart from human

and animal health, other factors such as cultural practices, societal norms, age, sex, occupation,

human activities and behaviors, and seasonality can predispose individuals to vector-borne dis-

eases. More research is needed to investigate all these factors as well as identify situations in

which cattle can be zoo-prophylactic beyond the well-studied example involving human malaria.

Since published studies tended to be concentrated from a few specific regions, more research

and funding on this topic from other geographic areas (e.g., North America) might yield inter-

esting results. The results from this research could inform public health measures globally to

prevent and reduce vector-borne pathogen exposure risk in humans. Policy measures, increased

funding, and public awareness are all critical steps in the fight against vector-borne diseases

since many vectors are opportunistic and can parasitize many different host species.

Conclusion

The goal of this comprehensive systematic review was to determine the impact of cattle on

human health with respect to vector-borne diseases. Our results show that cattle often increase

VBP exposure risk in humans, but there is evidence to show that cattle can have a beneficial

impact on human health as well. Our hypothesis was that certain mechanisms involving cattle,

vectors and humans occur repeatedly in nature with important consequences for VBP expo-

sure risk and spread in humans. Through this systematic review we identified and narratively

described seven mechanisms from the literature through which cattle can impact VBP expo-

sure risk in humans; these mechanisms are dependent on ecological conditions, vector taxa

and other environmental factors. In addition, some mechanisms are less studied than others

and require further investigation. Hence, it is critical for future studies to delve deeper into the

many ways cattle, humans, wildlife, and vectors interact in the environment and develop holis-

tic measures that can be used to protect humans and animals from VBDs as well as prevent

negative side effects on the environment.
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