
RESEARCH ARTICLE

Longitudinal proteomic profiling of the

inflammatory response in dengue patients

Fadel Muhammad GarishahID
1,2, Collins K. Boahen1,3, Nadira Vadaq1,2, Setyo

G. Pramudo4,5, Rahajeng N. Tunjungputri1,2, Silvita Fitri Riswari1,6,7, Ronald P. van Rij8,

Bachti Alisjahbana6,9, Muhammad Hussein Gasem2,4, André J. A. M. van der Ven1,
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Abstract

Background

The immunopathogenesis of dengue virus (DENV) infection remains incompletely under-

stood. To increase our understanding of inflammatory response in non-severe dengue, we

assessed longitudinal changes in the inflammatory proteome in patients with an acute

DENV infection.

Methods

Using a multiplex proximity extension assay (PEA), we measured relative levels of 368

inflammatory markers in plasma samples from hospitalized patients with non-severe DENV

infection in the acute (n = 43) and convalescence (n = 35) phase of the infection and sam-

ples of healthy controls (n = 10).

Results

We identified 203 upregulated and 39 downregulated proteins in acute versus convalescent

plasma samples. The upregulated proteins had a strong representation of interferon (IFN)

and IFN-inducible effector proteins, cytokines (e.g. IL-10, IL-33) and cytokine receptors,

chemokines, pro-apoptotic proteins (e.g. granzymes) and endothelial markers. A number of

differentially expressed proteins (DEPs) have not been reported in previous studies. Func-

tional network analysis highlighted a central role for IFNγ, IL-10, IL-33 and chemokines. We

identified different novel associations between inflammatory proteins and circulating con-

centrations of the endothelial glycocalyx disruption surrogate marker syndecan-1.
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Conclusion: This unbiased proteome analysis provides a comprehensive insight in the

inflammatory response in DENV infection and its association with glycocalyx disruption.

Author summary

Dengue virus (DENV) infection is the most common arboviral infection worldwide. Sig-

nificant gaps remain in our understanding of the pathogenesis of dengue, including the

changes that occur in the immune and inflammatory responses. In this present study, we

used a multiplex proximity extension assay (PEA) from Olink Proteomics AB to assess

levels of 368 inflammation-related proteins in plasma samples from the acute and conva-

lescence phase of the infection in hospitalized adult patients with non-severe dengue. We

show a pronounced increase in interferon (IFN) and IFN-related antiviral proteins, a

selection of cytokines and cytokine receptors, members of the CCL and CXCL chemokine

family, pro-apoptotic proteins and proteins involved in endothelial integrity in the acute

phase of the illness. In addition, we found a large number of significant associations

between these proteins and concentrations of the endothelial glycocalyx degradation

marker syndecan-1. In summary, our proteome analysis provides a comprehensive insight

in longitudinal changes in inflammation-related proteins in non-severe dengue and the

association with endothelial glycocalyx perturbation.

Background

Dengue is one of the most important arboviral infections, causing an estimated 100 million

symptomatic infections annually worldwide [1]. The clinical manifestations of dengue infec-

tion range from a mild febrile illness to a life-threatening disease [2]. Dengue is classified into

dengue with or without warning signs and severe dengue [3]. Patients with warning signs

require strict observation and medical intervention. Only a small proportion of patients

progress to severe disease, mostly characterized by a transient vascular hyperpermeability

syndrome that may lead to fluid accumulation and shock, severe bleeding and organ

impairment [3].

The immunopathogenesis of dengue virus (DENV) infection is only partially elucidated

[4]. It is generally acknowledged that a dysregulated innate and adaptive immune response is a

key factor in the complications of dengue [5]. Earlier studies have highlighted the upregulation

of different cytokines, chemokines and lipid mediators in hospitalized dengue patients [6, 7].

However, our understanding of the immunological pathways in dengue remains incomplete as

most studies measured only a limited number of inflammatory markers.

A comprehensive description of the changes in inflammatory pathways may help to better

map the pattern of host defense responses during an acute DENV infection. In this study, we

studied the expression of 368 inflammatory proteins using a Proximity Extension Analysis

(PEA) technology (Olink Proteomics AB) in plasma of hospitalized patients with DENV infec-

tion in the acute and in the convalescent phase and in a small group of healthy volunteers. We

also constructed a protein interaction network and explored associations of the differentially

expressed proteins (DEPs) with participant characteristics, including signs of plasma leakage.

Finally, disruption of the endothelial glycocalyx integrity is increasingly recognized as a key

process in plasma leakage and, therefore, we determined associations of DEPs with plasma

syndecan-1 concentrations, which is a surrogate marker of endothelial glycocalyx degradation.
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Methods

Ethics statement

The Medical Research Ethics Committees of the Faculty of Medicine, Diponegoro University,

Dr. Kariadi Hospital, Semarang, and Faculty of Medicine, Universitas Padjadjaran, Bandung,

Indonesia approved the study (No:650/EC/FK-RSDK/XI/2017). The Medical Research Ethics

Committee Arnhem-Nijmegen Region (NL32357.091.10) approved the collection of plasma

from healthy volunteers. All subjects provided written informed consent prior to enrollment.

All procedures were performed according to the Declaration of Helsinki.

Study design and patients

This study used plasma samples from subjects in a phase 2, double-blind, multicenter, ran-

domized placebo-controlled trial on the effect of oseltamivir phosphate on platelet recovery

and plasma leakage in adults with dengue and thrombocytopenia (ISRCTN35227717) [8]. In

brief, adult dengue patients (�16 years old) with fever (� 6 days), thrombocytopenia (< 70

x109/L) and positive for rapid dengue virus (DENV) non-structural protein-1 (NS1) or IgM

anti-DENV (PanBio, Diagnostics, Windsor, Australia) were enrolled in six different hospitals

in Central and West Java, Indonesia, between January 2018 –July 2019. For the proteomics

analysis, we included blood samples from the acute phase (n = 43) and paired convalescent

samples (approximately 21 days post enrollment; n = 35). Patients with a positive NS1 or IgM

anti-DENV and negative IgG anti-DENV during hospitalization were considered as probable

primary dengue infection, the remainder were considered as probable secondary dengue infec-

tion. Thirty-one acute samples were from participants assigned to the placebo group of the

trial and 12 from the oseltamivir group. Of the latter group, ten convalescence samples were

included as well. All acute samples were taken prior to drug administration for both placebo

and oseltamivir groups. Finally, ten plasma samples from adult healthy Indonesian volunteers

were included, who were enrolled at Radboud university medical center, Nijmegen, The

Netherlands.

Sample processing and data collection

Plasma samples were obtained from 3.2% citrate-anticoagulated blood (BD Vacutainer, BD

Biosciences, USA) centrifuged at 2061g for 15 minutes at room temperature to obtain platelet-

poor plasma (PPP). All samples were stored at -80˚C until measurement.

Proteomic analysis

Plasma proteins were measured with the Olink Explore 384 Inflammation panel using proxim-

ity extension technology (Olink Proteomics AB, Uppsala, Sweden) [9]. This panel includes 368

inflammation-related proteins. To enhance protein detectability and specificity, this assay uti-

lizes the binding of target proteins by paired oligonucleotide antibody probes, followed by

hybridization and amplification using a standard real-time PCR. Protein concentration are

reported as normalized protein expression values (NPX), which is an arbitrary unit in a Log2

scale that is calculated from normalized Ct values. Validation data of the assay are available on

the Olink website (www.olink.com). All samples were measured in the same batch in October

2020. Proteins were excluded from analysis when values were both below the detection limit in

more than 25% of all samples and the difference in undetectable values between the acute and

convalescence samples was less than 20%.

A functional network analysis was performed using the publicly available STRING database

(version 11.5) [10] and visualized using Cytoscape version 3.9.0 [11]. We limited the analysis
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to the top 50 DEPs between acute and convalescent samples. The minimum required interac-

tion score was set to a medium confidence (0.4). Finally, to identify relevant pathways, we per-

formed a pathway analysis of the 50 DEPs using the gene ontology database.

Clinical and laboratory parameter measurements

The presence of ascites, pleural fluid and gall-bladder wall thickening was assessed daily using

handheld ultrasonography (Phillips Lumify, Amsterdam, The Netherlands) with 6 hours fast-

ing prior to the procedure. A complete blood count was performed twice daily using a stan-

dardized hematology analyzer in each study center. Circulating albumin and syndecan-1

concentrations were determined as previously described [8].

Statistical analysis

Differential expression analysis was performed using a moderated paired t-test (acute versus

convalescent samples (n = 35)) or a linear model (acute (n = 43) versus control (n = 10) sam-

ples) of NPX values using Limma R package [12], which employs an empirical Bayes method

to moderate the standard errors of the fold change. Age, sex and BMI were statistically insig-

nificant between patients and controls and were therefore not included in the linear model as

covariates. Associations between variables were analyzed using Spearman’s correlation analy-

sis. The Benjamini-Hochberg multiple testing correction was performed in differential expres-

sion and correlational analyses with an FDR p-value < 0.05 considered to be statistically

significant. All analyses and visualizations were performed using RStudio version 1.3 for Mac

(RStudio, Boston, MA, USA). To further validate our findings, we intersected the DEPs identi-

fied in our study with differentially expressed transcripts (DETs) reported in earlier studies

that compared gene profiles between acute versus convalescent dengue patients or controls or

between patients with severe versus non-severe illness [13–24].

Results

Clinical Characteristics

Clinical characteristics of the patients and controls were summarized in Table 1. Plasma sam-

ples from 43 dengue patients were included in the analysis; for 35 patients, paired convalescent

samples were available. In addition, plasma samples of 10 adult healthy Indonesian volunteers

were used. The dengue patients were enrolled at a median of 5 days (IQR, 4–5) after symptom

onset; 25 (58.1%) patients were classified as probable primary dengue infection and 18 (41.9%)

as probable secondary infection. At enrollment, 26 (62%) patients had a thickened gallbladder

wall (>3mm) and 15 (35.7%) patients had ascites and/or pleural fluid detected by ultrasonog-

raphy. None of the participants fulfilled the World Health Organization (WHO) 2009 criteria

for severe dengue and none died during follow-up [3]. In addition, using the WHO 2011 crite-

ria [25], 25 (58%) of the dengue patients were classified as having dengue fever (DF) and 18

(42%) as dengue hemorrhagic fever (DHF) at study enrollment. At hospital discharge, 17

(40%) were classified as having had DF and 26 (60%) as DHF.

Architecture of the plasma inflammatory proteome

Principal component analysis (PCA) of the inflammatory proteins (n = 337) revealed a clear

separation between the acute dengue samples with convalescent dengue and control samples

(all p< 0.0001) (Fig 1A). An unsupervised hierarchical clustering also suggested a similar

finding (S2 Fig). Convalescent samples shifted towards the healthy controls. PCA analysis did

not reveal a separation across samples of the different hospitals (S1 Fig). Expression analysis in
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acute versus convalescent samples (n = 35) yielded 242/337 differentially expressed proteins

(DEPs), of which 203 (84%) were significantly upregulated and 39 (16%) downregulated in the

acute phase (Fig 1C). Expression analysis in acute samples (n = 43) compared to healthy con-

trol samples (n = 10) yielded 204 (93%) upregulated and 15 (7%) downregulated proteins (S3A

Fig) with a strong overlap in DEPs in the acute vs convalescent sample analysis (Figs 1B and

S3B). Overall, more inflammatory proteins were up- than downregulated and with a higher

log fold-change. Ten convalescent samples were from participants allocated to the oseltamivir

group, but there were no significant differences in protein concentrations in convalescent

plasma from those allocated to the oseltamivir or placebo group (S6 Fig).

The top 50 up- and downregulated proteins in acute dengue samples were highlighted in a

volcano plot (Fig 1C) and summarized in Table 2. A list of all significantly up- and downregu-

lated proteins is given in S1 Table. The most prominently upregulated proteins were granzyme

B (GZMB) and a number of interferon (IFN)-inducible effector proteins, including the intra-

cellular antibody receptor tripartite motif-containing protein 21 (TRIM21), IFN-induced Pro-

tein 10 (IP-10; also known as chemokine C-X-C motif ligand 10 [CXCL10]), guanylate-

binding protein 2 (GBP2), sterile alpha motif domain-containing 9-like (SAMDL9) and sialic

Table 1. Clinical characteristics.

Dengue virus infection Controls

Variables Acute phase Convalescent phase

Number 43 35 10

Males 30 (69.8) 24 (68.6) 4(40)

Age, years 25 (19–36) 25 (19–36) 28 (27–34)

Days after symptom onset, days 5 (4–5) 26 (25–26) -

BMI, kg/m2 21 (19–24) 22 (20–25) 22 (21–25)

DENV-NS1 antigen positive, n (%) 29/40 (72.5) 25/33(75.8) -

Anti-DENV IgM positive, n (%) 20/43 (46.5) 15/35 (42.9) -

Anti-DENV IgG positive, n (%) 18/43 (41.9) 14/35 (40) -

Immune status, n (%)

Probable primary dengue infection 25/43 (58.1) 15/35 (42.9) -

Probable secondary dengue infection 18/43 (41.9) 14/35 (40) -

Clinical laboratory tests

Hemoglobin, g/dL 15.2 (13.5–16.4) 12 (14.3–15) 13.4 (12.3–15)

Hematocrit, % 44.5 (39.6–48) 41 (35–42) 41 (36–46)

Leukocyte number, x109/L 4.4 (3.5–6.1) 6.4 (5.7–8) 6.7 (5.3–7.4)

Platelet number, x 109/L 39 (32–48) 271 (235–329) 205 (197–225)

Albumin, g/dL 2.7 (2.5–3) 3.4 (3.3–3.5) -

Alanine transaminase, IU/L 53 (35–86) - -

Plasma leakage parameters at enrollment

Gallbladder wall thickening, n (%) 26/42 (61.9) - -

Ascites and/or pleural fluid, n (%) 15/42 (35.7) - -

Plasma leakage parameters during hospitalization

Gallbladder wall thickening, n (%) 35/42 (83.3) - -

Ascites or pleural fluid, n (%) 23/42 (54.8) - -

Hemoconcentration, n (%) 12/43 (27.9) - -

Data are presented as median with interquartile range or number (n) with percentage (%). Ascites and pleural fluid accumulation were determined by a daily bedside

ultrasonography. Gallbladder wall thickening was defined as a gallbladder wall thickness >3 mm. Hemoconcentration was defined as single hematocrit value of > 44%

for female or >50% for male in acute phase of dengue. BMI = body mass index; DENV = dengue virus.

https://doi.org/10.1371/journal.pntd.0011041.t001
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acid binding immunoglobulin-like lectin 1 (SIGLEC1), also known as sialoadhesin and CD169

(Figs 1C and 2). The latter is a type I interferon-inducible receptor on monocytes that has

been used as a surrogate marker for type I interferon activity [26]. The cytokines and cytokine

receptors that were most markedly upregulated were interleukin (IL)-10, IL-33, IFN-gamma

(IFNG), CXCL8 (also known as IL-8), IL-18 receptor-1 (IL18R1) and IL-1 receptor antagonist

(IL1RN). Less markedly upregulated (Log2FC 0.55–1.37) cytokines and cytokine receptors

were IL-6, tumor necrosis factor (TNF), IL-12 receptor beta 1 subunit (IL12RB1), IFN lambda

receptor 1 (IFNLR1), IL-18, IL-17C and lymphotoxin alpha (LTA).

Other prominently upregulated proteins were lysosome-associated membrane glycoprotein

3 (LAMP-3) and costimulatory ligand CD70 [27, 28] and different growth factors, including

Fig 1. Inflammatory protein profile and the differentially expressed proteins (DEPs) in dengue infection. (A) Principal component analysis of acute

dengue patients (N = 43), paired convalescent dengue patients (N = 35) and healthy controls (N = 10). The mean differences of PC1 between groups were

analyzed using Mann-Whitney U test. Larger dots represent the central of cluster. (B) Bar chart depicting the numbers of up- and downregulated proteins in

acute vs convalescent samples, acute vs control samples and their overlap. (C) Volcano plot displaying differential expression between paired acute versus

convalescent samples of dengue patients (n = 35), showing the Log2 Fold-Change (Log2 FC) of normalized protein expression (NPX) on the X-axis and the

(-Log10) of adjusted p-value (FDR) (Benjamini-Hochberg False-Discovery Rate) on the Y-axis. Gold = top 50 DEPs, Red = FDR< 0.05 and Blue = FDR> 0.05.

(D). Scatter plot displaying the Log2 FC values of the shared DEPs with previously identified differentially expressed transcripts (DETs) in acute versus

convalescent dengue/healthy controls (N = 52).

https://doi.org/10.1371/journal.pntd.0011041.g001
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Table 2. Top 50 differentially expressed proteins in acute dengue versus convalescent samples.

Protein Log2FC FDR Name and selection of biological functions Dengue

Refs.

Upregulated Proteins

GZMB 4.58 7.42E-

15

Granzyme B; Cytotoxic lymphocyte-derived serine protease which eradicates virus-infected cell through the induction

of apoptosis.

[37]

TRIM21 4.41 5.16E-

15

Tripartite motif-containing protein 21 or E3 ubiquitin-protein ligase TRIM21; Intracellular antibody Fc domain

effector which mediates virus proteolysis.

[38]

IL10 3.85 3.11E-

12

Interleukin-10; Anti-inflammatory cytokine. [39]

CXCL10 3.63 1.35E-

16

C-X-C motif chemokine 10 or IFNγ-induced protein 10 (IP-10); Recruitment factor for monocytes, macrophages, T

cells, NK cells and dendritic cells.

[40]

ESM1 3.62 1.44E-

19

Endothelial cell-specific molecule 1 (endocan); Endothelial cell-associated proteoglycan and modulator of

angiogenesis and vascular permeability.

[41]

GBP2 3.19 4.18E-

11

IFN-induced guanylate-binding protein 2; IFN-inducible large GTPase with a role in host defense against intracellular

microorganisms.

[18, 42]

SHMT1 2.62 1.36E-

08

Serine Hydroxymethyltransferase-1; Catalyzing serine conversion into glycine and folic acids and important in cell

proliferation.

IL33 2.54 4.74E-

08

Interleukin-33; Induction of pro-inflammatory state, NK cell activation and recruitment. [43]

CCL7 2.53 6.08E-

08

C-C motif chemokine 7 or monocyte-chemotactic protein 3 (MCP3); Recruitment factor for monocytes, dendritic

cells, neutrophils, NK cells and T cells.

[44]

LAMP3 2.47 4.88E-

16

Lysosome-associated membrane glycoprotein 3 or Dendritic cell lysosomal associated membrane glycoprotein;

Lysosomal protein linked with dendritic cell maturation.

HSPA1A 2.42 9.17E-

10

Heat shock 70 kDa protein 1A; Cell chaperone, interferes with DENV replication. [45]

EIF4G1 2.36 1.79E-

08

Eukaryotic translation initiation factor 4 gamma 1; Recognition and regulation of messenger RNA.

LAP3 2.34 3.39E-

11

Cytosolic aminopeptidase; Regulator of cellular surface expression of MHC Class I.

CD70 2.34 1.09E-

16

Cluster of Differentiation 70; CD27 costimulatory receptor which is highly expressed on activated lymphocytes. [46]

IFNG 2.28 1.21E-

05

Interferon gamma; Key regulator of cellular mediated immune responses. [47]

PTX3 2.21 1.44E-

19

Pentraxin-related protein 3; Activates the complement system and opsonizes pathogens. [48]

CCL3 2.17 3.24E-

11

C-C motif chemokine 3 or macrophage inflammatory protein 1-alpha; Recruitment factor for macrophages,

monocytes and neutrophils.

SULT2A1 2.16 2.36E-

08

Human cytosolic sulfotransferases 2A1; Catalyzes the sulfation of steroid precursors.

TNFRSF11B 2.09 1.67E-

12

Tumor necrosis factor receptor superfamily member 11B or osteoprotegerin; Modulation of osteoclastogenesis and T-

cell activation.

[49]

FABP1 2.05 3.30E-

07

Fatty acid-binding protein-1; Role in lipid metabolism. [50]

BACH1 2.04 2.52E-

09

BTB Domain and CNC Homolog 1; Transcription regulating protein. [51]

KYNU 2.02 3.10E-

15

Kynureninase; Key enzyme in tryptophan metabolic pathway.

CRIM1 2.01 1.36E-

19

Cysteine-rich motor neuron 1 protein; Regulator of endothelial permeability through interaction with vascular

endothelial growth factor (VEGF).

CXCL8 1.99 1.16E-

10

C-X-C Motif Chemokine Ligand 8 or Interleukin-8; Chemotaxis of neutrophils. [52]

GZMA 1.95 1.09E-

12

Granzyme A; Cytotoxic lymphocyte-derived serine protease which eradicates virus-infected cell through the induction

of apoptosis.

[53]

CTSC 1.94 7.31E-

14

Cathepsin C; Activator of serine proteases in immune cells. [54]

(Continued)
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Table 2. (Continued)

Protein Log2FC FDR Name and selection of biological functions Dengue

Refs.

SAMD9L 1.91 4.55E-

09

Sterile alpha motif domain-containing protein 9-like; Regulator of cell proliferation and viral replication. [18]

TPP1 1.90 5.16E-

15

Tripeptidyl-peptidase 1; Lysosomal enzyme.

LHPP 1.85 5.92E-

10

Phospholysine phosphohistidine inorganic pyrophosphate phosphatase; Histidine phosphatase.

TNFRSF13B 1.84 1.67E-

12

Tumor necrosis factor receptor superfamily member 13B or Transmembrane activator and Calcium-modulator and

cyclophilin ligand interactor (TACI); Regulator of T and B cell interaction.

IL18R1 1.84 1.44E-

19

Interleukin-18 receptor 1; Receptor for IL-18. [55]

IL1RN 1.83 1.63E-

07

Interleukin-1 receptor antagonist; Anti-inflammatory cytokine through a competition binding to IL-1 receptor (IL1R). [40]

SIGLEC1 1.80 1.09E-

16

Sialic Acid Binding Ig Like Lectin 1 or Sialoadhesin or CD169; Type I interferon-inducible pattern recognition

receptor on monocytes and macrophages.

HGF 1.79 4.01E-

15

Hepatocyte Growth Factor; Mitogen for hepatocytes and other cells, including endothelial cells [40]

PIK3AP1 1.77 4.11E-

08

Phosphoinositide 3-kinase adapter protein 1; B-cell receptor (BCR) phosphoinositide 3-kinase (PI3K)-Akt signaling

pathway and BCR co-receptor of CD19.

[18]

DFFA 1.75 5.27E-

09

DNA fragmentation factor subunit alpha; Substrate for caspase-3 that triggers DNA fragmentation during apoptosis.

PARP1 1.73 6.78E-

05

Poly (ADP-ribose) polymerase 1; Nuclear enzyme that plays a role in different cellular biological processes, including

DNA repair, and gene transcription of inflammatory mediators

NBN 1.69 1.33E-

05

Nibrin; Cellular response to DNA damage.

HEXIM1 1.66 4.39E-

07

Hexamethylene Bisacetamide Inducible 1; Inhibitor of RNA polymerase II transcription elongation.

EGLN1 1.64 1.43E-

07

Hypoxia-inducible factor prolyl hydroxylase 2; Regulates the stability of Hypoxia-Inducible Factor 1.

PRDX3 1.62 1.47E-

05

Peroxiredoxin 3; Peroxidase acting as a cellular antioxidant.

NUDC 1.61 1.41E-

09

Nuclear migration protein; Mitotic factor of hematopoietic cells.

Downregulated Proteins

TNFSF11 -2.38 2.67E-

14

Tumor necrosis factor ligand superfamily member 11, also known as Receptor activator of nuclear factor kappa-Β
ligand (RANKL); Member of the TNF cytokine family. Osteoclast differentiation, Regulator of interaction between

dendritic cells and T-cells and T-cell-dependent immune responses.

CDON -1.83 1.70E-

17

Cell adhesion molecule-related/down-regulated by oncogenes; Co-receptor ligand of Patched-1 (PTCH1) which

decreases endothelial barrier function through hedgehog signaling pathway.

CRHBP -1.49 4.65E-

10

Corticotropin-releasing factor-binding protein; Binds and inactivates corticotropin-releasing factor (CRF).

GAL -1.43 6.08E-

08

Galanin peptides; Neuropeptide with immunomodulatory properties.

NPPC -1.42 8.24E-

06

C-type natriuretic peptide precursor; Endothelial-derived molecule which regulates vasodilatation, blood pressure and

inhibits leukocyte recruitment.

CCL17 -1.08 2.29E-

03

C-C motif chemokine 17; Recruitment factor for T regulatory cells. [56]

CCL24 -1.08 3.93E-

06

C-C motif chemokine 24; Recruitment factor for eosinophils.

PDGFB -1.01 6.18E-

03

Platelet-derived growth factor subunit B [44]

�Relevant and specific references for the protein as demonstrated in dengue patients or ex vivo and in vitro experiments with dengue virus (DENV) or DENV-related

antigen stimulation.

https://doi.org/10.1371/journal.pntd.0011041.t002
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hepatocyte growth factor (HGF) and colony stimulating factor 1 (CSF1). Endothelial dysfunc-

tion is a key factor in dengue pathology and different endothelial markers were upregulated,

including endothelial cell-specific molecule 1 (ESM1; also known as endocan), cysteine rich

transmembrane BMP regulator 1 (CRIM1), which is involved in endothelial maintenance and

integrity [29], and vascular endothelial growth factor D (VEGFD). Finally, different proteases

that are known to play a key role in the antiviral immune response were upregulated. These

included granzyme B and A (GZMB and GZMA) and cathepsin C (CTSC) which acts as a

central coordinator for the activation of serine proteases in immune cells [30], lysosomal

tripeptidyl-peptidase 1 (TPP1), which is important for lysosomal molecule degradation [31]

and cytosolic aminopeptidase (LAP3), which is important for antigen processing and pre-

sentation [32].

Among the most downregulated proteins were Tumor necrosis factor ligand superfamily

member 11 (TNFSF11; also known as Receptor activator of nuclear factor kappa-Β ligand

[RANKL]) and cell adhesion molecule-related/down-regulated by oncogenes (CDON).

TNFSF11 belongs to the TNF cytokine family and is a regulator of osteoclastogenesis and of

different immune functions, including the interaction between dendritic cells and T-cells and

T-cell-dependent immune responses [33]. CDON was recently identified as a negative regula-

tor of hedgehog signaling-driven endothelial integrity [34]. Other downregulated proteins

Fig 2. Selection of the top differentially expressed proteins (DEPs) in the acute phase compared to convalescence. Depicted are individual data together

with a box plot showing median with interquartile range and adjusted p-value (FDR) (Benjamini-Hochberg False-Discovery Rate). GZMB, Granzyme B;

TRIM21, Tripartite motif-containing protein 21; GBP2, Guanylate-Binding Protein 2; SAMD9L, Sterile Alpha Motif Domain-containing protein 9-Like; IL10,

Interleukin-10; ESM1, Endothelial Cell-Specific Molecule 1; CDON, Cell adhesion molecule-related/Down-regulated by Oncogenes.

https://doi.org/10.1371/journal.pntd.0011041.g002
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were corticotropin-releasing hormone binding protein (CRHB), which modulates corticotro-

pin releasing factor (CRH), the neuropeptide and natural killer cell modulator galanin (GAL)

[35] and endothelial C-type natriuretic peptide precursor (NPPC), which is important in fluid

homeostasis [36].

Validation of the plasma inflammatory proteome

Intersection of the 242 DEPs identified in our study with 1248 differentially expressed tran-

scripts (DETs) reported in earlier studies comparing gene profiles between acute and conva-

lescent dengue samples [13–24], showed that 53 (21.9%) DEPs/DETs were shared (S7A Fig

and S2 Table), of which 38 (73%) in a similar direction (Fig 1D). C-X-C motif chemokine

ligand 10 (CXCL10), a chemotactic factor for NK and T cells, was identified as a DET in most

studies. Most of the shared DEPs/DETs correlated with syndecan-1 (SDC1) concentrations or

clinical parameters (S2 Table). According to the gene ontology database, the shared DEPs/

DETs were mainly involved in lymphocyte chemotaxis (CXCL10, CCL3, CCL4), interleukin-

15 mediated signaling (IL15, IL15RA) and negative regulation of host viral transcription

(TRIM21, LGALS9, CCL3, CCL4) (S3 Table). In addition, intersecting the DEPs with DETs

associated with severe versus non-severe illness (n = 313) yielded 15 (6.2%) shared DEPs/

DETs (S7B Fig and S2 Table).

Functional network analysis of the inflammatory proteome

To further increase our insight in the functional interactions between the top DEPs, we con-

structed a protein-protein association network, using the STRING database [10]. We limited

the analysis to the top 50 DEPs with a cutoff Log2 fold-change of> 1.5 for upregulated pro-

teins (n = 42) and>1 for downregulated proteins (n = 8). This analysis yielded an enriched

network with IFNγ as a central protein, along with other cytokines (IL10 and IL33) and mem-

bers of the CXC chemokine ligand (CXCL8/10) and CC chemokine ligand (CCL3/7) family

(Fig 3). Next, using the gene ontology biological processes term, we highlighted several impor-

tant pathways involved in our protein-protein interaction network including response to

IFNγ, regulation of viral life cycle, regulation of cell death and chemokine-mediated signaling

pathway.

Associations of the inflammatory proteins with clinical and laboratory

profiles

Next, to understand the possible relationship between the inflammatory proteins and clinical

outcomes, we assessed the associations of the DEPs with markers of dengue severity. Overall,

there were no differences in levels of inflammation-related proteins between patients classified

as DF and those with DHF (S4A and S4B Fig). Age, sex and BMI are associated with a higher

risk for dengue complications [2, 57, 58]. In our cohort, especially age was associated with dif-

ferent inflammatory markers including TNF, IL1RN, chemokines and urokinase receptor

(PLAUR) (Fig 4). Participants classified as having a probable secondary dengue infection had

higher concentrations of different molecules involved in the host immune response, including

lymphocyte function (CEACAM21, FOXO1, MZB1, PARP1, PPP1R9B, PSIP1, SH2D1A), glu-

cocorticoid hormone regulation (CRHBP) and megakaryocyte maturation (MPIG6B). In con-

trast, no differences were observed in concentrations of pro-inflammatory cytokines,

interferon-inducible effector proteins or granzymes. Overall, there were only few significant

associations between DEPs and the following markers of dengue severity: platelet number,

hematocrit, plasma albumin, gallbladder wall thickness and the presence of ascites or pleural

fluid. Participants with ascites and/or pleural effusion during hospitalization had a trend for a
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higher ESM1 value (S5A Fig). In contrast, plasma concentrations of syndecan-1 (SDC1), a sur-

rogate marker of endothelial glycocalyx degradation [59], correlated positively with a large

number of inflammatory proteins (Fig 4) and fluid accumulation during hospitalization (S5B

Fig). The strongest associations were observed for HGF (rs = 0.74; FDR 1.18x10-6) and IL18R1

(rs = 0.71; FDR 6.59x10-6). The heparanase/SDC1 axis is known to regulate HGF expression

and function [60, 61]. SDC1 concentrations were also positively correlated with a number of

other endothelium-related proteins, including glycocalyx-associated proteoglycans (agrin

[AGRN] and ESM1), CRIM1, and osteoprotegerin/TNFRSF11B). Leukocyte number was neg-

atively associated with a number of inflammatory proteins, including cytokines (IL10, IL15,

IFNG, LTA, IL33, CSF1), IFN-stimulated genes (TRIM21), immune receptors (LIFR, IL18R1,

IL22RA1, SIGLEC1) and chemokines (CCL4, CXCL8). Finally, plasma concentrations of the

Fig 3. Functional network analysis of the top 50 differentially expressed proteins in dengue patients. Depicted is the protein-protein Interaction (PPI)

network from the STRING database. The analysis was limited to the top 50 DEPs. The pink (upregulated) and blue (downregulated) nodes denote the proteins

while the lines denote the relationships. PPI enrichment p-value was< 1x10-16, indicating that the network has significantly more interactions than expected

and that the proteins likely engage in biologically relevant interactions. Additional nodes of relevant pathways (red nodes) derived from gene ontology

biological process term were included in the network.

https://doi.org/10.1371/journal.pntd.0011041.g003
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liver enzyme alanine transferase were positively associated with several proteins related to lipid

and cholesterol metabolism, such as FABP1, MVK and SULT2A1.

Discussion

Our unbiased proteomics analysis in plasma samples from DENV infection patients demonstrates

activation of important components of the antiviral immune responses in acute DENV infection

and a resolution thereof in the convalescent phase. A total of 203 of 337 proteins were upregulated

with a strong representation of IFN and IFN-related antiviral proteins (e.g. GBP2, TRIM21 and

SAMD9L), cytokines and cytokine receptors (e.g. IL10, IL33, IL1RN and IL18R1), members of

the CCL and CXCL chemokine family (e.g. CXCL10, CCL7, CCL3, CXCL8, CCL25 and CXCL9),

pro-apoptotic proteins (e.g. GZMA, GZMB, CTSC, TPP1) and proteins involved in endothelial

integrity (e.g. ESM1, CRIM1 and VEGFD). Disruption of the endothelial glycocalyx is increas-

ingly recognized to play a central role in the vascular complications of DENV infection [62]. The

pathways that are involved in this disruption are incompletely understood. Our study and valida-

tion analysis revealed a large number of associations between the glycocalyx disruption marker

SDC1 with inflammatory and endothelial proteins. Our results therefore suggest that the inflam-

matory environment contributes to glycocalyx dysfunction in DENV infection.

IFN-mediated innate immune responses are a key process in the first line host defense

against viral infections. Our study shows the upregulation of different IFN-stimulated genes

Fig 4. Associations of the differentially expressed proteins with clinical and laboratory profiles. Heatmap of associations between DEPs (N = 242)

(normalized protein expression (NPX)) of 43 dengue patients with clinical and laboratory parameters at enrollment. Shown are the significant Spearman’s

correlation coefficients (rs) after Benjamini-Hochberg false-discovery rate (FDR) correction p-value< 0.05. Bullet size and darker colors represent the stronger

associations whereas red and blue corresponds to positive and negative associations. Age (years), Male Sex (Male), HCT, hematocrit; WBC, white blood cell

number; PLT, platelet number; ALT, alanine transferase; SDC1, plasma syndecan-1; Secondary dengue; probable secondary dengue infection; GBWT, gall-

bladder wall thickness; Fluid, presence of ascites and/or pleural fluid.

https://doi.org/10.1371/journal.pntd.0011041.g004
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(ISGs) that are likely important in orchestrating the host response against DENV replication.

Guanylate-binding protein-2 (GBP2) is a member of the IFN-inducible guanosine triphospha-

tase (GTPase) family. GBP2 was shown to exert broad antiviral activity, including against Zika

virus [63]. GBP2 was also part of a 20-gene set that was strongly associated with the progres-

sion to severe dengue [42]. In addition, the cytosolic ubiquitin ligase and antibody receptor

TRIM21 was among the top upregulated DEPs and validated proteins. TRIM21 rapidly neu-

tralizes antibody-bound viruses [64, 65], suggesting that it may play a role in neutralization

and possibly antibody-dependent enhancement of DENV. In addition, TRIM21 is a negative

regulator of proinflammatory cytokines and type I IFN production [66]. Our findings are con-

sistent with a recent study that showed that the expression of TRIM21 was upregulated in

helper innate lymphoid cells of patients with dengue hemorrhagic fever [38].

Our findings further reinforce the central roles for IL-10, CXCL10 and IL-33 in the host

response to DENV infection. IL-10 and CXCL10 were previously shown to be markers of den-

gue severity and plasma leakage [39, 40, 67]. IL-33 is a member of the IL-1 family and, unlike

most other cytokines, is normally located in the nucleus. It is released by various cells, includ-

ing fibroblasts and epithelial, endothelial and immune cells as an alarmin following cell injury.

IL-33 has been implicated in allergy, asthma and parasitic diseases, but also increasingly in

chronic inflammatory conditions such as arthritis [68]. In a mouse model of DENV infection,

IL-33 production was increased and shown to exert a disease-exacerbating role [43]. These

findings, as well as the findings reported here, are in seeming contrast to previous studies that

reported similar or even decreased plasma concentrations of IL-33 concentrations in patients

with DENV infection compared to controls [69, 70], which is most-likely due to sensitivity of

the currently available assays [71].

Another important finding is the upregulation of different proteases, including LAP3 and

cathepsin C (CTSC). The latter is a lysosomal cysteine protease that activates cytotoxic lym-

phocyte-derived serine proteases, including granzyme A and B, and as such plays a role in the

clearance of virus-infected cells [72]. In fact, granzyme B was the most strongly upregulated

protein in our study. Granzyme B is stored in granules of cytotoxic T-cells and Natural Killer

cells, both known to kill virally infected cells [73]. Cathepsins are also among the potent activa-

tors of heparan-degrading enzymes (e.g. heparanase and sialidase) and therefore may contrib-

ute to degradation of endothelial glycocalyx in dengue [54].

A transient vascular hyperpermeability syndrome is a key feature in dengue pathophysiol-

ogy. The targeted proteomics panel also included different endothelial proteins. One of the

most upregulated proteins in our study, ESM1 or endocan, was recently shown to be induced

by DENV non-structural protein-1 (NS1) and suggested to be a promising biomarker for

endothelial activation [41]. In addition, the upregulation of agrin proteoglycan and CRIM1

[74, 75] and the downregulation of CDON are counterregulatory mechanisms that limit

plasma leakage [34]. TNFSF11/RANKL was the most pronounced downregulated protein,

whereas its physiological inhibitor osteoprotegerin (TNFRSF11B/OPG) was upregulated, as

previously shown by our group [49]. Besides bone homeostasis, the RANK-RANKL-OPG axis

is increasingly recognized to play a key role in both the adaptive and innate immune system

[76]. A number of inflammation-related proteins were associated with the endothelial glycoca-

lyx degradation marker SDC1. However, the lack of associations between inflammatory pro-

teins and clinical signs of dengue disease severity (e.g. HCT, fluid accumulation) may suggest

that the differentially expressed proteins reflect their role in infection control rather than

severity.

A specific strength of our study is the high number of inflammatory proteins in the targeted

proteomics platform, which allows a comprehensive analysis of the host immune response in

DENV infection and discovery of new biomarkers. The proximity extension assay, which
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combines both antibody-binding and next-generation sequencing, is considered to be more

sensitive and specific in comparison to mass-spectrometry proteomics analysis or other immu-

noassays such as ELISA [77]. In addition, we analyzed longitudinal samples of the participants,

which limits interindividual variation, and participants were well characterized, including

daily evaluation of fluid accumulation by ultrasonography. Limitations of our study are the

fact that the number of participants was limited, and the participants were relatively homoge-

nous in terms of severity of illness. This precludes the evaluation of the performance of the

proteins identified here in the prediction of severe illness. Second, high viral loads have been

reported to be associated with disease severity in some studies, but viral loads were unavailable

in our study. Third, ten convalescence samples were from participants allocated to the oselta-

mivir group. Even though we cannot rule out potential secondary effects of the drug, there

were at least two weeks between the last dose of oseltamivir and collection of convalescent

plasma. In addition, DEP analysis did not reveal significant differences between samples from

participants allocated to the oseltamivir or placebo group. Finally, despite the large number of

target proteins in the panel, it inevitably lacks proteins that may be relevant in DENV infec-

tion, including type I interferons.

In summary, this proteomics study provides a comprehensive insight and linkage of the

host inflammatory response and endothelial glycocalyx degradation in hospitalized patients

with DENV infection. A number of up- and downregulated proteins have not been reported

in previous studies, which shows the potential for the unbiased discovery of candidate bio-

markers and predictors of severe disease using these novel technologies.
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agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions.

Cell Tissue Res. 2014; 358(2):465–79. https://doi.org/10.1007/s00441-014-1969-7 PMID: 25107608

75. Wilkinson L, Gilbert T, Sipos A, Toma I, Pennisi DJ, Peti-Peterdi J, et al. Loss of renal microvascular

integrity in postnatal Crim1 hypomorphic transgenic mice. Kidney Int. 2009; 76(11):1161–71. https://doi.

org/10.1038/ki.2009.345 PMID: 19776720

76. Lleo A, Gershwin ME. Targeting the RANK/RANKL pathway in autoimmune disease and malignancy:

future perspectives. Expert Review of Clinical Immunology. 2021; 17(9):933–6. https://doi.org/10.1080/

1744666X.2021.1971972 PMID: 34425712

77. Petrera A, von Toerne C, Behler J, Huth C, Thorand B, Hilgendorff A, et al. Multiplatform Approach for

Plasma Proteomics: Complementarity of Olink Proximity Extension Assay Technology to Mass Spec-

trometry-Based Protein Profiling. J Proteome Res. 2021; 20(1):751–62. https://doi.org/10.1021/acs.

jproteome.0c00641 PMID: 33253581

PLOS NEGLECTED TROPICAL DISEASES Longitudinal proteomic profiling of the inflammatory response in dengue patients

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011041 January 3, 2023 20 / 20

https://doi.org/10.1111/cea.12718
https://doi.org/10.1111/cea.12718
http://www.ncbi.nlm.nih.gov/pubmed/26850082
https://doi.org/10.1073/pnas.96.15.8627
https://doi.org/10.1073/pnas.96.15.8627
http://www.ncbi.nlm.nih.gov/pubmed/10411926
https://doi.org/10.1034/j.1600-065x.2003.00044.x
http://www.ncbi.nlm.nih.gov/pubmed/12752668
https://doi.org/10.1007/s00441-014-1969-7
http://www.ncbi.nlm.nih.gov/pubmed/25107608
https://doi.org/10.1038/ki.2009.345
https://doi.org/10.1038/ki.2009.345
http://www.ncbi.nlm.nih.gov/pubmed/19776720
https://doi.org/10.1080/1744666X.2021.1971972
https://doi.org/10.1080/1744666X.2021.1971972
http://www.ncbi.nlm.nih.gov/pubmed/34425712
https://doi.org/10.1021/acs.jproteome.0c00641
https://doi.org/10.1021/acs.jproteome.0c00641
http://www.ncbi.nlm.nih.gov/pubmed/33253581
https://doi.org/10.1371/journal.pntd.0011041

