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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:At a time of major global, societal, and environmental changes, the shifting distribution of

pathogen vectors represents a real danger in certain regions of the world as generating

opportunities for emergency. For example, the recent arrival of the Hyalomma marginatum

ticks in southern France and the concurrent appearance of cases of Crimean–Congo hem-

orrhagic fever (CCHF)—a disease vectored by this tick species—in neighboring Spain

raises many concerns about the associated risks for the European continent. This context

has created an urgent need for effective methods for control, surveillance, and risk assess-

ment for ticks and tick-borne diseases with a particular concern regarding Hyalomma sp.

Here, we then review the current body of knowledge on different methods of tick control—

including chemical, biological, genetical, immunological, and ecological methods—and the

latest developments in the field, with a focus on those that have been tested against ticks

from the genus Hyalomma. In the absence of a fully and unique efficient approach, we dem-

onstrated that integrated pest management combining several approaches adapted to the

local context and species is currently the best strategy for tick control together with a rational

use of acaricide. Continued efforts are needed to develop and implement new and innova-

tive methods of tick control.

Author summary

Disease-bearing Hyalomma ticks are an increasingly emerging threat to humans and live-

stock worldwide. Various chemical, biological, genetic, and ecological methods for tick
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control have been developed, with variable efficiencies. Today, the best tick control strat-

egy involves an integrated pest management approach.

Introduction

Ticks have a worldwide distribution, occupy a wide variety of biotopes and comprise about

900 species, some of them being able to transmit viruses, bacteria, and/or parasites [1]. In the

Northern Hemisphere, they are the primary vectors of both human and animal pathogens,

and in the Southern Hemisphere, they are the primary vectors of importance in animal health

[2]. Socioeconomic and climate trends drive changes in the geographic distribution and sea-

sonality of several tick species, their vertebrate hosts, and the reservoirs of pathogens, shaping

the persistence of pathogen foci since the beginning of the 20th century [3–8]. Thus, the ques-

tion of the consequences of the introduction and/or permanent establishment of new tick spe-

cies with their pathogens in areas previously devoid of them is now center stage. Ticks of the

genus Hyalomma represent a perfect example associated with this risk of emergence [9]. In

fact, Hyalomma marginatum is regularly introduced—but to date unable to establish itself—

via migratory birds in Northern Europe [10–12]. However, the recent establishment of this

species in the South of France [13], along with the occurrence of Crimean–Congo hemor-

rhagic fever (CCHF) cases in recent years in Spain [14], raises many concerns about the associ-

ated risks for the European continent.

Currently, 27 species are recognized within the genus Hyalomma and are present on all

continents except in North and South America [15]. Their distribution is conditioned by their

preference for open spaces with relatively hot and dry climates (semidesert steppes, savannas,

Mediterranean scrubland, etc.) (Fig 1). Like all hard ticks, Hyalomma have 3 developmental

stages: larvae, nymphs, and adults (males and females), each of which takes only 1 blood meal.

The majority of Hyalomma species have a triphasic cycle, with larvae and nymphs mostly

choosing small vertebrates in sheltered habitats as hosts, whereas adults mainly feed on large

ungulates including livestock (Fig 2). The Hyalomma species most frequently infesting

humans are Hy. anatolicum, Hy. marginatum, and Hy. aegyptium [16,17]. Hyalomma spp.

adults have generally an ambush behavior towards their host. They have low self-dispersal, but

can nonetheless be transported over long distances by their hosts during their blood meal [18].

A large number of pathogens—parasitic, viral, or bacterial—have been mentioned in the

scientific literature as being transmitted or potentially transmitted by ticks from the genus

Hyalomma; all have animal reservoirs and some cause zoonoses [19]. Nevertheless, very few

vector-competence experiments have been conducted due to the difficulties in carrying out a

complete cycle under experimental conditions (the need for “healthy” tick colonies, for verte-

brate hosts adapted to both ticks and pathogens or for an efficient artificial tick feeding tech-

nique, for pathogen cultures, as well as for high biosafety level facilities, etc.). Among the

viruses for which transmission by some Hyalomma species has been proven are the CCHF

virus [20], the Dugbe virus [21], the West Nile virus [22], the Venezuelan equine encephalitis

virus [23], the African horse sickness virus [24], and the Kyasanur Forest disease virus [25].

Among bacteria, some Hyalomma species are involved in the transmission of Rickettsia aes-
chlimannii [26], Anaplasma marginale [27], and Coxiella burnetii [28,29]. Finally, Hyalomma
species can transmit to cattle Theileria annulata, the agent of tropical theileriosis (TT), or Med-

iterranean theileriosis, Theileria orientalis, the agent of oriental theileriosis [30], and Babesia
occultans [26,31]. In small ruminants, they transmit Theileria lestoquardi and Theileria ovis
[32,33], and in equids Theileria equi and Babesia caballi [34,35]. Apart from pathogen
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transmission and in addition to significant blood spoliation, Hyalomma ticks also generate

serious wounds that can become superinfected during the bite due to their long mouthparts

[36,37].

The evidence for the medical and veterinary importance of Hyalomma species continues to

accumulate over time. As with all other arthropod vectors, effective control of these ticks can

only be achieved with a good understanding of the biology and ecology of the species in their

natural habitat. In the context of increasing resistance to acaricides, integrated control of these

arthropods is to be favored. Integrated control is based on the rational application of a combi-

nation of chemical, physical, biological, genetic, ecological, or animal population selection

measures to keep the presence of vectors below a certain threshold of pathogen transmission

or economic loss. Here, we explore the current body of knowledge on the various tick control

methods and the latest developments in the field, with a special focus on the results obtained

for Hyalomma ticks.

Chemical control

The use of acaricides in tick control dates back to the late 19th century, with the use of baths

containing arsenic derivatives to eliminate Rhipicephalus microplus [38], and remains the

main method of tick control used today. Acaricides are still applied directly to the vulnerable

host subject to tick infestation, either by spraying or bathing individuals with aqueous acari-

cide formulations, or by topical treatments on the back (with a “pour-on” formulation). Excep-

tionally, in the case of massive infestation by endophilic ticks on a farm, the application of

acaricides to the walls of stables may be recommended [39]. However, in the case of Hy. scu-
pense, for example, this technique is only marginally effective because nymphs can penetrate

even deep cracks and crevices [39]. Due to the appearance of tick populations resistant to cer-

tain insecticides and their strong negative impact on the environment, arsenic derivatives,

Fig 1. Global geographic distribution of Hyalomma spp. ticks. Created with mapchart.net.

https://doi.org/10.1371/journal.pntd.0010846.g001
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organochlorines, and then organophosphates were abandoned in the 1970s in favor of pyre-

throids (e.g., deltamethrin, permethrin, flumethrin), which inactivate sodium channels [40],

neurotoxins such as fipronil and amitraz [41], growth inhibitors such as fluazuron [42], or acti-

vators of invertebrate glutamate-dependent chloride channels such as macrocyclic lactones

(e.g., eprinomectin, ivermectin, moxidectin) [43].

To date, resistance to all of these substances has been identified in ticks, making their effec-

tiveness increasingly uncertain [44]. Although most of the studies carried out on tick popula-

tion control using chemical acaricides, or resistance to them, involve species of Rhipicephalus
(Boophilus)—monotropic ticks that infest cattle in many regions of the world and thus subject

to very strong selection pressure [44]—, a few studies have focused on Hyalomma sp. suggest-

ing that resistance in certain populations is emerging, especially in Asia. In Pakistan, tests con-

ducted in 2009 did not show resistance to ivermectin or cypermethrin in H. anatolicum [45],

but resistance to fipronil and ivermectin was identified in 2021 [46]. These 2 studies had

unsurprisingly identified both a misuse of acaricides over exceedingly long periods of time

(often coupled with low concentrations or inadequate doses) and lack of product rotation as

risk factors for the development of resistance. In India, other populations of H. anatolicum
have been identified as resistant to deltamethrin and diazinon as well as fipronil and cyperme-

thrin [47–49]. Resistance to emamectin benzoate, spirotetramat, and hexaflumuron has also

been reported in populations of H. asiaticum in China [50]. In contrast, a 1996 study showed

the efficacy of flumethrin as a pour-on for camels against H. dromedarii [51]. The efficacy of

an amitraz/cypermethrin pour-on mixture was also validated for H. rufipes infesting buffaloes

in South Africa in 2005 [52].

Fig 2. Schematic representation of the different control methods applicable to Hyalomma ticks for consideration

in the context of integrated pest management. Created with BioRender.com.

https://doi.org/10.1371/journal.pntd.0010846.g002

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010846 November 17, 2022 4 / 23

http://biorender.com/
https://doi.org/10.1371/journal.pntd.0010846.g002
https://doi.org/10.1371/journal.pntd.0010846


In addition to the development of acaricide resistance, the negative impacts of acaricides

include contamination of livestock production (milk and meat) and the environment, includ-

ing non-target animals [53]. For this reason, research is being carried out to identify new acari-

cide substances that are more “natural” and/or less damaging to the environment, such as

substances derived from plants, essential oils, or nanoparticles. Validating their efficacy and

formulations adapted for administration to animals is, however, time consuming and still

requires research [54–56]. A recent comprehensive list of plant-derived substances tested

against Hyalomma species is presented in a recent review [57]. A 2017 review also presents the

efficacy levels of metal and metal oxide nanoparticles tested as acaricides against ticks with a

high level of toxicity to H. anatolicum and H. isaaci larvae [58]. The value of using tick hor-

mones has also been evaluated in other species and has been shown to increase the efficacy of

acaricides after inclusion in “a permethrin-impregnated oily matrix” [59], or coupled with a

“tail-tag decoys” in cattle [60,61]. In addition, traps using these pheromones coupled with or

without CO2 have also been developed with some success against Amblyomma spp. [62,63].

However, the trials carried out have not led to the marketing of these traps.

Biological control

Ticks have a number of natural enemies (bacteria, fungi, spiders, ants, beetles, hymenopterans,

rodents, birds, etc.), and several studies have investigated control methods that can take advan-

tage of their action.

Among the entomopathogenic fungi evaluated for activity against ticks, Beauveria bassiana,

Lecanicillium (Verticiliium) lecanii, and Metarhizium anisopliae have been the most studied

[64]. They have been commercially developed as biopesticides. Results show that the pathoge-

nicity of the fungus depends on the tick species, tick life stage, tick feeding intensity, the fungus

strain, and also the weather conditions and the season in which the conidia are deployed [64].

For example, very encouraging results have been obtained, both in vitro and in vivo by ground

spraying with solutions containing M. anisopliae conidia, either against R. microplus (reviewed

in [65]), or against Ixodes scapularis [66]. A few trials have been also conducted with entomo-

pathogenic nematodes [67], or with bacteria such as Bacillus thuringiensis [68].

Experiments have also been carried out with a tick parasitoid hymenopteran, Ixodiphagus
hookeri. In the first half of the 20th century, attempts to control ticks by releasing I. hookeri
were carried out in the United States against Dermacentor ticks and in the Soviet Union against

Ixodes ricinus ticks [69]. Though initially effective, these releases did not prevent the tick popu-

lation from maintaining itself, probably due to the much higher fertility of ticks compared to

the parasitoid wasps [69]. More recently, a trial was conducted in Kenya where 150,000 para-

sitoids were released in 1 year on a 4-ha pasture occupied by 10 tick-infested cattle [70]. The

results showed an impact on Amblyomma variegatum ticks, with 50% of the ticks being para-

sitized by I. hookeri, and a reduction in the tick infestation of cattle, but a parallel increase in

the Rhipicephalus appendiculatus tick population. Above all, it appeared that it was necessary

to release parasitoid wasps frequently to obtain significant effectiveness. Moreover, for I. rici-
nus ticks and under natural conditions, there is a balance between the ticks and the parasitoids,

the latter infecting only a small proportion of the ticks and having no effect on the global popu-

lation [71].

Among vertebrate predators, few are specialized in eliminating ticks, with the exception of

oxpecker birds (Buphagus erythrorhynchus and B. africanus). A study performed in South

Africa on birds in captivity showed that they can eat up to 100 engorged females of Rhipicepha-
lus decoloratus or more than 7,000 larvae of Amblyomma hebraeum per day [72]. However, the

use of these birds for effective biological control is unlikely to be feasible. In Africa, it has also
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been observed that chickens can be effective in controlling ticks, which they consume in large

numbers [73,74].

Other invertebrate predators with a significant impact on ticks are species of Lycosa (wolf

spiders) and especially ants. For example, in some areas of Australia favorable to R. microplus
ticks, the absence of ticks has been attributed to the predatory action of ants [75]. Petney and

colleagues [76] suggest that ant predation on free ticks is higher than generally reported and

may even be a factor determining population size. Ants of the genus Solenopsis have also been

observed feeding on engorged females of Rhipicephalus (Boophilus) or Amblyomma [76–79].

However, the predatory activity of ants is extremely variable and unpredictable in the field and

precise data are scarce [75,80].

With specific regard to Hyalomma, trials have been carried out with fungi, nematodes, and

entomopathogenic bacteria. A commercial formulation of the Beauvaria bassiana fungal spe-

cies was sprayed in rabbit holes to control H. lusitanicum in Spain. The quantity of ticks col-

lected from rabbits 30 days after treatment was reduced by almost 80% in spring, but by only

36% in summer, pointing to the importance of temperature on the effectiveness of biocontrol

based on fungi [81]. When tested in vitro on engorged H. anatolicum females, this fungus also

showed a synergistic effect when used with deltamethrin [82]. When used alone, B. bassiana,

like M. anisopliae, induces 90% mortality in these same ticks [82]. The in vitro efficacy of M.

anisopliae against all stages of H. anatolicum collected in Sudan was then confirmed [83], as

well as that of Scopulariopsis brevicaulis against adult tick stages [84]. Finally, a study demon-

strated, in vitro, an effective ovicidal effect of proteases produced by Aspergillus sojae and A.

oryzae on H. dromedarii eggs [85]. Biological control trials on Hyalomma ticks using entomo-

pathogenic nematodes have also been carried out in laboratory conditions, and high virulence

of different strains of Steinernema sp. and Heterorhabditis sp. has been reported against H. dro-
medarii and H. excavatum [86–88]. Finally, B. thuringiensis can act on the hemocytes of H.

dromedarii, suggesting a possible toxic action of this bacterium against this tick species [89].

Although currently, in addition to their high costs, none of these methods taken alone have

proven to have sufficient effectiveness on a large scale, some have shown encouraging results,

making it possible to consider their use in the context of integrated pest management [90].

Nevertheless, in addition to questions of stability of the results obtained over time and the

method of application, before implementing them on a large scale in the field, it will be neces-

sary to ensure that non-target arthropod fauna is not affected.

Genetic control

Genetic control of arthropod vectors consists in altering/modifying their reproductive poten-

tial or other functions of interest to combat the vectors or the pathogens they transmit via

modifications to their genetic make-up. The genetically modified vectors are then released

into the wild to compete with natural populations. The success of such a control strategy there-

fore depends, among other things, on the existence of a selective advantage of the replacement

population. Here, under the term “genetic control,” we also include the selection of animal

breeds that are naturally more resistant to tick infestation.

Despite recent progress in tick genetic manipulation [91], the possibilities for implementing

genetic tick control strategies are very limited. Firstly, breeding large numbers of ticks in the

laboratory, an integral part of this strategy, is not an easy task [92]. In addition, the low dis-

persal capacity of ticks in the natural environment—even though they can travel long distances

via their hosts during their blood meal—and their biology, including very long development

cycles, represent an obstacle to the replacement of natural populations by genetically modified

ones [18]. Finally, in addition to the lack of data on tick genomes, which hinders the
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identification of potential targets for genetic control, the release of genetically modified organ-

isms into the wild currently raises numerous questions (ethical, legal, logistical, etc.). However,

as early as 1976, laboratory irradiation trials had shown the effectiveness of sterilizing H. ana-
tolicum males [93]. Irradiation doses sufficient for the production of sterile males that still

compete with untreated males for mating with females, thus limiting female fertility, were then

established for H. anatolicum [94,95], H. marginatum [96], and H. excavatum [97]. Steriliza-

tion of males is also possible in Dermacentor variabilis by blocking subolesin expression

through RNA interference [98]. Nevertheless, to our knowledge, no field release trials of sterile

males have been carried out to date for ticks.

The existence of tick-resistant cattle breeds was observed as early as 1912 in Australia in a

Jersey herd infested with R. microplus: Some animals were always less infested than others, and

the trait appeared to be hereditary (see review by Burrow and colleagues [99]. Since then, a

number of studies have demonstrated the existence of breeds that are more or less resistant to

ticks, with variable heritability of the trait. For example, Bos indicus (zebu) is more resistant to

infestation by R. microplus or Amblyomma americanum than Bos taurus (cattle) [100,101].

One study identified 3 key pathways in this phenomenon, represented by genes differentially

expressed in resistant individuals: the development of the cell-mediated immune response,

structural integrity of the dermis, and intracellular Ca2+ levels [102]. Another study suggests

the involvement of the interferon-gamma pathway [103]. In the 1970s, several cattle breeds

resistant to R. microplus were thus created, selected, and bred in Australia: Australian Friesian

Sahiwal [104], Australian Milking Zebu [105], and Australian Illawarra Shorthorn [106]. How-

ever, they were met with mixed success, with farmers preferring the use of acaricides against

which ticks had not, at the time, developed much resistance [107]. Work on the Belmont

Adaptaur cattle breed shows that tick resistance can be increased to very high levels via selec-

tion [108]. More recently, a cross-breeding trial between sires and dams with low A. variega-
tum infestation was conducted in Goudali zebu cattle in Cameroon, but without conclusive

results [109]. Resistance is reflected in the rejection of ticks (especially larvae), a lower gorging

rate and thus lower weight in females despite an increased attachment time, and a lower hatch-

ing rate. In the 1990s, breeding resistant cattle was presented as a promising approach to con-

trol tick populations [110], but this has not yet led to applications usable by farmers and no

significant progress has been made on the subject since 2000 [111].

The majority of studies have since focused on R. microplus, a single-host tick species [112].

However, both innate and acquired resistance to ticks has also been observed with 2- or 3-host

ticks, such as Amblyomma spp. [100,113–115] or Ixodes spp. [116], but also Hyalomma spp.

Studies have shown acquired resistance to H. anatolicum bites in rabbits [117–119] and in

crossbred (B. indicus X B. taurus) calves [120,121]. In South Africa, reports indicate that indig-

enous Nguni cattle are less infested with Hyalomma sp. than Bonsmara or Hereford cattle

[115] and that Brahman cattle are less infested with H. rufipes than Simmental cattle [122].

Studies in the Gambia have also shown better resistance to Hyalomma sp. infestation in

N’dama (B. taurus) cattle than in the Gobra (B. indicus) breed [123]. In Ethiopia, the local

Arssi breed was found to be the most resistant to H. rufipes bites, followed by the Boran breed,

and Boran x Friesian crossbred cattle were the least resistant [124]. Finally, a study in Morocco

also showed that a local breed was more resistant to H. marginatum, H. detritum, H. anatoli-
cum, and H. lusitanicum than Friesian cattle [125].

Anti-tick vaccination

The evidence of natural immunity to tick bites, identified as early as the beginning of the 20th

century (see recent reviews: [111,126]), and capable of providing indirect protection against
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tick-associated diseases, has naturally led the scientific community to consider anti-tick vac-

cine control strategies. By targeting the vector, anti-tick vaccines have the dual advantage of

combating both the ticks themselves and the direct losses they cause, as well as all potentially

transmitted pathogens [127]. Two main types of anti-tick vaccines have been developed, those

using antigens exposed to host immune responses during gorging, such as salivary antigens,

and those that rely on canceled molecules not exposed to the host immune system [128].

When a tick feeds on a vaccinated animal, it will ingest the antibodies induced by the vaccina-

tion, which will diffuse throughout the tick body and inhibit the targeted functions: digestive

functions in the digestive tract, anticoagulant, immunosuppressive or anti-inflammatory func-

tions in the salivary glands, or those involved in the multiplication and/or transmission of

pathogens. As a result, the tick may be prevented from feeding or digesting, may be rejected by

the host immune system, and/or there will be no transmission of microorganisms to the host

[129–133]. However, the development of this anti-tick vaccination strategy faces many chal-

lenges including the lack of genomic data on ticks, the difficulty of obtaining experimental

models, the cost of development and competition with the acaricide industry, as well as the

selection of the vertebrate hosts that need to be vaccinated, particularly for multi-host species

[134].

Thus, despite extensive research on the subject, only 1 vaccine against R. microplus is cur-

rently marketed in Cuba as Gavac and used in many Central and South American countries

[135,136]. In controlled field trials in Cuba, Brazil, Argentina, and Mexico, the Gavac vaccine

shows 55% to 100% efficacy in controlling R. microplus infestations in grazing cattle 12 to 36

weeks after the first vaccination [137]. A similar vaccine was previously marketed in Australia,

where it was originally developed, under the name TickGARD [136]. These vaccines are based

on a tick digestive tract antigen (Bm86) and generate an immune response that interferes with

the digestion of the blood meal and thus decreasing the tick population, the number of eggs

laid by females being directly related to the volume of ingested blood [138]. Although this vac-

cine provides proof of feasibility for anti-tick vaccination, it has the disadvantage of being

effective almost exclusively against R. microplus, with notable variations in efficacy depending

on tick populations and regions of the world, and of being expensive, particularly due to the

booster shots required [139].

Could this vaccine be used against Hyalomma? Several studies have been conducted, with

contrasting results. Vaccination with Bm86 showed no effect on infestations of cattle with

adult H. scupense or H. excavatum ticks [139]. In contrast, an earlier study showed that vacci-

nation of cattle with Bm86 resulted in a 30% reduction in the number of engorged H. anatoli-
cum nymphs, and even a 95% reduction in the number of feeding nymphs for H. dromedarii
[140]. A similar result was subsequently reported with 89% reduction in the number of feeding

nymphs for H. dromedarii in vaccinated cattle, but the vaccine was less effective in camels,

with a reduction in feeding nymph numbers of only 27% [141]. Furthermore, this type of vac-

cine will be more effective for monotropic species such as R. microplus that feed almost exclu-

sively on 1 animal species and have a rapid cycle with several generations per year [129]. For

broad host-spectrum species with a single annual generation, vaccination must eliminate the

tick as soon as it attaches or prevent the transmission of pathogens in the vaccinated animals

[132]. Vaccination can even target wild animals: A recent vaccination trial in deer reduced

infestation with different tick species, including H. marginatum and H. lusitanicum [142].

However, research has turned to the identification and use of Bm86 orthologs in other tick

species, including some belonging to the Hyalomma genus, because the ineffectiveness of the

Bm86-based vaccine against various Hyalomma species (including H. excavatum and H. mar-
ginatum) has been attributed to the large sequence variations identified in the homologous

proteins of these species [143]. Vaccination against Haa86, a homolog of Bm86 in H.
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anatolicum, has shown a protection rate of 60% to 82% depending on the study and has been

shown to reduce transmission of T. annulata in cattle [144–146]. Vaccination of cattle against

Hd86, a Bm86 homolog in H. scupense, showed a 59% reduction in the number of engorged

nymphs, but no impact on adults [147–149]. More recently, ATAQ, a protein paralogous to

Bm86, has been identified in the gut and Malpighian tubules of all Metastriata group of hard

ticks (i.e., Rhipicephalus, Amblyomma, Hyalomma, Dermacentor, Haemaphysalys, and Bothrio-
croton genera) [150]. Although no vaccination trials have yet been carried out, ATAQ appears

to be a promising vaccine candidate due to its homology with Bm86 and its conservation

across several genera.

The majority of studies investigating the possibility of using other molecules than Bm86 or

its orthologs as vaccine candidates to protect against Hyalomma sp. infestation have focused

on H. anatolicum. Immunization with extracts of this tick has shown a decrease in tick feeding

in several studies, in some cases with a decrease in transmission of T. annulata [151–158]. A

subolesin homolog that has shown some efficacy against R. microplus has been identified in H.

anatolicum, but there have been no vaccine trials to date [159]. In another study, subolesin,

calreticulin (CRT), and cathepsin type L (CathL) show some reduction of feeding capacity of

H. anatolicum, on the order of 65%, 41%, and 30%, respectively [160]. In cattle, immunization

with ferritin-2 (FER2) and tropomyosin (TPM) has recently shown protection rates against H.

anatolicum larvae and adults between 51% and 66% [161]. Finally, vaccination trials of rabbits

with glycoproteins extracted from H. dromedarii showed a slight decrease in the reproductive

index of engorged females and a significant reduction in egg-hatching rates [162].

With the exception of Bm86 (for certain tick populations), no tick antigen has thus far been

shown to be sufficiently effective in protecting against tick infestation or pathogen transmis-

sion. It is likely that the implementation of effective vaccination would require the use of sev-

eral antigens responsible for partial blockage of feeding and/or pathogen transmission in a

“cocktail” vaccine [163]. Thus, very recently, in silico studies have led to the construction of an

as-yet untested vaccine candidate that would include both structural protein epitopes of the

CCHF virus and subolesin as an antigen against ticks in order to offer dual protection against

CCHF transmission [164].

Ecological control

Ecological control, which consists of creating unfavorable conditions in the environment for

the ticks to complete their cycle, mainly targets the environment and the tick–host populations

[69,165,166]. Another mode of action is to act directly on the probability of encounter between

ticks and their hosts [167]. Most of the available literature on these methods involve family Ixo-
didae ticks, but the same principles can be considered for Hyalomma.

Environmental modification can have a direct role in affecting tick activity and survival.

For example, clearing low vegetation has been shown to be effective in reducing populations of

I. ricinus [168] or A. americanum [169]. Fire can also have a direct effect on tick survival as

well as an indirect effect via the impact on host populations and vegetation, and annual burns

constitute an effective method of tick control [170]. For example, temporary reductions in tick

populations have been observed for I. scapularis after fires [171]. But the challenges and risks

associated with this practice mean that the use of fire to control tick populations should be

considered with great caution, especially because fires have also been associated with increases

in A. americanum (presumably because deer were attracted to the renewed vegetation growth)

[172] or R. appendiculatus [173], or with no effect on Ixodes pacificus in California [173]. It has

also been suggested that the use of plants that are repellent or toxic to ticks could limit their

populations [69]. Experimentally, Civitello and colleagues [174] showed that Japanese stiltgrass
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(Microstegium vimineum) increases the mortality of A. americanum and D. variabilis. How-

ever, this strategy seems difficult to implement over large areas and would require these species

to be highly dominant [175]. In addition, environmental modification can have an indirect

role on tick populations by affecting host abundance and diversity, and thus the probability of

contact between a tick and a host.

Most ticks have trophic preferences, attaching and feeding more easily and efficiently on

certain animal species. Thus, the control of these host species, mainly through hunting or

exclusion with barriers, can have an impact on tick populations. Gilbert and colleagues [176]

have shown in Scotland that I. ricinus tick populations are smaller in forests or heathlands

where hunting pressure is higher, and that, 4 to 5 years after the fencing of experimental sites,

tick populations are less abundant. More dramatically, Rand and colleagues [177] showed that

the removal of white-tailed deer (Odocoileus virginianus) from an island on the East Coast of

the United States—where no other wild species is known to potentially host adult ticks—

resulted in an increase in questing adult I. scapularis in the year following eradication of their

preferred host, but a drastic drop in all stages in later years. However, the effect of reducing

host populations in areas where host movements are not controlled is more nuanced [178].

For example, controlling I. ricinus tick populations by excluding deer appears to be effective in

protecting the human population in specific areas [179], but excluding white-tailed deer to

limit the abundance of A. americanum varies in effectiveness across different years [180].

Regarding Hyalomma, a study in Spain comparing an open and a closed area from which

deer and wild boar had been excluded for 16 years showed that H. lusitanicum populations

were more abundant in the open areas [181]. In a theoretical study based on a population

dynamics model, it was shown that the decrease in density of hares, which host the immature

stages of H. marginatum, is associated with a decrease in adult tick populations after 5 years of

simulation [182]. Furthermore, studies have shown that under certain conditions in environ-

ments with relatively low host biodiversity, tick abundances in the environment are higher

compared with environments harboring higher biodiversity. In environments with high biodi-

versity, the probability of encounter between ticks and their preferred host is reduced and

feeding success is lower due to grooming behavior or resistance to ticks of some of the hosts

present. For example, in the United States, I. scapularis feeds on a wide variety of hosts [183].

In addition to the species richness of environments, functional diversity is also important, in

particular, the presence of predators that may limit host populations or limit the foraging time

of these hosts (and thus potential contact with exophilic ticks) [184,185]. To our knowledge,

no such studies have been conducted on Hyalomma ticks.

For tick species that feed on livestock, rotational grazing may reduce host infestation by

removing animals from a pasture plot for the duration necessary for the free-living ticks pres-

ent there to die out by starvation [75,186]. This practice is particularly suitable if animals are

treated with an acaricide at each change of pasture plot, thus avoiding immediate reinfestation

of the pasture by the engorged ticks introduced by the animal host. However, this strategy can

only be effective for species in which the survival time of the free-living stages in the environ-

ment is not very long, such as for the larvae of R. microplus, a monophasic tick. This strategy is

not possible with 2- or 3-host ticks such as Hyalomma spp. whose unfed adults can survive on

pasture lands for several years under good conditions [187]. For the rotation system to work,

there must also be no alternative hosts in the environment that allow the cycle to be completed

in the absence of the domestic host. In some cases, this would require a hermetic fence around

the pastures, which is very rarely possible.

For ticks feeding on domestic animals, it is also possible to adapt herd management to the

tick activity cycle, but data are lacking for Hyalomma spp. Knowledge of their rhythm of

detachment at repletion could, for example, theoretically make it possible to favor detachment
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in places that are unsuitable for their survival or oviposition. For example, as engorged R.

microplus females detach mainly in the morning, holding animals in the morning, before graz-

ing, in night pens or stables where the detached engorged females will not survive, can thus

limit the infestation of the environment [188]. In contrast, as engorged A. variegatum nymphs

detach from the host in the afternoon (2 PM to 5:30 PM), if the herds are kept during this

period on pastures unfavorable to tick survival, or on plots subsequently cultivated, it can

greatly reduce adult tick infestation in the following months [189]. Similarly, noting that A.

variegatum adults are more active during the day than at night, Barré (1998) suggested to

encourage the nocturnal grazing of cattle. However, these actions are limited by their feasibility

in terms of herd management as well as by the plasticity of tick behavior that can adapt to their

environment [190].

Finally, manual tick removal of domestic animal hosts is also used by farmers in smallhold-

ings [191]. This operation mainly targets adult ticks, because larvae and nymphs are difficult to

detect, and can secondarily reduce tick densities in pastures. However, the risk of infection

must be controlled when handling ticks.

The difficulty with all these control methods lies, among other things, in understanding

and taking into account their short- and long-term ecological consequences. On the one hand,

the effects observed on the short term are not necessarily those observed on the long term and,

on the other hand, the ecological consequences on the ecosystem as a whole are difficult to pre-

dict due to the evolution of community dynamics.

Other avenues of research

Recent advances in the description and study of the tick microbiome (see review [192]) open

up new avenues of research to identify strategies for tick control. For example, studies of mos-

quito vectors have shown that modulating their microbiome reduces the transmission of path-

ogens responsible for malaria, dengue, and other mosquito-associated diseases [193]. Using

their own microbiome as a “weapon” against ticks can be seen from 2 different angles. One

approach is to target microbes that are necessary for tick survival or development, such as

those responsible for nutrient supplementation or stress reduction; vaccination against I. rici-
nus is based on these tick microbes [194]. Another tack is to target components of the tick

microbiome that are directly involved in pathogen transmission, by activating or suppressing

the immune system, competition for limited resources or regulation of a specific physiological

process. One example is the introduction of a vertically transmitted endosymbiont capable of

inhibiting pathogen transmission into a laboratory tick population for release into the field to

overtake natural populations. Additionally, based on the positive associations between the

microbiome and certain tick-borne pathogens, vaccination strategies against these micro-

biome components may merit development. Clearly, it is now essential to study and under-

stand the functional consequences of interactions between ticks, their microbiome, and

pathogens, as in the study of the transmission of B. burgdorferi or A. phagocytophilum in I. sca-
pularis to identify potential vaccine targets [194,195].

Although attractive, this approach to manipulating the microbiome will face a number of

challenges that need to be addressed, in addition to the lack of functional data at present.

Firstly, the dynamics of the tick microbiome vary not only between species, but also between

geographical origin, sex, stage, or blood meal origin [192]. Therefore, these factors will have to

be taken into account because they can represent important obstacles to the identification of a

common usable target. Secondly, the release of ticks with a genetically modified microbiome

into the field will come up against the same difficulties as those mentioned for genetic tick con-

trol methods (ethical and regulatory problems, low dispersion, long generation times, etc.).
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Thirdly, as mentioned above with regard to anti-tick vaccines, it should also be kept in mind

that a vaccine approach directed against elements of the microbiome will be complex to imple-

ment for multi-host ticks. Compared with other genera, relatively little work has been done on

the Hyalomma microbiome [196–199]. However, a recent study has demonstrated, using tick

samples collected in the field in Pakistan, that populations of Francisella-like endosymbionts

and Candidatus Midichloria mitochondrii, which predominate in female H. anatolicum, are

not altered by the presence of 2 pathogens they transmit: Theileria sp. and A. marginale [200].

Finally, new approaches based on existing, but more environmentally friendly strategies

can also be considered in tick control. One example is the very recent development of a phero-

mone trap which, after attracting R. sanguineus ticks, kills them by electrocution [201]. This

type of trap, which to our knowledge has never been tested on Hyalomma sp., could prove

effective due to the hunting behavior of adults. The identification of new tick-specific targets,

such as substances in their nervous system, may also allow the development of vaccines [202]

or new acaricides that preserve non-target fauna [203], particularly in association with nano-

particles [58].

Conclusion

As with other tick species and genera, there is currently no “miracle solution” for controlling

Hyalomma spp. According to the danger they represent, whether in terms of transmission of

the CCHF virus to humans or of parasites such as Theileria sp. to animals, it is now urgent to

develop new methods of control that are environmentally sustainable against these very

important disease vectors, especially considering current global changes and the growing resis-

tance to acaricides. In that context, an attractive approach for preventing tick-borne diseases

can consist of development of vaccines that target conserved tick molecules as it may provide

broad protection against current and future tick-borne pathogens. However, it must be kept in

mind that these methods must be adapted not only to the biology and ecology of the species

involved, for which much data are still lacking, but also to the realities of the field, taking into

account the feasibility of their application, as well as the expectations and acceptability of

stakeholders and civil society. It is only with the compliance of the relevant populations and

within the framework of an integrated control plan aimed at changing practices (breeding,

human activities in risk areas, etc.) that solutions to fight ticks, including Hyalomma spp., can

be implemented.

Key Learning Points

• Hyalomma spp. ticks are responsible of negative impact both directly due to their bite

because they are some ectoparasites and indirectly as important disease vectors for

humans and animals.

• The geographic distribution of Hyalomma ticks is currently expanding due to global

changes, suggesting the possibility of emerging diseases related to these vectors.

• In the absence of vaccine and specific treatment against Crimean hemorrhagic fever

(CCHF) virus transmitted by Hyalomma sp., the only control method available at pres-

ent is the control of tick vectors.
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188. Bianchi MW, Barré N. Factors affecting the detachment rythm of engorged Boophlilus microplus

female ticks (Acari: Ixodidae) from Charolais steers in New Caledonia. Vet Parsitol. 2003; 112:325–

336.

189. Stachurski F, Adakal H. Exploiting the heterogeneous drop-off rhythm of Amblyomma variegatum

nymphs to reduce pasture infestation by adult ticks. Parasitology. 2010; 137(7):1129–1137.

190. White J, Heylen DJ, Matthysen E. Adaptive timing of detachment in a tick parasitizing hole-nesting

birds. Parasitology. 2012; 139(2):264–270. https://doi.org/10.1017/S0031182011001806 PMID:

22067275

191. Masika PJ, Sonandi A, van Averbeke W. Tick control by small-scale cattle farmers in the central East-

ern Cape Province, South Africa. J S Afr Vet Assoc. 1997; 68(2):45–48. https://doi.org/10.4102/jsava.

v68i2.868 PMID: 9291072

192. Bonnet SI, Pollet T. Update on the intricate tango between tick microbiomes and tick-borne pathogens.

Parasite Immunol. 2020:e12813. https://doi.org/10.1111/pim.12813 PMID: 33314216

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010846 November 17, 2022 22 / 23

https://doi.org/10.1093/jmedent/35.4.510
http://www.ncbi.nlm.nih.gov/pubmed/9701937
https://doi.org/10.1603/033.046.0509
https://doi.org/10.1603/033.046.0509
http://www.ncbi.nlm.nih.gov/pubmed/19769033
https://doi.org/10.1603/0022-2585%282008%2945%5B867%3Aegirso%5D2.0.co%3B2
https://doi.org/10.1603/0022-2585%282008%2945%5B867%3Aegirso%5D2.0.co%3B2
http://www.ncbi.nlm.nih.gov/pubmed/18826028
https://doi.org/10.1890/11-0458.1
http://www.ncbi.nlm.nih.gov/pubmed/22611862
https://doi.org/10.1603/0022-2585-41.4.779
http://www.ncbi.nlm.nih.gov/pubmed/15311475
https://doi.org/10.1603/0022-2585%282007%2944%5B752%3Aeorddo%5D2.0.co%3B2
http://www.ncbi.nlm.nih.gov/pubmed/17915504
https://doi.org/10.1016/j.ttbdis.2014.11.009
http://www.ncbi.nlm.nih.gov/pubmed/25499616
http://www.ncbi.nlm.nih.gov/pubmed/12546457
https://doi.org/10.1007/s10493-017-0166-2
http://www.ncbi.nlm.nih.gov/pubmed/28840404
https://doi.org/10.1093/jme/tjy035
https://doi.org/10.1093/jme/tjy035
http://www.ncbi.nlm.nih.gov/pubmed/29618023
https://doi.org/10.1073/pnas.1204536109
http://www.ncbi.nlm.nih.gov/pubmed/22711825
https://doi.org/10.1017/S0031182011001806
http://www.ncbi.nlm.nih.gov/pubmed/22067275
https://doi.org/10.4102/jsava.v68i2.868
https://doi.org/10.4102/jsava.v68i2.868
http://www.ncbi.nlm.nih.gov/pubmed/9291072
https://doi.org/10.1111/pim.12813
http://www.ncbi.nlm.nih.gov/pubmed/33314216
https://doi.org/10.1371/journal.pntd.0010846


193. van Tol S, Dimopoulos GI. Influences of the Mosquito Microbiota on Vector Competence. Adv Insect

Physiol. 2016; 51:243–291.

194. Mateos-Hernandez L, Obregon D, Maye J, Borneres J, Versille N, de la Fuente J, et al. Anti-Tick

Microbiota Vaccine Impacts Ixodes ricinus Performance during Feeding. Vaccines (Basel). 2020; 8(4).

195. Abraham NM, Liu L, Jutras BL, Yadav AK, Narasimhan S, Gopalakrishnan V, et al. Pathogen-medi-

ated manipulation of arthropod microbiota to promote infection. Proc Natl Acad Sci U S A. 2017; 114

(5):E781–E790. https://doi.org/10.1073/pnas.1613422114 PMID: 28096373

196. Azagi T, Klement E, Perlman G, Lustig Y, Mumcuoglu KY, Apanaskevich DA, et al. Francisella-Like

Endosymbionts and Rickettsia Species in Local and Imported Hyalomma Ticks. Appl Environ Micro-

biol. 2017; 83(18).

197. Elbir H, Almathen F, Elnahas A. Low genetic diversity among Francisella-like endosymbionts within

different genotypes of Hyalomma dromedarii ticks infesting camels in Saudi Arabia. Vet World. 2020;

13(7):1462–1472. https://doi.org/10.14202/vetworld.2020.1462-1472 PMID: 32848325

198. Ivanov IN, Mitkova N, Reye AL, Hubschen JM, Vatcheva-Dobrevska RS, Dobreva EG, et al. Detection

of new Francisella-like tick endosymbionts in Hyalomma spp. and Rhipicephalus spp. (Acari: Ixodidae)

from Bulgaria. Appl Environ Microbiol. 2011; 77(15):5562–5565. https://doi.org/10.1128/AEM.02934-

10 PMID: 21705542

199. Szigeti A, Kreizinger Z, Hornok S, Abichu G, Gyuranecz M. Detection of Francisella-like endosymbiont

in Hyalomma rufipes from Ethiopia. Ticks Tick Borne Dis. 2014; 5(6):818–820. https://doi.org/10.1016/

j.ttbdis.2014.06.002 PMID: 25108781

200. Adegoke A, Kumar D, Bobo C, Rashid MI, Durrani AZ, Sajid MS, et al. Tick-Borne Pathogens Shape

the Native Microbiome Within Tick Vectors. Microorganisms. 2020; 8(9). https://doi.org/10.3390/

microorganisms8091299 PMID: 32854447

201. Gowrishankar S, Ravi Latha B, Sreekumar C, Leela V. Solar tick trap with a pheromone lure—A stand-

in approach for off-host control of Rhipicephalus sanguineus sensu lato ticks. Ticks Tick Borne Dis.

2021; 12(3):101656. https://doi.org/10.1016/j.ttbdis.2021.101656 PMID: 33529987

202. Almazan C, Simo L, Fourniol L, Rakotobe S, Borneres J, Cote M, et al. Multiple Antigenic Peptide-

Based Vaccines Targeting Ixodes ricinus Neuropeptides Induce a Specific Antibody Response but Do

Not Impact Tick Infestation. Pathogens. 2020; 9(11).

203. Le Mauff A, Chouikh H, Cartereau A, Charvet CL, Neveu C, Rispe C, et al. Nicotinic acetylcholine

receptors in the synganglion of the tick Ixodes ricinus: Functional characterization using membrane

microtransplantation. Int J Parasitol Drugs Drug Resist. 2020; 14:144–151.

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010846 November 17, 2022 23 / 23

https://doi.org/10.1073/pnas.1613422114
http://www.ncbi.nlm.nih.gov/pubmed/28096373
https://doi.org/10.14202/vetworld.2020.1462-1472
http://www.ncbi.nlm.nih.gov/pubmed/32848325
https://doi.org/10.1128/AEM.02934-10
https://doi.org/10.1128/AEM.02934-10
http://www.ncbi.nlm.nih.gov/pubmed/21705542
https://doi.org/10.1016/j.ttbdis.2014.06.002
https://doi.org/10.1016/j.ttbdis.2014.06.002
http://www.ncbi.nlm.nih.gov/pubmed/25108781
https://doi.org/10.3390/microorganisms8091299
https://doi.org/10.3390/microorganisms8091299
http://www.ncbi.nlm.nih.gov/pubmed/32854447
https://doi.org/10.1016/j.ttbdis.2021.101656
http://www.ncbi.nlm.nih.gov/pubmed/33529987
https://doi.org/10.1371/journal.pntd.0010846

