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Abstract

For vector-borne diseases the basic reproduction number R0, a measure of a disease’s epi-

demic potential, is highly temperature-dependent. Recent work characterizing these tem-

perature dependencies has highlighted how climate change may impact geographic

disease spread. We extend this prior work by examining how newly emerging diseases, like

Zika, will be impacted by specific future climate change scenarios in four diverse regions of

Brazil, a country that has been profoundly impacted by Zika. We estimated a R0ðTÞ, derived

from a compartmental transmission model, characterizing Zika (and, for comparison, den-

gue) transmission potential as a function of temperature-dependent biological parameters

specific to Aedes aegypti. We obtained historical temperature data for the five-year period

2015–2019 and projections for 2045–2049 by fitting cubic spline interpolations to data from

simulated atmospheric data provided by the CMIP-6 project (specifically, generated by the

GFDL-ESM4 model), which provides projections under four Shared Socioeconomic Path-

ways (SSP). These four SSP scenarios correspond to varying levels of climate change

severity. We applied this approach to four Brazilian cities (Manaus, Recife, Rio de Janeiro,

and São Paulo) that represent diverse climatic regions. Our model predicts that the R0ðTÞ
for Zika peaks at 2.7 around 30˚C, while for dengue it peaks at 6.8 around 31˚C. We find that

the epidemic potential of Zika will increase beyond current levels in Brazil in all of the climate

scenarios. For Manaus, we predict that the annual R0 range will increase from 2.1–2.5, to

2.3–2.7, for Recife we project an increase from 0.4–1.9 to 0.6–2.3, for Rio de Janeiro from

0–1.9 to 0–2.3, and for São Paulo from 0–0.3 to 0–0.7. As Zika immunity wanes and temper-

atures increase, there will be increasing epidemic potential and longer transmission sea-

sons, especially in regions where transmission is currently marginal. Surveillance systems

should be implemented and sustained for early detection.
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Author summary

Rising temperatures through climate change are expected to increase arboviral disease

pressure, so understanding the impact of climate change on newly emerging diseases such

as Zika is essential to prepare for future outbreaks. However, because disease transmission

may be less effective at very high temperatures, it is uncertain whether risk will uniformly

increase in different regions. Given the nonlinear relationship between temperature and

many important biological vector traits, mathematical modeling is a useful tool for pre-

dicting the impact of temperature on arbovirus risk. We used a temperature-dependent

infectious disease transmission model to derive a temperature-dependent basic reproduc-

tion number. We then used historical temperature data and temperature projections for

the years 2045–2049 to forecast Zika risk in four cities in Brazil under various climate

change scenarios. We predict an overall increase in arbovirus risk, as well as extended risk

seasons in cities that are not currently suitable for year-round spread, such as Rio de

Janeiro. We also found little-to-no protective effect of increasing temperatures even in

warmer climates like Manaus. Our results indicate that preparation for future Zika out-

breaks (and of those of other arboviruses including dengue) should include the implemen-

tation of national disease surveillance and early detection systems.

Introduction

The Zika and dengue viruses are closely related arboviruses that are primarily transmitted to

humans through the Aedes aegypti and A. albopictusmosquitoes. Brazil carries an especially

large share of the disease burden, with an estimated 1.5 million Zika cases since the beginning

of the 2015–16 outbreak [1]. Zika was introduced in the Americas in 2015 [2], causing numer-

ous outbreaks in countries throughout Latin America, including Brazil, Colombia, and Vene-

zuela. Because vector-borne disease transmission depends on temperature, recent work has

outlined the potential for climate change to facilitate its re-emergence (and emergence in new

regions) [3–5]. Given the concerning health outcomes of Zika—including microcephaly and

Guillain-Barre syndrome—the unpredictability of how the changing climate will influence the

spread of the virus throughout the Western hemisphere is a growing cause of concern.

Dengue has a longer history in the region, originally emerging in the Americas in the 1600s

[6]. It was eliminated by the 1960s through widespread use of pesticides, but it re-emerged in

the early 1980s [7]. Since its re-emergence, dengue has remained endemic throughout many

Latin American countries [8]. Due to dengue’s endemicity and wide geographic spread, it has

been better studied than Zika and provides a useful point of comparison as we consider the

potential impact of climate change on these arboviruses.

As a result of climate change, it is estimated that about half of the world’s population will

live in geographic regions that will be suitable for arbovirus transmission by the year 2050 [9].

Several factors make Brazil particularly vulnerable to both the drivers and impacts of climate

change. Primary among these is deforestation within the Amazonian region, as well as wide-

spread increases in temperature, both of which are conducive to mosquito breeding [10].

Arbovirus outbreaks, such as the Zika outbreak in Brazil in 2015, have also been attributed in

part to El Niño conditions that year [11]; Aedes aegypti, the primary vector of Zika and dengue

[12], is particularly suited to warm, humid conditions. Brazil, therefore, is an important region

to study Zika transmission potential, as has been highlighted by global Zika projections [3, 5].

In the 1990s, when researchers started using mathematical modeling to consider the

impacts of climate change on vector-borne disease transmission, several studies began to
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incorporate temperature-dependent parameters such as vector competence, vector lifespan,

and extrinsic incubation period [5, 13]. Temperature impacts specific biological vector traits,

including lifespan, vector competence, and extrinsic incubation period, through several mech-

anisms relating to viral and vector physiology (e.g., impacts on metabolic rates) [14, 15]. Previ-

ous empirical and modeling work has suggested that these various temperature dependencies

combine in a such a way that disease risk increases with temperature to a maximum at an opti-

mal temperature and decreases thereafter [16, 17]. More recently, temperature-dependent R0s

for vector-borne diseases have revealed an interesting range of peak temperatures depending

on the pathogen and mosquito species [18–20]. Of particular interest, Mordecai et al. found

that disease risk peaks at the highest temperatures for pathogens that are transmitted by the A.
aegyptimosquito [20]. The same group has also theorized that this finding means that with

increasing temperatures, vector-borne disease risk in Africa will shift from malaria to arboviral

diseases [21]. As climate change has the potential to shift much of the world into temperatures

where these higher peaks occur, it is important to better understand both the range of uncer-

tainty across climate change scenarios as well as the likely geographic and temporal heteroge-

neity in disease risk.

We extend prior work [22] that developed temperature dependent R0 expressions to fore-

cast future global trends of Zika and, as a comparison, dengue transmission risk in Brazil for

the years 2045–2049, across a range of plausible climate change scenarios. Specifically, we

explore how projections might vary across regions within a country and the likely impact of

year-to-year temperature variation. We developed a basic reproduction number R0ðTÞ as a

function of temperature-dependent vector parameters specific to Aedes aegypti, which we used

to project seasonal disease risk in four Brazilian cities representative of the different climate

regions of Brazil. Our work extends and complements previous temperature-dependent pro-

jections of arbovirus risk [3, 18–22] by assessing geographic and year-to-year heterogeneity in

projected risk across climate change scenarios.

Materials and methods

Data

To examine the potential impacts of climate change across a variety of climates, we selected

four cities representative of diverse climatic regions of Brazil: Manaus, a city in the Amazon

Rainforest with a tropical rainforest climate; Recife, an Atlantic coastal city with a tropical

monsoon climate; Rio de Janeiro, an Atlantic coastal city with a tropical savanna climate; and

São Paulo, a southern city with a humid subtropical climate. All cities are at approximately sea

level and within the suitable elevation range for an abundant A. aegypti population, i.e., up to

1,600 meters [23, 24].

We obtained the historical and projected future temperature data from ISIMIP (The Inter-

Sectoral Impact Model Intercomparison Project) [25]. Specifically, we use the downscaled and

bias-adjusted GFDL-ESM4 (Geophysical Fluid Dynamics Laboratory, NOAA) model [26–28].

We chose to use GFDL-ESM4 because it is the CMIP-6 (Coupled Model Intercomparison

Project, phase 6) model generally agreed to most accurately capture historical temperatures in

South America [29, 30]. Air temperature data was obtained using the daily-mean 2-meter air

temperature variable. To extract temperature data for each of the four cities, we calculated the

nearest model grid point to each city’s location, which is available at a 0.5˚x0.5˚ latitude-longi-

tude spatial resolution.

For our historical baseline, we used data from 2015–2019, a five-year period encompassing

the Zika outbreak in Brazil. For our forecast, we used 30-year projections, i.e., projected tem-

perature data for the years 2045–2049. For the temperature projections, we use four SSP
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(Shared Socioeconomic Pathways) climate scenarios: SSP126, SSP245, SSP370, and SSP585

[31]. These scenarios represent different climate-relevant levels of socioeconomic development

(taking into consideration factors like sustainable consumption, protection of vulnerable land,

fertility rates) and their corresponding greenhouse gas concentrations. Here, increasing cli-

mate change severity corresponds to increasing numbers, where SSP585 corresponds to fossil-

fueled development while the SSP126 would require substantial mitigation efforts on a global

level to achieve. The GFDL-ESM4 model provides temperatures for previous years for each of

the four SSP scenarios, starting in 2015, (i.e., each scenario has different historical temperature

data for those years). We use the SSP585 scenario for our historical temperatures (most closely

corresponding to RCP (Representative Concentration Pathway) 8.5 from CMIP-5), because

this trajectory is thought to most closely align with the carbon dioxide emissions from those

years [32, 33].

We summarized the historical and projected temperature data in two ways using period

cubic B-splines. First, we obtain both a baseline seasonal temperature time series by taking the

average temperature for each day across the five years of the model output (2015–2019; Fig 1),

and a 2045–2049 projected year-round temperature dataset from the averages of the years

2045–2049 (Section 1, Fig A in S1 Appendix). By smoothing over the five years, we projected

average climate and smooth any anomalies that occur in the projections for 2045–2049, giving

an estimation of overall changes in risk by the second half of the 2040s as compared to the

recent past. Second, to capture the year-to-year variation, we also fit the periodic splines to

each of the five years separately for both the historical and projected temperatures to better

understand reasonable likely deviation from the mean projection (Section 2, Fig B in S1

Appendix). The period cubic B-splines were fit to the temperature data using the pbs package

[34] in R (v4.0; R Foundation for Statistical Computing; Vienna, Austria).

Infectious disease transmission model

We modified an existing vector-borne infectious disease transmission model [22] to include

birth and death processes. The basic model structure comprises an SLIR (susceptible, latent,

Fig 1. Daily temperature in 4 Brazilian cities, 2015–2019. Periodic cubic spline models are fit to the data for Manaus, Recife, Rio de Janeiro, and São

Paulo to develop mean seasonal temperature models.

https://doi.org/10.1371/journal.pntd.0010839.g001
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infectious, recovered) model for human transmission and SLI model for mosquito transmis-

sion, using standard exponential birth and death processes for the human population. The

model tracks the numbers of susceptible Sh, latently infected Lh, infectious Ih, and recovered Rh
humans (with total human population Nh), as well as the number of susceptible Sm, latently

infected Lm, and infectious Im mosquitoes. Our model includes three temperature-indepen-

dent, human parameters: the birth/death rate μh, the transition rate from latency to infectious-

ness σh (which we assumed to be two days less than the intrinsic incubation period, as

infectiousness precedes symptom onset [35]), and the recovery rate γ. The birth and death

rates μh were fixed to single values based on current life expectancy for this analysis rather

than projected; because the model is focused on epidemic potential (see below) rather than

simulation, the results are not sensitive to these values (impacting the results only in the proba-

bility that a latent or infected individual may die before recovery).

Mathematical modeling allows us to estimate how the various temperature dependencies

of vector traits combine to affect disease risk. To that end, our model includes eight temper-

ature-dependent (T) A. aegypti mosquito parameters, five of which are independent of the

pathogen: biting rate a(T), the number of eggs laid per day �(T), the probability of egg to

adult survival θ(T), the egg to adult development rate ρ(T), and the adult mosquito mortality

rate μm(T). One temperature dependent mosquito parameter not included in our eight

parameters is the carrying capacity K(T), which is the maximum number of mosquitoes that

the environment can sustain. This parameter can be modeled as a function of the other vec-

tor parameters [22] (see Section 3 in S1 Appendix) and therefore does not appear in the

R0ðTÞ formula we derive.

The three additional temperature-dependent parameters depend on the specific patho-

gen: the extrinsic incubation rate, that is the latency to infectiousness rate σm(T), the per

bite probability of pathogen transmission from mosquito to human πmh(T), and the per bite

probability of pathogen transmission from human to mosquito πhm(T). We define vector

competence as the product of πmh(T) and πhm(T), denoted (πhmπmh)(T). For Zika we have

temperature-dependent estimates for the vector competence product but not the constitu-

ent parameters.

We used the thermal response curves fit by Mordecai et al. [16, 18], whose temperature-

dependence are described by one of the four formulas: a Brière ðcTðT � T0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTm � TÞ

p
Þ,

quadratic (c(T − Tm)(T − T0)), inverse quadratic (c(T − Tm)(T − T0))−1, or constant c, as

appropriate for the shape of the relationship in the data (Table 1). T0 and Tm are the mini-

mum and maximum temperatures for which a given parameter takes on a non-zero value.

The parameter c is fit to the data [16, 17]. Plots of the temperature dependence of the biting

rate a, the extrinsic incubation rate σm, and the vector competence (πhmπmh) are given in

Section 4, Fig C in S1 Appendix), distinguishing between dengue and Zika where

appropriate.

We refit two of the temperature-dependent parameters: the extrinsic incubation period and

mosquito lifespan. Because the mosquito mortality rate should largely be independent of the

pathogen, we merge the data from [16] and [36] to generate a temperature-dependent mos-

quito mortality μm(T). Maximum likelihood estimates for the parameters c, T0, and Tm were

obtained assuming mosquito lifetimes were Poisson distributed (Section 4, Fig D in S1 Appen-

dix). Similarly, the extrinsic incubation rate was refit to exclude sources from papers which

studied other arboviruses such as Yellow Fever. We parameterize the number of mosquitoes

(Nm) and the number of humans (Nh) as a single parameter,
Nm
Nh

, corresponding to the density

of mosquitoes (i.e., the number of mosquitoes per human).
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The parameters are summarized in Table 1, and the model equations are given below.

dSh
dt
¼ mh � Nh � aðTÞ � pmhðTÞ �

Im
Nh
� Sh � mh � Sh

dLh
dt
¼ aðTÞ � pmhðTÞ �

Im
Nh
� Sh � sh � Lh � mh � Lh

dIh
dt
¼ sh � Lh � g � Ih � mh � Ih

dRh
dt
¼ g � Ih � mh � Rh

dSm
dt
¼ �ðTÞ � yðTÞ � rðTÞ � mmðTÞ

� 1Nm 1 �
Nm

KðTÞ

� �

�

aðTÞ � phmðTÞ �
Ih
Nh
þ mmðTÞ

� �

� Sm

dLm
dt
¼ aðTÞ � phmðTÞ �

Ih
Nh
� Sm � ðsmðTÞ þ mmðTÞÞLm

dIm
dt
¼ smðTÞ � Lm � mmðTÞ � Im

ð1Þ

Table 1. Parameters of the temperature-dependent vector-borne arbovirus disease transmission model. Adult mosquito mortality rate and extrinsic incubation period

were refit by the authors (indicated by †and given in Section 4, Fig D and E in S1 Appendix), while the remaining traits were taken directly from the source listed.

Temperature-dependent parameters (Zika and dengue)

Parameter Definition Source Function T0 Tm c
a biting rate (day−1) [16] Brière 13.35 40.08 2.02E-4

� eggs laid per female (day−1) [16] Brière 14.58 34.61 8.56E-3

θ probability of mosquito egg to adult survival [16] Quadratic 13.56 38.29 -5.99E-3

ρ mosquito egg to adult development rate (day−1) [16] Brière 11.36 39.17 7.86E-5

μm adult mosquito mortality rate [16, 17]† Inverse 8.53 38.07 -1.68E-1

Temperature-dependent parameters (Zika)

szm virus extrinsic incubation rate [17] Brière 18.27 42.31 1.74E-4

(πhmπmh)z vector competence [17] Quadratic 22.72 38.38 -3.54E-3

Temperature-dependent parameters (dengue)

sdm virus extrinsic incubation rate [16]† Brière 10.68 43.09 6.91E-5

pdmh probability of transmission to human (per bite) [16] Brière 17.05 35.83 8.49E-4

pdhm probability of transmission to vector (per bite) [16] Brière 12.22 37.46 4.91E-4

Temperature-independent parameters (Zika and dengue)

μh human birth/death rate (day−1) [37] Constant — — (75.7 × 365)−1

Nm
Nh

Ratio of A. aegypti to humans [38] Constant — — 9.75E-1

Temperature-independent parameters (Zika)

szh human latency rate (day−1) [35, 39] Constant — — 1/4

γz human recovery rate (day−1) [35, 39] Constant — — 1/5

Temperature-independent parameters (dengue)

sdh human latency rate (day−1) [35] Constant — — 1/4

γd human recovery rate (day−1) [35] Constant — — 1/5

https://doi.org/10.1371/journal.pntd.0010839.t001
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Basic reproduction number

The basic reproduction number R0 is a measure of the epidemic potential of an infectious dis-

ease system [40, 41]. It represents the expected number of secondary infections caused by a

single infectious case over their infectious period in an otherwise susceptible population. If

R0 > 1, an epidemic is expected to grow and if R0 < 1, an epidemic is expected to die out. R0

is an appropriate metric for our projections because there is too much uncertainty on what

specific circulation patterns will be over time and in population-level immunity to project spe-

cific outbreak dynamics in 30 years. Our approach instead focuses on transmission potential.

Even if there is substantial population immunity suppressing Zika and dengue circulation,

understanding transmission potential is still useful and can inform arboviral disease potential

more broadly.

In the context of vector-borne disease systems, there is some subtlety to the interpretation

of R0: strictly speaking, a disease generation-based R0, as derived by the next generation

matrix (NGM) [42, 43] and denoted below as RNGM
0

, treats hosts (humans) and vectors (mos-

quitoes) as equally important, essentially taking the mean of human-to-vector infections and

vector-to-human infections. Because we observe human cases, only, it is usually preferable and

more interpretable to use the expected number of new human infections per infectious

human, namely R0 ¼ ðR
NGM
0
Þ

2
. This formulation is consistent with classic approaches [44].

We use the next generation method to derive a formula for RNGM
0

and thus this latter tempera-

ture-dependent R0ðTÞ for our model (see Section 5 in S1 Appendix).

R0ðTÞ ¼ ðR
NGM
0
ðTÞÞ2 ¼

aðTÞ � pmhðTÞ � smðTÞ
mmðTÞðsmðTÞ þ mmðTÞÞ

�
aðTÞ � phmðTÞ � sh
ðsh þ mhÞðgþ mhÞ

�
Nm

Nh
ð2Þ

Incorporating the virus-specific parameter values into this expression, we derive values for

Zika,

R0;zðTÞ ¼
ðaðTÞÞ2 � ðphmpmhÞ

z
ðTÞ � szmðTÞ � s

z
h

mmðTÞðszmðTÞ þ mmðTÞÞðszh þ mhÞðgz þ mhÞ
�
Nm

Nh
; ð3Þ

and dengue,

R0;dðTÞ ¼
ðaðTÞÞ2 � pdmhðTÞ � p

d
hmðTÞ � s

d
mðTÞ � s

d
h

mmðTÞðsdmðTÞ þ mmðTÞÞðsdh þ mhÞðgd þ mhÞ
�
Nm

Nh
; ð4Þ

as a function of the pathogen-specific, temperature-dependent parameters.

To assess how each parameter influences the R0ðTÞ curves for Zika and dengue and the

city-specific projections, we also conducted sensitivity analysis. For a detailed description of

the sensitivity analysis, see Sections 6 and 7 in S1 Appendix. Briefly, we investigated the impact

of removing the temperature-dependence of each parameter (i.e., fixing it to its mean value

over its non-zero values) on R0ðTÞ and on the results for the city-specific projections.

Results

Temperature-dependent basic reproduction numbers

The temperature-dependent shape of the R0ðTÞ curve is similar for Zika and dengue (Fig 2).

For example, the peak R0 occurs at approximately 30.5˚C. On the other hand, R0 increases

above 1 at a cooler temperature for dengue compared to Zika (23˚C vs 25˚C respectively), and

the peak R0 value is greater for dengue than Zika (6.8 vs 2.7). In our sensitivity analysis, we

find that mosquito biting rate is the largest driver of the magnitude of R0 (Section 6, Fig F in
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S1 Appendix) and mosquito lifespan has the largest influence on the temperature at which it

reaches its peak value (Section 6, Fig Gb and d in S1 Appendix), whereas vector competence

(the probability of transmission to human times the probability of transmission to vector)

more greatly drives the steepness (i.e., sensitivity to small changes in temperature) of the R0

curve (Section 6, Fig Ga and c in S1 Appendix). The extrinsic incubation period has little

impact on the temperature-dependent R0ðTÞ for each virus. Note that the R0 metric considers

a fully susceptible population, and the effective reproduction numbers for real populations

decrease proportionally to the fraction of the population that is immune.

Risk projections based on 5-year temperature data

The climate change scenarios project a year-round increase of R0 by 2045–2049, with varying

degrees of difference among the risk projections between the specific SSP scenarios (Fig 3).

Exceptions include the extreme temperatures seen in the warm season (i.e., September through

Fig 2. Temperature-dependent R0ðTÞ for Zika and dengue.

https://doi.org/10.1371/journal.pntd.0010839.g002
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November) in Manaus and the cool season (i.e., June through September) in Rio de Janeiro

and São Paulo. For Manaus, we predict the annual Zika R0 range, currently 2.1–2.5, to shift to

2.3–2.7, for Recife we project the range to shift from 0.4–1.9 to 0.6–2.3, for Rio de Janeiro to

shift from 0–1.9 to 0–2.3, and for São Paulo to shift from 0–0.3 to 0–0.7. The increase in R0 is

not uniform throughout the year as can be seen in the graphs for Rio de Janeiro in particular

(Fig 3c and 3g), where the R0 value increases by a far larger amount during the months of

October through April than it does earlier in the year (R0 remains 0 throughout the winter

months in all scenarios, but increases as high as 0.8 in the spring and summer months). To a

lesser extent, R0 increases are also non-uniform for Recife (increasing around 0.1 earlier in the

year and as high as 0.5 by late winter, (Fig 3b and 3f)). These effects are due to a combination

of the non-uniform temperature changes in the temperature projection data over the year and

the non- linearity of the R0 formula. We see some minor attenuation of risk because of higher

temperatures across the risk projections in the warmest months in Manaus (Fig 3a and 3e),

where temperatures are projected to reach just above 35˚C in the SSP585 scenario. However,

in this scenario, the peak risk still far surpasses that of the baseline risk, occurring at two differ-

ent times in the year corresponding to the bookends of the observed dip in risk (around Sep-

tember and November).

Our baseline risk estimates for Rio de Janeiro and Recife suggest that the current risk season

for Zika, i.e., the time for which R0 > 1, is late spring through fall (i.e., December through

March) which is largely consistent with data from the 2015–16 outbreak [45, 46]. Dengue fol-

lows a similar trend, but with a longer risk season. Our risk projections suggest that the arbovi-

rus risk season for Rio de Janeiro will increase by approximately 2–3 months by 2045–2049

and that the Zika risk seasons in Recife will increase by around 2 months. In São Paulo, the R0

for dengue more reliably sits above 1 during the beginning of the year in our projections for

2045–2049, peaking at 2.1 in SSP585, nearly double the peak R0 value from the baseline.

Our city-specific sensitivity analysis (Section 7, Fig H and I in S1 Appendix,) suggests that

the temperature-dependent parameters have varying degrees of impact on our R0 projections

for each city. For example, holding vector competence, biting rate, and mosquito lifespan

Fig 3. Projection of seasonal epidemic potential R0ðTðtÞÞ by 2045–2049. Projections are given for Zika (a-d) and dengue (e-h) for each city and

climate change scenario.

https://doi.org/10.1371/journal.pntd.0010839.g003
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constant has the largest absolute impact on the R0 in the warmer cities (especially Manaus),

while São Paulo’s results are less impacted by the sensitivity analysis. Like the sensitivity analy-

sis for R0ðTÞ, we see that the extrinsic incubation period has little impact on any of the results.

Risk projections based on individual-year data

Our risk projections based on individual year data (Fig 4) highlight the heterogeneity of the

Zika risk projections from year-to-year (the corresponding figure for dengue can be found in

Section 8, Fig J in S1 Appendix). The projections for Manaus contrast with the projections

from the other three cities, which still show largely consistent increase in disease risk through-

out the year for each year. For example, Manaus sees a sharp decrease in risk in the spring

(September through November) for two years in the SSP585 scenario, demonstrating poten-

tially erratic shifts in peak risk seasons for this city to earlier in the year.

São Paulo’s risk is also highly variable between the different years and SSP scenarios,

highlighting important distinctions between each of the scenarios. For example, our projec-

tions show a dramatic difference in one of the years in the SSP585 scenario compared to the

other scenarios. These results suggest that the year-to-year heterogeneity in temperature and

thus on arbovirus disease risk in the future will likely depend on regional climate factors and

year-specific weather patterns.

Discussion

In this work, we use a temperature-dependent transmission model to investigate the impacts

of climate change on Zika risk in Brazil, highlighting both geographic and year-to-year varia-

tion in projected risk. Zika and dengue’s temperature profile for R0 peaks at a relatively high

temperature, around 30˚C; therefore, prior work has suggested that climate change will both

Fig 4. Year-to-year heterogeneity in projected Zika risk across climate change scenarios. Each panel shows projections of the seasonal temperature

in years 2015–-2019 for a specific climate change scenario and each city, demonstrating year-to-year heterogeneity in projected risk. Grey lines

corresponding to the historical baseline are plotted for comparison. Ribbons were added to highlight the vertical spread in the lines for each year.

https://doi.org/10.1371/journal.pntd.0010839.g004
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increase their transmission potential and geographic extent of transmission [20]. When exam-

ining the impact of climate change projections on Brazil, we find general agreement with this

expectation but also find variability across different climatic regions within the country. This

variability across different climate zones is evident in Fig 4, which shows that Manaus is a

region on the cusp of experiencing a decrease in arbovirus risk at certain times of the year in

certain years, while both Recife and Rio de Janeiro show large increases in risk throughout the

year. In places like Recife and Rio de Janeiro, we project the extension of the risk season. In

São Paulo, a city that lies on the borderline of reliable A. aegypti suitability [3, 47, 48], we see

that it is likely that future arboviral risk will depend on how the climate changes. These results

highlight that transmission is likely to expand into geographic regions with cooler climates.

Regions with current temperatures that are too cold to sustain year-round transmission will

become increasingly vulnerable to newly seeded outbreaks sparking seasonal epidemics.

Temperature-dependent R0ðTÞ curves, used here and in other studies, indicate that there is

a potential for increasing temperatures to have a protective effect. The curves for dengue and

Zika begin to decrease sharply after they peak at around 30˚C, both decreasing to 1 by around

35˚C (95˚F). Of the four cities in the analysis, Manaus is the only city to reach this peak tem-

perature, and even in the high emission scenario, the maximum temperature in our projec-

tions is only briefly above 35˚C at the beginning of October. Thus, even in regions with

warmer tropical rain forest climates like Manaus, our results show that in most regions climate

change is not likely to have a substantial or consistent protective effect on arbovirus

transmission.

Over the past decades, numerous studies have looked at the impact of temperature changes

on vector-borne disease transmission [3, 5, 13, 21, 49–52]. There is general consensus among

these studies that both dengue and Zika will spread into areas that are becoming increasingly

suitable for transmission (e.g., the Southeastern United States) and that risk will increase in

currently endemic areas. The temperature-dependence of mosquito-borne disease transmis-

sion is a complicated mix of multiple processes, each of which generally has a non-linear rela-

tionship with temperature. Several studies concur that 26–29˚C is the optimal temperature

window for arbovirus transmission [16, 17, 53, 54]. Zika and dengue lie on the higher end of

this range [21], at around 30˚C, which is consistent with our estimates. Our R0ðTÞ estimates

also span ranges that are consistent with empirical estimates: a systematic literature review on

the basic reproduction numbers for dengue and Zika found the R0 of Zika (mean 3.0) to be

lower than the R0 of dengue (mean 4.3) in tropical climates, and our estimated values are well

within the substantial variation in individual study estimates [55]. Our R0 for Zika is just

below 3.0 even at its highest value.

The variability between the various SSP scenarios seen in Fig 4 along with steepness of the

temperature-dependent R0 curves (Fig 2) underscore the severe consequences of small devia-

tions in temperature projections with regards to arbovirus risk. That is, our ability to control

our emissions to prevent even small temperature increases could have massive benefits relating

to mosquito-borne illnesses. That being said, by 2045–2049, even the best-case scenario

(SSP126) corresponds to both lengthening of the risk season—particularly for Rio de Janeiro—

and increases in overall disease pressure, indicating that international climate protection pol-

icy must be accompanied with national-level preparedness including increased surveillance,

and diagnostic and treatment capacity.

For this analysis, we chose to focus on epidemic potential through the basic reproduction

number. Previous work has demonstrated that beyond epidemic potential, there will likely be

differences in epidemic dynamics, such as epidemic length, peak size, and final size [22]. How-

ever, for the long-term projections we provide here, R0 is appropriate—there are too many
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unknowns in terms of what population-level immunity will look like to make reasonable pro-

jections of specific dynamics. Indeed, it is unclear whether these arboviruses will be circulating

in the coming decades and whether new pathogens will emerge. Thus, one strength of this

study is the side-by-side comparison of dengue and Zika risk, which gives a broader look at

arbovirus epidemic potential, regardless of the specific pathogen. Another strength of our

work is the generalizability of our modeling approach to other geographic areas; the tempera-

ture-dependent R0ðTÞ we derived here could be implemented for other geographic regions of

interest by leveraging the appropriate temperature data. However, we note that several model

parameters would be improved with data specific to the geographic region. For example, sev-

eral thermal-dependent traits for Ae. aegypti including lifespan and reproductive rate are

known to vary between regions [56], but we did not have information on strains specific to

Brazil for this study. Future work on temperature-dependent traits for region-specific mos-

quito strains would greatly improve the generalizability of our approach for other geographic

regions. Finally, our study also uses a fine temporal granularity, which gives us the ability to

provide a more in depth understanding of year-round dynamics and investigate arbovirus risk

as a dynamic value that changes over the course of a month or year.

However, our work is limited by its sole focus on temperature. Climate change is likely to

impact humidity and rainfall, and population density will also likely change in the future. We

do not account for these factors in our projections. Due to its additional impact on human

behavior (e.g., water storage practices in response to drought or flooding), interaction with the

physical environment (e.g., water collecting in puddles or trash provides larval habitat), and

large uncertainty in projections relative to temperature [57, 58], precipitation is a more com-

plicated climatic factor to include in models than temperature and including this would have

introduced tremendous uncertainty to the results, even using state-of-the-art model projec-

tions. Another limitation is our inability to predict future population birth rates and changes

in the mosquito-to-human population density ratio, which may impact the epidemic potential

of Zika and other arboviruses. There is also uncertainty in the exact temperature relationship

for many parameters, including the mosquito biting rate, which is particularly difficult to esti-

mate empirically. Moreover, in many cases, temperature-dependent traits were estimated in

lab conditions and may differ significantly from real-world settings, because of larval resource

availability, diurnal temperature fluctuations, and other real-world factors that are known to

impact vector traits [59–61].

Conclusion

Climate forecasts coupled with transmission models, as used in this study, provide a source of

evidence to guide future planning to mitigate health impacts due to climate change. Local and

national health departments can leverage these sources in preparing for increases in transmis-

sion pressure due to climatic warming. Our work contributes to the larger literature of climate

change health impacts by exploring the likely heterogeneities in these health impacts both

across climatic regions within a country and from year-to-year. Greater flexibility and adapt-

ability of arbovirus response and prevention may be necessary to accommodate spatial and

temporal heterogeneity in risk projections, especially in a country with as much climatic diver-

sity as Brazil.

Supporting information

S1 Appendix. Supporting information. In the supporting information, we provide the peri-

odic spline fits to the individual years in each city, provide the periodic spline fits to the five-

year temperatures under each of the climate change scenarios in each city, discuss the

PLOS NEGLECTED TROPICAL DISEASES Temperature-dependent basic reproduction number for Zika and dengue

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010839 April 27, 2023 12 / 16

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0010839.s001
https://doi.org/10.1371/journal.pntd.0010839


temperature-dependent mosquito carrying capacity, give the temperature-dependent parame-

ter models as well as the fits to the data were applicable, and provide the individual-year risk

projections for dengue (analogous to Fig 4).

(PDF)
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25. Lange S, Büchner M. ISIMIP3b bias-adjusted atmospheric climate input data (v1. 1); 2021.

26. Dunne J, Horowitz L, Adcroft A, Ginoux P, Held I, John J, et al. The GFDL Earth System Model version

4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. Journal of

Advances in Modeling Earth Systems. 2020; 12(11):e2019MS002015. https://doi.org/10.1029/

2019MS002015

27. Lange S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0).

Geoscientific Model Development. 2019; 12(7):3055–3070. https://doi.org/10.5194/gmd-12-3055-2019

28. Lange S. ISIMIP3BASD v2. 4.1; 2020.

29. Ortega G, Arias PA, Villegas JC, Marquet PA, Nobre P. Present-day and future climate over central and

South America according to CMIP5/CMIP6 models. International Journal of Climatology. 2021; 41

(15):6713–6735. https://doi.org/10.1002/joc.7221

30. Arias PA, Ortega G, Villegas LD, Martı́nez JA. Colombian climatology in CMIP5/CMIP6 models: Persis-

tent biases and improvements. Revista Facultad de Ingenierı́a Universidad de Antioquia. 2021;

(100):75–96.

31. Riahi K, Van Vuuren DP, Kriegler E, Edmonds J, O’neill BC, Fujimori S, et al. The shared socioeco-

nomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview.

Global environmental change. 2017; 42:153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

32. Schwalm CR, Glendon S, Duffy PB. RCP8. 5 tracks cumulative CO2 emissions. Proceedings of the

National Academy of Sciences. 2020; 117(33):19656–19657. https://doi.org/10.1073/pnas.

2007117117

33. Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM, Ciais P, et al. Betting on negative emissions.

Nature Climate Change. 2014; 4(10):850–853. https://doi.org/10.1038/nclimate2392

PLOS NEGLECTED TROPICAL DISEASES Temperature-dependent basic reproduction number for Zika and dengue

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010839 April 27, 2023 14 / 16

https://doi.org/10.4269/ajtmh.1997.57.285
https://doi.org/10.4269/ajtmh.1997.57.285
http://www.ncbi.nlm.nih.gov/pubmed/9311638
http://www.ncbi.nlm.nih.gov/pubmed/19842378
https://doi.org/10.1371/journal.pntd.0005568
http://www.ncbi.nlm.nih.gov/pubmed/28448507
https://doi.org/10.1098/rspb.2018.0795
http://www.ncbi.nlm.nih.gov/pubmed/30111605
https://doi.org/10.1111/ele.12015
http://www.ncbi.nlm.nih.gov/pubmed/23050931
https://doi.org/10.1289/ehp.0901256
http://www.ncbi.nlm.nih.gov/pubmed/20435552
https://doi.org/10.1111/ele.13335
http://www.ncbi.nlm.nih.gov/pubmed/31286630
https://doi.org/10.1016/S2542-5196(20)30178-9
https://doi.org/10.1016/S2542-5196(20)30178-9
http://www.ncbi.nlm.nih.gov/pubmed/32918887
https://doi.org/10.1371/journal.pntd.0006451
http://www.ncbi.nlm.nih.gov/pubmed/29746468
https://doi.org/10.1371/journal.pone.0178211
https://doi.org/10.1371/journal.pone.0178211
http://www.ncbi.nlm.nih.gov/pubmed/28542540
https://doi.org/10.4269/ajtmh.2012.12-0244
https://doi.org/10.4269/ajtmh.2012.12-0244
http://www.ncbi.nlm.nih.gov/pubmed/22987656
https://doi.org/10.1029/2019MS002015
https://doi.org/10.1029/2019MS002015
https://doi.org/10.5194/gmd-12-3055-2019
https://doi.org/10.1002/joc.7221
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1073/pnas.2007117117
https://doi.org/10.1073/pnas.2007117117
https://doi.org/10.1038/nclimate2392
https://doi.org/10.1371/journal.pntd.0010839


34. Wang S. pbs: Periodic B Splines; 2013. https://CRAN.R-project.org/package=pbs. Accessed January

29, 2022.

35. Nishiura H, Halstead SB. Natural history of dengue virus (DENV)—1 and DENV—4 infections: reanaly-

sis of classic studies. The Journal of Infectious Diseases. 2007; 195(7):1007–1013. https://doi.org/10.

1086/511825 PMID: 17330791

36. Castro LA, Fox SJ, Chen X, Liu K, Bellan SE, Dimitrov NB, et al. Assessing real-time Zika risk in the

United States. BMC Infectious Diseases. 2017; 17(1):284. https://doi.org/10.1186/s12879-017-2394-9

PMID: 28468671

37. Trading Economics. Brazil—Life Expectancy At Birth, Total (years); 2018. https://tradingeconomics.

com/brazil/life-expectancy-at-birth-total-years-wb-data.html. Accessed January 1, 2022.

38. Chadee D, Huntley S, Focks D, Chen A. Aedes aegypti in Jamaica, West Indies: container productivity

profiles to inform control strategies. Tropical Medicine & International Health. 2009; 14(2):220–227.

https://doi.org/10.1111/j.1365-3156.2008.02216.x PMID: 19236668

39. Kucharski AJ, Funk S, Eggo RM, Mallet HP, Edmunds WJ, Nilles EJ. Transmission dynamics of Zika

virus in island populations: a modelling analysis of the 2013–14 French Polynesia outbreak. PLOS

Neglected Tropical Diseases. 2016; 10(5):e0004726. https://doi.org/10.1371/journal.pntd.0004726

PMID: 27186984

40. Diekmann O, Heesterbeek JAPP, Metz JAJJ. On the definition and the computation of the basic repro-

duction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathemati-

cal Biology. 1990; 28(4):365–382. https://doi.org/10.1007/BF00178324 PMID: 2117040

41. van den Driessche P. Reproduction numbers of infectious disease models. Infectious Disease Model-

ling. 2017; 2(3):288–303. https://doi.org/10.1016/j.idm.2017.06.002 PMID: 29928743

42. Diekmann O, Heesterbeek JAP, Roberts MG. The construction of next-generation matrices for com-

partmental epidemic models. Journal of the Royal Society, Interface. 2010; 7(47):873–885. https://doi.

org/10.1098/rsif.2009.0386 PMID: 19892718

43. Van Den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Mathematical Biosciences. 2002; 180:29–48. https://

doi.org/10.1016/S0025-5564(02)00108-6 PMID: 12387915

44. Macdonald G. The analysis of equilibrium in malaria. Tropical Disease Bulletin. 1952; 49(9):813–829.

PMID: 12995455

45. Villela D, Bastos L, de Carvalho LM, Cruz OG, Gomes MF, Durovni B, et al. Zika in Rio de Janeiro:

Assessment of basic reproduction number and comparison with dengue outbreaks. Epidemiology &

Infection. 2017; 145(8):1649–1657. https://doi.org/10.1017/S0950268817000358
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