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Author summaryAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
The use of biomarkers to measure immune responses in serum is crucial for understand-

ing population-level exposure and susceptibility to human pathogens. Advances in sample

collection, multiplex testing, and computational modeling are transforming serosurveil-

lance into a powerful tool for public health program design and response to infectious

threats. In July 2018, 70 scientists from 16 countries met to perform a landscape analysis

of approaches that support an integrated serosurveillance platform, including the consid-

eration of issues for successful implementation. Here, we summarize the group’s insights

and proposed roadmap for implementation, including objectives, technical requirements,

ethical issues, logistical considerations, and monitoring and evaluation.

Introduction

Infectious diseases remain a major cause of morbidity and mortality worldwide. In 2019, 3.68

million deaths were attributable to tuberculosis and other respiratory infections, 1.75 million
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to enteric diseases, and 747,000 to malaria and neglected tropical diseases (NTDs) [1]. The

majority of this burden falls on low- and middle-income countries (LMICs) [1]. The global

spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has further

shown how all countries are deeply vulnerable to emerging and reemerging infectious threats.

Routine surveillance is a critical component of mitigating spread of these pathogens and

depends largely on clinical and microbiological confirmation of infected individuals that seek

testing or care. While these tools are valuable for identifying symptomatic cases, they say little

about asymptomatic or nonmedically attended infections or the population-level immune

landscape. Serological surveys using biomarkers that measure immune responses in serum

(i.e., serosurveillance), combined with advances in computational modelling, provide an

opportunity to bridge this gap [2,3].

The detection of immune responses in serum has been used for many years, but technologi-

cal advances are transforming serosurveillance into a powerful tool for epidemiology, mathe-

matical modeling, and public health program design. Sero-epidemiology has guided

vaccination strategies for measles and rubella [4], informed vector-control strategies to reduce

transmission of malaria [5], and guided tetanus elimination programs [6]. Immunological bio-

markers have been used to quantify community exposure to a broad range of pathogens, from

arboviruses such as dengue and chikungunya [7,8] to diarrheal diseases such as cholera [9].

Antibodies against vector salivary proteins may also be useful for estimating human exposure

to vector bites [10,11] and comparing the efficacy of different vector control strategies [12–14].

Despite the utility of serosurveillance, the costs and logistical challenges involved are pro-

hibitive for comprehensive implementation, particularly in low-resource settings. Advances in

multiplex technology for measuring the seroprevalence of multiple pathogens simultaneously

could help overcome these barriers [15] as the cost of adding antigens to a multiplex assay is

small compared to the cost of collecting specimen [15]. While multiplex assays have been

developed and used in serosurveillance for a broad range of pathogens (Table 1), these technol-

ogies are still relatively new compared to ELISA and functional antibody assays. Reference sera

for a limited number of pathogens are available through the National Institute for Biological

Standards and Control (https://www.nibsc.org/), but there is additional need for standardized

panels of multiplex beads for different pathogens, populations, and use-cases.

To harness the full potential of multiplex technologies and create opportunities to shift

from vertical programs to program delivery that is coordinated across health risks [16], sero-

logical sample collection and analysis must be integrated into surveillance systems as an addi-

tional routinely collected source of data used to inform public health decision making. To help

overcome the many challenges inherent in establishing new public health systems, a “platform”

or global network of public health scientists and practitioners could be created to support the

development of and knowledge sharing between locally led integrated serosurveillance

programs.

Given the momentum built by these technological advances, a group of approximately 70

scientists gathered in Annecy, France in July 2018 for an Expert Meeting on sero-epidemiology

organized by the Mérieux Foundation USA. This group, the Collaboration on Integrated Bio-

markers Surveillance (CIBS), included scientists from Australia, Belgium, Cameroon, China,

Ethiopia, France, Mozambique, the Netherlands, Norway, Senegal, Spain, Sweden, Switzer-

land, United Kingdom, United States, and Zambia (see S1 Acknowledgments). CIBS con-

ducted a landscape analysis of existing technologies and approaches that support developing

an integrated serosurveillance platform. Based on the results, CIBS established the objectives,

technical requirements, ethical issues, logistical considerations, and funding that would be

needed for such a platform. Here, we summarize CIBS’s insights and their proposed roadmap

for implementation. Many of the areas for development overlap with recommendations
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Table 1. Published studies for different use-cases of sero-epidemiology by pathogen and source of infection. Pathogens that could be considered for an integrated

platform are listed and grouped by primary source of infections. Ways in which sero-epidemiology has previously been used in surveillance of each pathogen are indicated

and accompanied by published examples, including both reviews and primary research articles. The numbers in the table indicate references and the gaps illustrate

research or surveillance use-cases where serology has not been applied.

Primary source

of infection

Pathogen for

consideration in an

integrated platform

Incidence rate

estimates from

cross-sectional

data

Cumulative infection

rate estimates

(lasting/saturating

Abs)

Vaccine vs. natural

infection

potentially

discernible

Cross-sectional

correlates of

protection

Used for

confirming

elimination

Multi-pathogen

surveillance via

multiplex bead

assays

Blood and/or

other bodily

fluids

Chlamydia trachomatis [23] [24] [15,17,25,26]

Ebola virus [15]

Hepatitis B virus [2] [27]

Hepatitis C virus

HIV [28–32] [15]

Neisseria meningitidis
Food, water,

and/or soil

Campylobacter jejuni [33,34] [35,36] [35]

Clostridium tetani [37] [2] [38] [19] [6,15,17]

Cryptosporidium
parvum

[35] [15,17,35]

Enterotoxigenic

Escherichia coli
[35] [35]

Giardia intestinalis [35] [15,17,35]

Hepatitis A virus [39] [27]

Hepatitis E virus [40] [41]

Lassa virus [15]

Norovirus [35] [35]

Poliovirus [42]

Salmonella enterica
serotype enteriditis

[43,44] [35] [15,35]

Salmonella enterica
serotype typhimurium

[45] [15]

Schistosoma
haematobium

[46]

Schistosoma mansoni [47] [48] [15,20,46]

Shigella
Strongyloides stercoralis [49] [15,17,20]

Taenia solium [15,17]

Toxoplasma gondii [50] [51] [17]

Vibrio cholerae [9,52] [53,54] [35]

Respiratory

droplets and/or

aerosols

Bordetella pertussis [55] [27,56] [15]

Corynebacterium
diphtheriae

[57] [57] [15,17]

Haemophilus influenzae
B

[27,38]

Measles [2] [2] [15,17]

Mumps [58] [58] [15,17]

Respiratory syncytial

virus

Rhinoviruses

Rubella [2] [2] [15,17]

SARS-CoV-2 [59] [60,61]

(Continued)
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released in 2020 by the Pan American Health Organization (PAHO) for integrative serological

surveillance in the Americas based on case studies in Mexico and Paraguay [17], as well as a

2021 review on elimination surveillance for NTDs [18].

Objectives of an integrated serosurveillance platform

The objectives of an integrated serosurveillance platform are 2-fold (Box 1). First, to identify

use-cases for serosurveillance (e.g., identifying recent exposure versus immunity; see Box 2 for

examples) and support the validation of serological biomarkers markers for each. Second, to

support the development of integrated serosurveillance systems, using these biomarkers, to

provide actionable health outcome measures for interventions.

To effectively meet these objectives, the platform should include national, regional, and

international components. Country ownership based on locally accepted practices and public

health priorities should be the foundation of the design and implementation of the serosur-

veys, while biomarkers for specific pathogens and use-cases would need to be validated at the

regional or international levels. Based on experiences from countries in implementing the ini-

tial integrated serosurveillance systems (for example, pilot projects in Cambodia [19], Kenya

[20], Nigeria [21], and Vietnam [22]), generic models could be created that countries could

adapt to their national priorities and needs. This could include standard guidelines, operating

procedures, training modules, as well as a network of technicians in LMICs that could fix and

calibrate multiplex machines when needed, and would create a global avenue for interplatform

collaboration and exchange of experiences and practices (Box 1).

Ultimately, the platform would serve as a public health resource for sero-epidemiology that

informs vaccine campaigns, prophylactic treatments, and other infection control strategies

focused on improving the health of the most vulnerable populations. By providing information

on a regular basis, it could also enable monitoring the impact of these programs.

Pathogens

Depending on use-cases, the platform could test biomarkers that measure seroprevalence or

recent exposure for a broad range of blood-borne, enteric, respiratory, and vector-borne infec-

tions (Table 1). For some pathogens, serological biomarkers may additionally be useful for

Table 1. (Continued)

Primary source

of infection

Pathogen for

consideration in an

integrated platform

Incidence rate

estimates from

cross-sectional

data

Cumulative infection

rate estimates

(lasting/saturating

Abs)

Vaccine vs. natural

infection

potentially

discernible

Cross-sectional

correlates of

protection

Used for

confirming

elimination

Multi-pathogen

surveillance via

multiplex bead

assays

Arthropod

vectors

Chikungunya virus [62] [7,8] [63] [15,64]

Crimean-Congo

hemorrhagic fever virus

[15]

Dengue virus [65,66] [67] [15]

Mayaro virus [68] [67] [68]

Onchocerca volvulus [48] [15]

Plasmodium falciparum
and Plasmodium vivax

[5,69,70] [15,17,20]

Vector saliva antigens

Wuchereria bancrofti
and Brugia malayi

[48] [15,17,20]

Yellow fever virus

Zika virus [64,67]

https://doi.org/10.1371/journal.pntd.0010657.t001
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estimating incidence rates, cumulative infection rates, and correlates of protection, among

other applications (Table 1 and Box 2). The performance characteristics (sensitivity and speci-

ficity) of relatively few serological markers for serosurveillance have been established to date,

as illustrated by the gaps in Table 1. Therefore, initial versions of the platform would include

validated and experimental markers. Priority pathogens and use-cases would be determined

by implementing countries, which may be influenced by a variety of factors specific to the

local context, such as the estimated burden based on hospital case counts, prevalence of key

risk factors, and/or whether there are interventions (vaccines, treatments, etc.) that could feasi-

bly be implemented if burden is found to be high in particular populations through serosur-

veillance. Multiplex bead assays would provide the flexibility to support this, as mixing and

matching pathogen-specific beads may be appropriate in many settings. However, having

some validated multipathogen panels of multiplex bead assays will also be important here,

especially when there are potentially homologous or cross-reactive antigens in the set of patho-

gens of interest.

Study population

The study population will also depend on specific pathogens and use-cases (e.g., estimating

force of infection, seroprevalence, or population susceptibility; see Box 2 and Table 1 for

Box 1. Objectives of an integrated platform

Specific objectives of an integrated platform

1) Define use-cases and identify serological biomarkers

a Define use-cases for different pathogens and objectives

b Identify potential biomarkers for each use-case, including published and experi-

mental biomarkers

c Define minimum characteristics of appropriate biomarker validation studies

d Maintain biorepositories of and/or access to international standards (reference

reagents) that can be used during biomarker development

2) Develop serosurveillance systems

a Provide support to countries in identifying funding sources and supplies

b Provide guidance for setting up immunological assays

c Provide feedback and protocols for designing a sampling frame, conducting com-

munity advocacy, and demographic and clinical data collection

d Provide feedback on organizing logistics and transportation

e Support development of analytical frameworks for integrating serological and epi-

demiologic data to translate test results into actionable information
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examples). This is an area where an integrated platform would be instrumental for providing

guidance and sharing expertise. For example, to estimate incidence rates for endemic patho-

gens that infect individuals from a young age, such as many NTDs and enteric pathogens, mea-

suring serological responses in children may be important to capture differences age-specific

seroprevalence that might plateau in older age-groups [15,35]. In contrast, teens and adults are

more relevant for serosurveillance of pathogens such as HIV, with efforts to sample high-risk

groups that may be less likely to be sampled in traditional study designs [15]. For integrated

surveillance of pathogens that require measurements in different age groups, initial popula-

tion-based surveys could be conducted across a wide age range, followed by more targeted,

adaptive surveys that focus on disease- or program-specific use-cases.

Timing of surveys would also depend on the biomarkers included and specific use-cases.

An annual survey would be sufficient for studying long-lasting antibody responses to patho-

gens such as measles or rubella, while biannual surveys would be required for antibodies with

Box 2. Examples of use-cases for integrated serosurveillance

Examples of use-cases for integrated serosurveillance

1) Detect recent infection

• Example: We want to understand how many children in our district have been

exposed to a panel of enteric infections in the past 12 months, and what the infection

detection and fatality ratios are based on reported cases and deaths.

• Approach: If we have validated serum biomarkers that are predictive of recent expo-

sure to the pathogens of interest, we can estimate these metrics using a cross-sec-

tional serosurvey of the known population-at-risk.

2) Assess cumulative exposure

• Example: We want to estimate transmissibility of a panel of pathogens, which are

associated with lasting or saturating antibody responses, in a population where vac-

cines for these pathogens have not been used.

• Approach: If we have validated serum biomarkers, we can use age-stratified cross-

sectional data to estimate the average age of infection, force of infection, R0, and/or

how much of the population is infected by a given age.

3) Estimate population susceptibility

• Example: We want to know whether a particular segment of the population is pro-

tected from infection with a panel of common viral infections due to maternal anti-

bodies, natural infection, and/or vaccination.

• Approach: If we have known serum biomarkers that are predictive of protection

from future infections, we can estimate the fraction susceptible using a cross-sec-

tional survey of the known population-at-risk.
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shorter life such as Vibrio cholerae and other enteric pathogens. For vaccine-preventable dis-

eases, immunization schedules or campaigns would also need to be taken into consideration.

Community and stakeholder engagement

Identifying all relevant community stakeholders and engaging with them is critical for the suc-

cessful implementation of any new program, which have been illustrated through examples

from the Ebola response in West Africa [71]. Effective community and stakeholder engage-

ment (CSE) requires dedicated funding, sponsor commitments, and moral support. It requires

engaging a broad range of individual stakeholders, including women, frontline healthcare

workers, and teachers, among many others, who may not be all represented on, for example,

community advisory boards. Engagement needs to emphasize listening to stakeholders, identi-

fying opportunities for deliberation, and developing relationships and conditions needed to

integrate the program into existing health infrastructure, where results warrant. Critically, it

requires making sure that the research has a direct and timely impact on public health pro-

grams in the surveyed community. Finally, any CSE strategy needs to be implemented in a

way that allows for meaningful evaluation of its effectiveness.

Ethical considerations

Collecting biological specimen and sociodemographic data for research purposes requires

careful ethical review and clearance through institutional review boards. Therefore, these

guidelines are already in place in existing survey systems (e.g., Demographic and Health Sur-

vey, Malaria and AIDS Indicator Surveys). Rules for ownership of data and specimen should

also be established, with efforts made to process specimen locally within the implementing

country when possible and to build this capacity when it is not. Intellectual property on

research conducted as part of the program must consider rights of the countries from which

the specimens originate and provide guarantees that any analytical and/or laboratory surveil-

lance tools derived from the research will be made available in the country.

Specimen collection and testing

The most appropriate specimen will depend on the scale of the survey and resources available.

While saliva is the most practical specimen for large epidemiological surveys, oral fluid assays

have historically had lower sensitivity than comparable blood-based assays. Although, a recent

study showed that saliva-based tests have similar performance to plasma-based tests for

SARS-CoV-2 [60,72], suggesting that utility of saliva-based tests may be pathogen-specific.

Overall, blood remains the most reliable specimen for biomarker detection. However, veni-

puncture is an invasive procedure that requires specific training, generates substantial biohaz-

ardous waste, and requires transporting blood tubes safely in below zero conditions.

Collecting capillary blood through dried blood spots (DBS) provide a more scalable alternative.

DBS show comparable antibody measurements to serum samples for falciparum malaria,

some bacterial and protozoal pathogens, and numerous viral pathogens, including vaccine-

preventable diseases [73].

DBS also provide flexibility in testing locations. DBS may be used on site in rapid lateral-

flow assays. DBS can be transported to remote sites for testing with more resource-intensive

methods such as multiplex immunoassays. They can be kept at cool or ambient temperatures

for several weeks before they are frozen for long-term storage [73], as long as high tempera-

tures are avoided. Serum Separator cards can be used to automatically separate serum from

DBS, further reducing the effort required to process these samples [74].
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While DBS allow several markers to be tested from a low volume of blood within a single

sample, there is no standard platform or procedure for running and vetting results from multi-

plex antibody assays using DBS. In addition, platforms such as Luminex that are used for run-

ning multiplex assays are often only available in national or regional labs and require regular

calibration and use of positive controls for consistency. Both individual and multiplex assays

will need to be compared and validated before use in an integrated platform, including com-

parisons between DBS and venous blood samples. The choice of the platform itself will depend

on the type of support available in-country. For example, Luminex’s MAGPIX system is a

robust system that can often be repaired without the need for trained technicians, who are

often not available in LMICs. Importantly, these protocols and methods should be shared

through the platform’s network, especially as new technologies (e.g., rapid or point-of-care

tests, microarrays, fieldable instruments, phage-display approaches) become available.

Logistics and resources

As described above, there will be various logistical challenges in implementing new serological

surveys. Central reference labs could help with adoption, dissemination, and local capacity

building. Public–private initiatives could also be leveraged. Within Africa, engaging the Africa

CDC and WHO-AFRO will be important to ensure shared vision across the continent. Impor-

tantly, care should be taken that these efforts do not divert budgets and skilled technicians

from the healthcare system.

One way to address logistical challenges is to integrate the platform within existing active

and passive surveillance systems [17,18]. Existing surveys that could be leveraged to accommo-

date multiplex testing include the Demographic and Health Survey, Malaria and AIDS Indica-

tor Surveys, and NTD transmission assessment surveys [15], though the latter are often

targeted to narrow geographic units and ages. Another potential source is remnants of samples

from routine blood draws, which enabled rapid estimating of SARS-CoV-2 seroprevalence in

areas where these were available [75], further highlighting the utility of an integrated serosur-

veillance system. The most appropriate survey or surveillance tool will depend on timing of

the surveys within each country and, importantly, on continued sources of funding.

The CIBS and an International Coordinating Committee (ICC) could also provide guid-

ance and oversight through coordination with a National Survey Program (NSP) (Box 3). In

this framework, the NSP could be part of the Ministry of Health and intersect with national

statistical agencies, or representatives from them, where this support is needed. It would coor-

dinate all activities in country and liaise with survey staff and researchers. Survey staff would

include community relays or public health workers (participant recruitment, demographic

questionnaires, GPS, incentives distribution, logistics, and feedback), community health work-

ers (specimen collection, participants information, and feedback), and regional and central

laboratory personnel. Support from local health authorities would be critical for this type of

program, and funding would need to be secured at international and national levels [16], with

comprehensive roadmaps developed, including paths to sustainability.

In addition to logistical challenges described above, appropriate supply chains need to be

developed to ensure availability of data collection and transport devices, including their trans-

port into communities. National public health labs could take the lead in these efforts. Since

purchasing these tools may be difficult in many settings, existing resources should be evalu-

ated, strengthened, and used, where possible. When these tools are not available, alternative

solutions/organizations could be identified through the NSP. This is another area where an

integrated platform could provide critical support by creating opportunities for resource shar-

ing between existing programs.
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Monitoring and evaluation

Monitoring and evaluation are critical components of any new surveillance program to ensure

effective use of resources. We propose 2 key areas for evaluation. First, pilot studies to assess

the feasibility of a new platform, including proficiency testing with blinded test samples.

Among criteria considered should also be the degree of community knowledge regarding dis-

ease prevention and intervention. Second, analyses of whether results from integrated surveil-

lance studies led to a change in policy (e.g., whether a new program was started or changed,

whether it triggered an intervention, or changed a clinical diagnosis) and whether it helped

improve understanding of disease patterns. Long term, changes in disease patterns and reduc-

tions in disease burden should be evaluated (for example, as was done in Zambia to evaluate

the effect of targeted indoor residual spraying on malaria incidence [76]).

As sero-epidemiology is resource-intensive, an additional area for evaluation is cost-effec-

tiveness of preventing outbreaks. The potential savings of identifying immunity gaps and tai-

loring interventions should be modelled to evaluate whether investment in, for example,

additional vaccination, would be a better use of funds.

Advocacy

Local advocacy will be essential, with efforts made to effectively make use of advocacy

resources that already exist. Guidelines regarding communicating data that are considered

sensitive by local and national authorities need to be established. Potential stigmatization of

Box 3. Functions of an international coordinating committee

Functions of the International Coordinating Committee (ICC)

✓ Oversight of program;

✓ Mobilize scientific expertise;

✓ Prepare program documentation;

✓ Secure funding;

✓ Provide guidance for assay validation;

✓ Oversee quality control activities;

✓ Centralize and share data;

✓ Centralize and dispatch specimens to specialized and research labs;

✓ Coordinate data analysis;

✓ Establish general and country/community-specific guidelines;

✓ Provide feedback to national disease programs;

✓ Organize international communication and dissemination of results.
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communities that fail to efficiently implement interventions should be considered. For advo-

cacy efforts to be successful, they must actively engage Ministries of Health, national disease

programs, political authorities, community leaders, civil society, and religious authorities.

When disease burden reduction has been achieved, it may be difficult to justify asking

health authorities and communities to give blood or to spend additional limited resources.

Thus, the monitoring and evaluation approaches described above will be critical to evaluate

the continued utility of an integrated platform and advocate for funding as needed.

Evidence-based arguments supporting the efficiency and cost-effectiveness of integrated

surveys will also support advocacy internationally. Given the global interrelatedness of old and

new emerging infectious diseases, there is a critical need to have well-coordinated responses

[77]. In this capacity, WHO plays an essential role supporting national public health programs.

Partners such as the Mérieux Foundation, the Global Fund, Gavi, the Vaccine Alliance, and

the Bill and Melinda Gates Foundation should work with WHO with the primary aim to lever-

age and strengthen local and regional networks and partners to further strengthen public

health laboratory performance. Importantly, any support for these programs and networks

must prioritize knowledge production and use within the implementing countries [78].

Areas for innovation

Innovation is needed at several levels to successfully implement an integrated platform, as is

research funding to support these efforts. Technologically, new biomarkers, existing biomark-

ers (e.g., Table 1), and combinations of biomarkers need to be identified and validated. It will

also be important to evaluate the best specimen for broad application (e.g., DBS or saliva),

including new devices that reduce pain, increase acceptance by participants, and improve ease

of storage and transportation. These devices must address multiparameter testing from a single

specimen, safe storage in degraded conditions (temperature, dust, moisture), space in trans-

port packages, and cost.

Innovation is also needed to address logistical and resources issues. New technologies such

as drones may be useful to transport specimen and supplies to and from remote locations [79].

Existing transportation capacities such as commercial companies involved in persons or goods

transportation, pharmaceutical distribution, or other surveillance schemes should be

evaluated.

Innovation in study design and analysis is also critical for defining pathogen priorities and

sampling frames, as well as providing clear results and recommendations to disease programs.

As in any survey, it will be important to carefully consider epidemiological components (e.g.,

age, sex, family environment, geographical environment, sample size, and GPS). For an inte-

grated platform, study designs must also be harmonized and optimized across diverse disease

and surveillance priorities. Analysis pipelines that create informative results from a single

assay for various diseases need to be developed, such as disease burden maps that overlay high-

burden populations for multiple pathogens simultaneously. Digital health solutions could help

overcome some of these challenges. For example, tools like rapid diagnostic tests linked to

cloud servers [80] could be developed for sending test results to a national dashboard, provid-

ing real-time disease maps and trends to health authorities.

Conclusions

Serosurveillance systems that monitor many pathogens simultaneously and that are integrated

with established mechanisms of data collection and analysis—with support from a platform of

local, regional, and global collaborators—have the potential to dramatically improve our

understanding of disease burden and support more effective public health decision-making. In
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this paper, we have described gaps that must be filled for such a platform to be successful, from

rigorous validation of serological assays to community partnerships and development of novel

analytical frameworks. The current COVID-19 pandemic has enabled advancement in many

of these areas [81]. It has also highlighted the importance of integrating serological with tradi-

tional surveillance data across human and animal health programs for preventing and control-

ling disease emergence. Given this momentum and the importance of integrated surveillance

systems for responding to future infectious threats, the time is now to move forward with fill-

ing in the remaining gaps. Ultimately, this will enable better, more comprehensive data that

can be used for designing interventions to reduce the burden of endemic and emerging

diseases.
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