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Abstract

Populations within schistosomiasis control areas, especially those in Africa, are recom-

mended to receive regular mass drug administration (MDA) with praziquantel (PZQ) as the

main strategy for controlling the disease. The impact of PZQ treatment on schistosome

genetics remains poorly understood, and is limited by a lack of high-resolution genetic data

on the population structure of parasites within these control areas. We generated whole-

genome sequence data from 174 individual miracidia collected from both children and adults

from fishing communities on islands in Lake Victoria in Uganda that had received either

annual or quarterly MDA with PZQ over four years, including samples collected immediately

before and four weeks after treatment. Genome variation within and between samples was

characterised and we investigated genomic signatures of natural selection acting on these

populations that could be due to PZQ treatment. The parasite population on these islands

was more diverse than found in nearby villages on the lake shore. We saw little or no genetic

differentiation between villages, or between the groups of villages with different treatment

intensity, but slightly higher genetic diversity within the pre-treatment compared to post-

treatment parasite populations. We identified classes of genes significantly enriched within

regions of the genome with evidence of recent positive selection among post-treatment and

intensively treated parasite populations. The differential selection observed in post-
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treatment and pre-treatment parasite populations could be linked to any reduced suscepti-

bility of parasites to praziquantel treatment.

Author summary

Schistosomiasis is caused by parasitic helminths of the genus Schistosoma. Schistosoma
mansoni is the primary cause of intestinal schistosomiasis, a devastating and widespread

parasitic infection that causes morbidity, death and socio-economic impact on endemic

communities across the world and especially sub-Saharan Africa. Using whole-genome

sequencing, we were able to elucidate the parasite population within Lake Victoria island

fishing communities in Uganda which are among the major hotspots for schistosomiasis.

We further assessed genetic markers that might be linked to recent observations concern-

ing reduced susceptibility to praziquantel, the major drug used in the treatment of this dis-

ease. Whole-genome data on the population genetics of S. mansoni in an African setting

will provide a strong basis for future functional genomics or transcriptomic studies that

will be key to identifying drug targets, improving existing drugs or developing new thera-

peutic interventions.

Introduction

Schistosomiasis–also known as Bilharzia after its discoverer Theodor Bilharz [1]–is a neglected

tropical disease that affects about 250 million people worldwide, most of whom live in low and

middle-income countries (LMICs) [2]. To treat schistosomiasis, praziquantel (PZQ) is used

for preventative chemotherapy by mass drug administration (MDA) [3] and has been used

globally to treat schistosome infections since 1979 [4]. In Uganda, the ongoing use of PZQ in

MDA started between 2002 and 2003 [3, 5]. The objective of MDA in these settings has histori-

cally been to reduce the prevalence and intensity of infection and hence pathology; cure and

elimination are not expected in the absence of additional interventions such as improving san-

itation and snail control [6, 7]. In the World Health Organisation 2021–2030 the goal has been

set of reducing the proportion of people with high-intensity infections to< 1% and thereby to

eliminate schistosomiasis as a public health problem in all countries in sub-Saharan Africa by

2030 [8]. The expectation is that this will be achieved primarily by increasing the frequency

and coverage of treatment with PZQ–the sole drug commonly used for schistosomiasis MDA–

which could inadvertently increase drug selection pressure on parasite populations.

There is a growing body of evidence that MDA programmes may affect how parasite popu-

lations respond to treatment, for example, through reduced efficacy of PZQ in lowering egg

output in communities that have received multiple rounds of PZQ MDA [9, 10], but there is

little evidence that this is a widespread phenomenon [11, 12]. Reduced genetic diversity of par-

asite populations has also been associated with reduced susceptibility of the parasites to PZQ

[13], with reports from Senegal having earlier linked such outcomes to potential drug resis-

tance [14]. The development of drug resistance in natural populations would be a major health

concern. Furthermore, in vitro studies have shown that resistance to PZQ can be selected for

in S. mansoni [13, 15–17]. There is growing interest in understanding the impact of continued

PZQ monotherapy on the parasite genome in order to detect the potential development of

resistance to this drug as early as possible [18, 19], and understand the mechanism(s) of resis-

tance. One clue to resistance can come through understanding the mode of action of a drug.
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The activity of PZQ has not been clearly understood, but recent findings suggest that the drug

activates a schistosome Ca2+-permeable transient receptor potential (TRP) channel (Sm.

TRPMPZQ) [20], hence making it the primary target for PZQ action on schistosomes.

Recently, a genetic cross involving a schistosome line experimentally selected for PZQ resis-

tance identified this TRP channel as likely responsible [21], but it is not yet clear that this locus

is involved in variation in PZQ efficacy in the field. Other candidate genes have been proposed,

for example the S. mansoni P-glycoprotein (smdr2), which shows increased protein expression

in male worms following exposure to sub-lethal doses of PZQ [16]. Susceptibility of the para-

sites to PZQ might involve multiple interactions between the drug, the parasite, and the

respective host.

Collecting high-resolution genetic data from parasite populations under drug selection

pressure may lead to new insights into the mode of action of PZQ or the mechanism of poten-

tial resistance to the drug. Furthermore, population genetic data from parasite populations will

also give insights into the population biology of the parasite. This is vital for understanding

schistosomiasis epidemiology, transmission, disease severity and why certain communities

might respond better to treatment than others, especially within regions where drug selection

pressure is being applied [22]. While lower-resolution markers have been extensively used

(e.g. [23, 24]), much of our detailed understanding of schistosome population genetics has

come from studies using microsatellite markers to describe the genetic structure of popula-

tions of S. mansoni [25–27] and other schistosome species [28, 29]. This work has revealed

genetic differentiation between parasite populations that are geographically separated (e.g [30–

33]), but panmictic populations and very high within-host diversity within disease foci (e.g.

[34, 35]). The population genetics of African schistosomes has recently been reviewed [36].

Microsatellite markers have also been employed to investigate both basic questions about para-

site biology (e.g. [37]) as well as more applied, operational questions about schistosome control

[22]. In particular, a few studies have shown changes in genetic diversity of schistosomes with

praziquantel MDA [4, 38, 39], but other studies have failed to find this effect [40] particularly

with longer-term follow-up [41] suggesting any genetic response to treatment may be only

temporary [42].

With their high levels of polymorphism, microsatellite loci are powerful molecular markers,

but inevitably represent only a small proportion of the parasite genome. There is an increasing

amount of genome-scale data available for schistosome populations. A number of studies have

used exome capture [43] to describe introgression between Schistosoma species [44] and to

study the historical demography of schistosomiasis in the Americas [45]. Restriction site-asso-

ciated sequencing (ddRAD-seq) has been used to demonstrate strong genetic structure in

remaining endemic hot-spots of S. japonicum transmission [46, 47]. While providing high-res-

olution data in a cost-effective way, these reduced-representation sequencing approaches have

some drawbacks, for example in identifying small haplotype blocks from ancient introgression

[44]. Whole-genome data gives a more comprehensive picture of genetic variation, including

non-coding variation, and so has the potential to provide more insights into understanding

the population genetics of this species. While reference genome assemblies are available for a

number of schistosome species [48–54], large-scale genome-wide variation data is only avail-

able from one S. mansoni population [55], with a number of other populations and other spe-

cies most being represented by relatively few specimens [53, 56–58]. Efforts in elucidating the

parasite population genetic structure have proven very helpful in understanding drug resis-

tance or transmission mechanisms in other parasite species: most notably in the malaria para-

site Plasmodium falciparum [59, 60] for which very extensive genome data is available [61].

Within Uganda, the Lake Victoria Island Intervention Study on Worms and Allergy-related

diseases (LaVIISWA) was a cluster-randomised clinical trial [62] examining the impact of
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intensive (quarterly) versus standard (annual) PZQ treatment. While the study was primarily

designed to assess the impact of anthelmintic treatments on allergy-related outcomes, preva-

lence and intensity of S. mansoni was a secondary outcome with results suggesting a plateauing

of infection, after an initial decline in intensively treated villages [63]. To assess this outcome, a

pilot study in the fourth year of the LaVIISWA trial investigated cure rate and Egg Reduction

Rate (ERR) [10]. A lower cure rate and ERR was seen among people receiving quarterly (inten-

sive) treatment (n = 61; cure rate 50.8%, 95% confidence interval (CI): 37.7% to 63.9%; ERR

80.6%, 95% CI: 43.8% to 93.7%) than in those receiving a single annual standard dose (n = 49,

cure rate 65.3%, 95% CI: 50.4% to 78.3%; ERR 93.7%, 95% CI: 84.9% to 97.7%) [10]. The

WHO recommends an ERR of 90% for effective PZQ treatment [9, 64]. While the sample size

available precluded finding compelling statistical evidence, these results are suggestive of the

first signs of reduced efficacy of PZQ treatment in the more intensively treated population,

and that the plateau in reduction of infection during the intervention study could be due to

PZQ resistance. These islands thus represent a ‘hot spot’ in which high baseline prevalence

[62] of schistosomiasis has persisted despite multiple years of treatment [10, 65].

Here, we sought to establish genome-wide data on the population genetics of parasites pres-

ent in this study population, with the ultimate goal of assessing the effects of MDA on parasite

genome evolution. We take advantage of the opportunity to investigate these in the context of

a randomised intervention trial within a defined geographical area, allowing us to compare the

effects of geographical isolation and treatment intensity on genetic variation in this population.

By comparing samples taken immediately before and after a treatment round at the end of the

LaVIISWA study in the two treatment arms and for multiple villages (the level of randomisa-

tion in the study), we can investigate whether the genetic impact of a single treatment dose var-

ies with history of drug exposure. Building on the evidence that there may be differences in

treatment efficacy between treatment arms, we investigated whether the signatures of natural

selection across the genome differ with previous drug exposure. We also compare these data

with recently published genomic data from other Ugandan S. mansoni populations.

Methods

Ethics statement

This work was not expected to result in any harm to participants. Ethical approval was given

by the Uganda Virus Research Institute (reference number GC127), the Uganda National

Council for Science and Technology (reference number HS 1183) and the London School of

Hygiene & Tropical Medicine (reference number 6187). As previously detailed [62], written

informed consent was received from all adults and emancipated minors and from parents or

guardians for children; additional assent was obtained from children aged�8 years.

Sample selection and study site

Participants were selected from four villages each from the standard and intensive treatment

arms from among the 27 study villages of Lake Victoria Island Intervention Study on Worms

and Allergy-related diseases (LaVIISWA) trial [62, 63] at the end of its fourth year. The partici-

pants involved children and adults as previously described [62]. The LaVIISWA trail was regis-

tered as ISRCTN47196031 (https://trialsearch.who.int/?TrialID=ISRCTN47196031), and the

results of the trial have already been reported elsewhere [63, 66]. The villages in the standard

arm received PZQ once a year while those in the intensive arm received PZQ four times a year

during the LaVIISWA trial period. The standard villages sampled were Kakeeka, Kachanga,

Zingoola and Lugumba. The intensive villages were Busi, Kitosi, Kisu and Katooke (Fig 1).

The map in Fig 1 was prepared using the R packages tmap v.3.3 [67] and sf v 1.0 [68] using
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administrative boundaries from OCHA Eastern region from https://data.humdata.org/ and

public domain data on roads (v5.0.0), rivers (v5.0.0), lakes (v5.0.0) and urban areas (v4.0.0)

from https://www.naturalearthdata.com.

Sample selection and collection was carried out as previously described in the parasitologi-

cal survey [10]. The stool samples (collected from participants who tested positive for urine

CCA) were processed for two Kato Katz slides as previously described [10] and miracidia

hatching provided suitable material for DNA extraction. Participants were then treated, under

observation, with a single dose of PZQ at 40 mg/kg (estimated by height pole), in accordance

with the trial MDA procedures. Individuals whose pre-treatment sample tested positive for

schistosome eggs by Kato Katz were followed up after four weeks and both Kato Katz and

miracidia hatching were repeated. Miracidia hatching was carried out from each of these par-

ticipants and the resultant miracidia were stored on Whatman FTA cards until DNA was

extracted.

Miracidia hatching

Miracidia hatching was carried out following previously described protocols [31]. In brief, the

stool sample was homogenised through a metal sieve, then further washed and filtered using a

Pitchford funnel assembly [69] consisting of a 40 μm sieve placed inside a 200 μm outer sieve.

Stool samples were washed using deionised water (Rwenzori Bottling Company, Uganda). The

concentrated S. mansoni eggs were transferred to a Petri dish in clean water and exposed to

indirect sunlight to induce the hatching of miracidia. Hatching was performed in natural light

(environmental conditions) with intervals of exposure to sunlight and cover depending on

weather conditions. The time taken for miracidia to emerge varied between samples, so the

Petri dishes were intermittently checked for the presence of miracidia for a maximum of 48

hours. Miracidia were picked in 1.5–5μl of water and then transferred to a second dish of deio-

nised water to dilute bacterial contamination before being placed on Whatman indicating

FTA cards (Qiagen) and left to dry. The FTA cards were wrapped in aluminium foil to keep

Fig 1. Location of sample sites within Uganda. Villages with black dots received standard (annual) intervention, those with red dots received intensive

(quarterly) intervention. Outgroup samples were obtained from locations marked as inland and shoreline. Map data is from https://data.humdata.org/dataset/

cod-ab-uga.

https://doi.org/10.1371/journal.pntd.0010188.g001
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them away from continued direct light and placed in ziplock bags with silica gel in a cardboard

drawer.

Whatman FTA DNA Extraction

DNA was extracted using a modified CGP buffer protocol as previously described [70, 71].

The individual spots containing miracidia were punched from the FTA cards using a 2 mm

Harris micro-punch and placed in 96-well plates. Protease buffer was prepared using Tris-HCl

pH 8.0 (30 mM), Tween 20 (0.5%), IGEPAL CA-630 (0.5%), protease (1.25 μg/ml; Qiagen cat

#19155) and water. Digestion was done by adding 32 μl of the protease buffer to each of the

wells on the 96-well plate containing the punched spots from the FTA cards. The plate was vor-

texed to mix and spun down before incubation at 50˚C for 60 min, 75˚C for 30 min. Miracidia

lysates containing DNA were transferred to a new labelled plate and stored at 4˚C until used.

Library preparation and sequencing

DNA sequencing libraries were prepared using a protocol designed for library preparation of

Laser Capture Microdissected Biopsy (LCMB) samples using the Ultra II FS enzyme (New

England Biolabs) for DNA fragmentation as previously described [71]. The LCMB library

preparation method is optimised for uniform, low-input samples. A total of 12 cycles of PCR

were used to amplify libraries and to add a unique 8-base index sequence for sample multiplex-

ing. The LCMB library preparation protocol is optimised for uniform, low input samples. A

total of 174 samples from 96 individuals in 8 villages were sequenced on two NovaSeq lanes,

108 on one lane and 66 on another lane. These 174 samples were chosen as having more than

10% of reads mapping to S. mansoni based on preliminary low-coverage genome sequencing

of all 214 samples collected in the field.

Mapping and SNP calling

The reads were mapped to the S. mansoni reference genome v7 (GCA_000237925.3) [54]

using the BWA-MEM algorithm in Burrows-Wheel Aligner software (BWA)

(VN:0.7.15-r1140) to produce SAM files which were then converted to BAM format using

Samtools v1.14. Scaffolds labelled as haplotype variants in the assembly were removed before

read mapping to improve mapping accuracy, using the approach previously described [55];

see [55] also for a full list of removed scaffolds. PCR duplicate reads were identified using

Picard v1.92 [72] and flagged as duplicates in the BAM file.

SNP variants were called using the GATK Haplotype Caller (v4.1.4.1) to find sites that differ

from the S. mansoni reference genome followed by variant QC to remove low confidence

SNPs and regions of consistently poor calls. The SNPs were hard-filtered in GATK to remove

SNP calls with the following parameters: QD) < 2.0; MQ< 40; FS) > 60.0; SOR> 3.0;

MQRankSum < -12.5; ReadPosRankSum < -8.0. The variants were further filtered using

vcftools_0.1.15 [73] to remove sites with high missingness (—max-missing 0.95), low minor

allele frequency (—maf 0.01) and to retain only biallelic SNPs (—min-alleles 2 —max-alleles 2).

Identification of population structure

The three islands on which the population structure was assessed were Koome, Damba and

Lugumba in the Mukono district of Uganda. An outgroup made up of inland and shoreline

samples was also included, consisting of 27 samples collected in a previous study [9] and for

which whole-genome sequence data were recently published [55] from Tororo and Mayuge

districts in Eastern Uganda. Tororo and Mayuge are approximately 120 km apart. Mayuge
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district is a shoreline district located about 100 km from Mukono district. Both districts are

located in south eastern Uganda, with Tororo being the inland district (Fig 1).

Test for genetic differentiation

The fixation index (FST) statistic was calculated between each of the villages across the different

islands and treatment groups (standard, intensive, pre-treatment and post-treatment) to mea-

sure population differentiation due to genetic structure. The FST was calculated using vcftools

(version 0.1.15) [55] on the vcf file containing biallelic filtered SNPs. Mean FST was calculated

from genome-wide weighted FST values with 99% symmetric bootstrap confidence intervals

calculated using R version 3.5.1 (2018-07-02). We fitted a gravity model as

logðNmÞ ¼ logðgÞ þ a:logðPi:PjÞ � y:logðDijÞ þ ε;

where Nm is an estimated number of migrants per generation, calculated from the FST between

villages as:

Nm ¼ 0:25ðð1=FSTÞ � 1Þ

And Dij is the linear distance between the villages. In (Pi.Pj), Pi and Pj represent the popula-

tion sizes of the two villages compared. Models were fitted using R version 4.02, with the

MuMIn package v1.43 to assess model importance.

Nucleotide diversity

Nucleotide diversity (pi, π) was computed from high-confidence bi-allelic filtered SNPs using

vcftools 0.1.15 [73]. The genome-wide nucleotide diversity was calculated from a list of posi-

tions for each of the time points (pre- and post) and treatment groups (standard and intensive)

using the option in vcftools ‘—site-pi’ respectively. The average nucleotide diversity within

each of the groups was calculated individually and the symmetric 99% bootstrap confidence

intervals of the averages were estimated using R version 3.5.1. Statistical significance of differ-

ences between group means was assessed by whether the confidence interval for one mean was

disjoint from the mean of other groups. Effective population size (Ne) was estimated from

nucleotide diversity using the relationship π = 4.Ne.μ [74] with the mutation rate 8.1 × 10−9

[57].

Determination of rare allele sharing and kinship analysis

To identify the pairwise rare allele sharing we used a Perl script from Shortt et al. [47] available

at https://github.com/PollockLaboratory/Schisto. We filtered for minor allele frequency� 0.1

and sampled 500 SNP sites in 30 different generations. We then computed the mean value

from the 30 generations for each pair. Allele-sharing scores were visualised in R version 4.0.2

using igraph v1.2.6 [75]. Significance of differences in mean allele sharing between groups

were calculated against a non-parametric null distribution for each comparison generated by

randomly permuting group labels 1000 times and calculating differences in mean allele sharing

for each permutation. We also inferred relationships between miracidia samples using Sequoia

version 2.3.5 [76] in R 4.0.2, using the GetMaybeRel command to identify related pairs with

both the default genotyping error rate of 1x10-4 and a higher error rate of 0.05. Sequoia uses a

computationally intensive likelihood procedure that limits the number of SNP variants that

can be analysed, so we used a heavily thinned dataset of 3,829 variants such that all variants

had allele frequencies of at least 0.1, were called in 80% or more of the samples and were at

least 100,000 bp apart.
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Test for selection

To test for recent positive selection within the treatment arms and between pre-treatment

and post-treatment, the cross-population extended haplotype homozygosity (XP-EHH) test

[77] was performed. XP-EHH is designed to detect whether either an ancestral or derived

allele is undergoing selection within a given population. The XP-EHH test has the power to

detect weaker signals of selection as it compares two closely related populations giving a

directional score. The XP-EHH detects selective sweeps in which the selected allele has

approached fixation in one population but remained polymorphic in another population. A

VCF file containing only bi-allelic SNPs was subset into respective chromosomes. A geno-

mic linkage map for each of the chromosomes was computed for each individual chromo-

some using the adjusted map length in centimorgan (cM) for the respective chromosomes

[78]. The haplotypes from each of the chromosomes were then phased separately with their

respective genomic map using Beagle v5.0 [79]. The XP-EHH test was performed using

Selscan v1.2.0a [80] and the output XP-EHH scores were normalised for subsequent analy-

sis using the norm program distributed with v1.2.0a of Selscan. Functional enrichment

was assessed using g:Profiler version (e99_eg46_p14_f929183) [81] at a g:SCS threshold

of 0.05 against a background of all annotated genes in S. mansoni, revealing genes

showing significant purifying selection among the intensive and post-treatment parasite

populations.

Estimate of per-individual egg reduction rate (ERR) and association test

The posterior distribution for the ERR based on data from each individual for whom both pre-

and post-treatment egg count data were available was estimated using a generalised linear

mixed-effect model [82], incorporating nested random effects for treatment arm, village and

individual. Means of the marginal posterior distribution per individual were used as quantita-

tive phenotypes for an association study, in which a single miracidium was chosen at random

for each individual for which an ERR was calculatred (N = 44) testing all 6,932,161 SNP sites

that varied in this subset. The model used was a linear regression of each SNP genotype against

mean ERR, using 20 principal components as covariates to control for population structure,

calculated using the ’—linear’ and ’—pca’ flags in plink v1.9 [83]. Code for these analyses is

available at https://github.com/jacotton/LaVIISWA_genomes.

Results

Population stratification

After filtering, 6,967,554 high-confidence SNPs were retained (out of 18,716,072 unfiltered

SNPs) from 174 individual miracidia. Sample metadata and genetic variation data is available

to view and analyse in an interactive web application [84] at https://panoptes.schisto.watch/

index.html. Principal components analysis of these high confidence SNPs showed little genetic

structure within the island parasite populations on the first four principal components, which

together represent 49% of the genetic variation. In particular, we found no evidence of popula-

tion stratification between the standard (annual treatment) and intensive arms (quarterly

treatment) or between pre- and post-treatment samples from these fishing communities (S2

Fig). The shoreline samples (from Mayuge district) clustered more closely with the island

(Mukono district) parasite populations as compared to the inland samples (from Tororo dis-

trict) (Fig 2), but inland parasites were distinct from most island samples on principal compo-

nent 3. The large-scale geographical pattern reflects the known genetic differentiation between

inland and shoreline populations [55]. We also found that the island population is strikingly
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more diverse than either of the other populations (Fig 2). While this is partly due to the larger

number of samples included here, a larger sample of the shoreline and inland populations

studied elsewhere also did not appear as diverse as the island population [55]. A number of

miracidia appeared quite distinct from the main cluster of individuals on principal component

2. These divergent parasites were mostly (8 out of 9) from the islands and came from four dif-

ferent villages (Busi, Kakeeka, Zingoola, Katooke), with one from a shoreline village

(Bwondha; S4 Fig). Although participants were all resident in the villages throughout the

LaVIISWA trial for at least 3 years before this study, there is a great deal of migration to the

islands from other parts of the shoreline of Lake Victoria, including Kenya and Tanzania;

therefore, we suspect these miracidia represent parasites imported from other populations that

we have not sampled here.

Rare allele sharing and kinship analysis

To investigate direct relatedness between individual parasites, we adopted an approach based

on determining the level of sharing of rare alleles (defined by their population frequency being

less than or equal to 10%) between samples [47]. This approach has recently been used to

study S. japonicum populations in China with whole-genome data [58]. By definition, most

unrelated individuals share very few rare alleles; here we found slightly higher average propor-

tion of rare-allele sharing between pairs of miracidia isolated from the same individuals

(0.1028) than in other comparisons (from the same village 0.0874, between villages on the

same island 0.0862, between islands 0.0856). Differences between average allele sharing pro-

portions were significant for comparing infrapopulation and within village groups (observed

difference 0.0154, p-value from permutation test p<0.001) and within-village to within-island

Fig 2. Principal components analysis of genetic variation within study samples and comparator Ugandan populations. (A) Shows the first two principal

components and (B) the third and fourth principal components. Each point represents a single miracidium, coloured by the population from which they are

sampled, with ’Shoreline’ samples from Mayuge district and ’Inland’ from Tororo district.

https://doi.org/10.1371/journal.pntd.0010188.g002
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groups (observed difference 0.0012, p~0.002) but only marginally so for within-island and

between-island comparisons (observed difference 0.0006, p~0.011). These data suggest an

increase in relatedness within populations and possibly some geographical signature of

increased relatedness.

We found three miracidia collected from the same infected individual at the same time with

rare allele sharing of at least 0.3, and used these to calculate the average allele sharing for first-

degree relatives (full siblings or parent-offspring) of 0.403 (actual values 0.4, 0.4014 and 0.409).

This value is slightly lower than the theoretically expected level of identity-by-descent of 0.5,

but with only three observations it is not possible to exclude that this difference is due to

chance. Similarly, the average rare allele sharing for pairs of miracidia from different islands

was 0.086, which represents our best estimate for the level of sharing in unrelated individuals.

The small number of miracidia available for putative first-degree relatives means the observed

variance from our data is very small, and so our final classification is thus deterministic. We

classified miracidia pairs sharing more than 0.3105 of these rare alleles as first-degree relatives,

0.1981–0.3104 as second-degree relatives, 0.1419–0.1980 as third-degree relatives, 0.1138–

0.1418 as fourth-degree relatives and 0.0956–0.1138 as fifth-degree relative, while those with

less than 0.0956 sharing were classified as unrelated.

While 24% of pairs of samples from the same individual were classified as being related,

only 10% of other comparisons appeared related (Fig 3A and 3B; χ2 = 21.785, 1 df, p = 3.05 x

10−6), and a similar pattern held for close relatives (Fig 3A and 3B; first and second degree rela-

tives represented 4% of within-infrapopulation comparisons, but 0.05% of all comparisons; χ2

= 183.37, 1 df, p< 2.2 x 10−6). There was no significant enrichment in related pairs of mira-

cidia with either treatment intensity or for samples collected pre- and post-treatment. We

found five pairs of first-degree relatives in total (Fig 3C); but one pair were from different

islands (marked 1 on Fig 3C) and a second pair were from different individuals sampled on

consecutive days in Kakeeka village (marked 2 on Fig 3C). On the face of it, this would imply

that the same combination of clonal cercariae infected these people, which seems very

unlikely–particularly for the geographically separated cases. We cannot exclude the possibility

that either the high level of rare allele sharing is misleading in these cases, or errors in sample

identification. The remaining three pairs of first-degree relatives were pairs of miracidia sam-

pled from single individuals in Busi, Kitosi and Kisu villages on consecutive days. Interestingly,

a miracidium sampled from the same individual in Kisu was a second-degree relative of the

first-degree pair, but this was collected post-treatment 37 days later. This is one of only 8 pairs

of second-degree relatives. This suggested that either an adult worm survived treatment but

changed ’partners’ (to produce a half-sibling or avuncular relationship) during this period, or

two clonal worms with genetically distinct partners were present in this host at the two time-

points and produced these miracidia.

We tested the accuracy of these inferred relationship using Sequoia, an independent likeli-

hood-based method [76] that will identify first and second-degree relatedness, using a thinned

subset of 3829 variants. With the standard genotyping error rate (1x10-4) this approach identi-

fied only a small number (3) related miracidia, but with a more liberal error rate of 5% this

approach identifies 30 pairs of related miracidia, and shows very good agreement with the

inferred relatedness using the allele-sharing approach above. Sequoia identified all 5 first-

degree relationships as full sibs, and 6 out of 8 second-degree relationships identified by allele

sharing were also inferred to be second-degree relatives by Sequoia. A relatively small fraction

of third-degree (15 our of 101) and fourth-degree (4 out of 427) relationship assignments from

allele sharing were also assigned as second-degree relationships by Sequoia.

PLOS NEGLECTED TROPICAL DISEASES Genome-wide analysis of Schistosoma mansoni in a Ugandan hot-spot

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010188 August 18, 2022 10 / 26

https://doi.org/10.1371/journal.pntd.0010188


Analysis of genetic differentiation between villages

To further investigate genetic structure within the island population, we calculated FST (the

proportion of genetic variation explained by population structure) for each pair of villages. As

we expected, FST between villages was very low (maximum 0.0067), indicating little or no geo-

graphic structure to our data. We observed higher genetic differentiation between villages on

different islands compared to those within the same island, but the small number of pairwise

comparisons (N = 8 villages, 28 pairwise comparisons) meant that we did not have sufficient

statistical power to detect any difference (p = 0.082, 1-way ANOVA of between/within village

vs FST). The villages were between 1 and 13 km apart, but there was no significant relationship

between the distance between villages and FST (Fig 4). To explore the geographical structure in

these data more fully, we also fitted a gravity model attempting to explain FST between each

pair of villages by the distance between villages, the population of each village and a factor cap-

turing the effect of being on the same island. In this model, none of the explanatory variables

had a significant influence on FST, but the location of villages on the same island vs different

islands was the most important variable with a likelihood weight in the best-fitting models of

0.48, while 0.31 for linear distance between villages and 0.23 for the product of village

populations.

Fig 3. Patterns of relatedness inferred from pairwise rare allele sharing. (A) Number and (B) proportion of pairs of miracidia showing each degree of

relatedness for miracidia sampled from the same individuals, villages or islands and for those on different islands. (C) Network representation of 1st, 2nd and

3rd degree relatedness. Vertices represent individual miracidia sampled, coloured by village and with a circle for samples taken pre-treatment and square for

post-treatment samples. Edges join vertices inferred to share 1st, 2nd or 3rd degree relatedness, as indicated by both the width and colour of each edge.

Numerical labels indicate two 1st degree relationships discussed in the text.

https://doi.org/10.1371/journal.pntd.0010188.g003
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Within-population genetic diversity

When comparing all pre- and post-treatment samples, we observed a very small but significant

difference (p< 0.01) in genetic diversity between samples taken before and after treatment,

with the 99% confidence interval for the mean nucleotide diversity in pre-treatment samples

not overlapping with the mean post-treatment nucleotide diversity. This is consistent with a

Fig 4. Pairwise FST estimates do not vary with linear distances between villages. Weir and Cockerham FST estimates

used and distance measured in kilometres. Points show results of pairwise comparison between samples from different

villages found on different islands or from different villages with Damba or Koome islands.

https://doi.org/10.1371/journal.pntd.0010188.g004

Table 1. Genome-wide average nucleotide diversity (pi).

Group Average pi 99% confidence interval

Pre-treatment 3.25x10-3 3.22x10-3 3.29x10-3

Post-treatment 3.20x10-3 3.16x10-3 3.23x10-3

Pre-treatment standard 3.27x10-3 3.23x10-3 3.32x10-3

Pre-treatment intensive 3.23x10-3 3.20x10-3 3.26x10-3

Post-treatment standard 3.24x10-3 3.21x10-3 3.27x10-3

Post-treatment intensive 3.16x10-3 3.12x10-3 3.19x10-3

https://doi.org/10.1371/journal.pntd.0010188.t001

PLOS NEGLECTED TROPICAL DISEASES Genome-wide analysis of Schistosoma mansoni in a Ugandan hot-spot

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010188 August 18, 2022 12 / 26

https://doi.org/10.1371/journal.pntd.0010188.g004
https://doi.org/10.1371/journal.pntd.0010188.t001
https://doi.org/10.1371/journal.pntd.0010188


small effect of a single PZQ treatment round on the parasite population (Table 1). There was

also lower diversity in parasites collected from villages in the intensive arm of the study than in

the standard arm (Table 1), possibly reflecting a longer-term effect of more frequent PZQ

treatment in these locations, despite the high levels of gene flow apparent between these loca-

tions implied by the very small levels of genetic differentiation we report. While this trend was

consistent in both pre- and post-treatment samples, the difference between trial arms was

most pronounced in post-treatment populations (Table 1). These diversity values are very sim-

ilar to those observed in a recent study of the parasite populations on the lake shore and inland

sites [55]. Using the mutation rate estimated previously [57], this implies an effective popula-

tion size of around 105 individuals from this sample collection, just outside the upper confi-

dence limit of the estimate for the East Africa population in the previous study (3.67–9.35 x

104) [57], and much higher than estimates from individual schools on the Lake Victoria shore-

line (3.30–3.69 x 104) [55], highlighting the diversity of S. mansoni parasites present on the

islands.

Genetic differentiation with treatment between standard and intensive

arms

Genome-wide average genetic differentiation was slightly higher (mean FST 3.9x10-4; bootstrap

99% CI: 2.5x10-4–5.3x10-4) between standard and intensive treatment populations post-treat-

ment than before treatment (mean FST = 3.4x10-4; 99% CI = 1.8x10-4–5.0x10-4), but these val-

ues did not differ significantly. We also find very low genetic differentiation between standard

and intensive trial arms (mean FST 5.6x10-4; 99% CI = 5.2x10-4–6.0x10-4). There was also varia-

tion in these FST values across the genome. While much of this likely reflects sampling varia-

tion (Fig 5A), particularly striking was a region identified on chromosome 5 (Fig 5B) with a

distinct peak of divergence among post-treatment parasite populations. This window spanned

1.21 Mb of genomic sequence (from SM_V7_5: 7.78–8.99 Mb) and contained 25 annotated

protein-coding genes (S2 Table).

Analysis of signatures of selection

We used the XP-EHH test to identify genomic regions under differing selection pressures in

separate comparisons between standard and intensive treatment arms (Fig 6A) and between

pre- and post-treatment samples (Fig 6B). Taking extreme XP-EHH scores of< -2 or> 2 as a

cutoff, we identified 510 windows as outliers including 12.75 Mb or 3.1% of the genome in

total and representing 123 contiguous regions. None of the windows from either comparison

overlap the peak of differentiation between standard and intensive treatment populations on

chromosome 5. We note that the Z chromosome was particularly enriched for windows with

extreme XP-EHH scores, containing almost half of those found genome-wide (5.325 Mb).

This could be a technical artefact caused by difficulty in mapping to a highly repetitive chro-

mosome [54], or due to the smaller average population size or a stronger effect of selection on

recessive alleles when hemizygous. There are also a number of reasons to expect sex-linked

genes to frequently be under selection [85]. An increased variance in XP-EHH scores is appar-

ent specifically in the Z-specific region (Fig 6) of the assembly scaffold representing the Z chro-

mosome [54]. This region is not more repetitive than the autosomes or the pseudo-autosomal

region shared by Z and W (see Table S12 of [54]), but is at lower copy number in the popula-

tion as it is present in a single copy in female worms, so we suspect this enrichment of extreme

XP-EHH scores represents a population genetic effect rather than a technical artefact. Some

areas of the Z-specific region (6 contiguous windows, total length 300kb) show extreme scores

in both comparisons between treatment arms and pre- and post-treatment samples.
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There were 107 genes overlapping the outlier windows in the post-treatment samples,

which were enriched for genes associated with seventeen GO terms for molecular function

and biological processes (S3 Table; https://biit.cs.ut.ee/gplink/l/wWE3Rp-ASq). Only 53 of

these genes were on autosomes (leaving 54 on the Z and/or W chromosomes), and no GO

terms were enriched when considering just the autosomal gene subset. No statistically signifi-

cant enrichment for any functional category was observed among the genes undergoing stron-

ger selection in pre-treatment individuals. Functional profiling showed that the 132 genes (78

autosomal) under stronger selection in the intensive arm were significantly enriched for asso-

ciation with 10 GO terms (S3 Table; https://biit.cs.ut.ee/gplink/l/1VaAMWpxQK), which

remained enriched in the autosomal subset. 88 genes were found in 46 autosomal windows

with extreme XP-EHH values suggestive of stronger selection in the standard treatment arm

include a pair of adjacent closely related genes likely to be a recent tandem duplication and

possessing nucleoside deaminase activity on chromosome 4; these genes represent the only sig-

nificantly enriched GO terms in this comparison (S3 Table; https://biit.cs.ut.ee/gplink/l/

4Fz7ZA3hTC).

Individual egg reduction rate phenotypes

In an attempt to identify a phenotype for drug efficacy, we estimated the egg reduction rate

(ERR) for 88 individuals for which genomic data was available and that had Kato-Katz egg

counts taken both before and after treatment using a Bayesian linear mixed-effect model [82]

that has previously been used to assess praziquantel efficacy [9, 86]. Previous analysis revealed

a lower but not significant ERR in the intensive arm than the standard arm [10]. Similarly, we

observe lower marginal ERR in samples collected in intensive than standard treatment villages,

but with largely overlapping posterior distributions (Fig 7B), and while villages vary in ERR

Fig 5. Genome-wide genetic differentiation between standard and intensive populations. FST calculated using

pre-treatment (A) and post-treatment (B) samples. X marks the region of high post-treatment genetic differentiation

discussed in the text. Each point represents the mean FST between genomic windows of 10 kb for all the called SNPs,

with different coloured points representing SNPs on each chromosome.

https://doi.org/10.1371/journal.pntd.0010188.g005
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(Fig 7C), there were similar numbers of high- and low-clearance villages in the two arms.

These differences were largely driven by a small number of individuals in some villages with

very low (even negative—implying a higher egg count after treatment than before) ERR values

(Fig 7A). Unlike in a previous study [9], no ERRs were significantly below the 90% threshold,

Fig 6. XP-EHH coloured by chromosome among treatment groups. A. Comparison between standard and intensive

treatment groups. B. Comparison between pre-treatment and post-treatment groups. Positive values in panel A

represent windows under stronger selective pressure in annual vs quarterly treatment arms. In panel B, positive values

represent windows under stronger selection in pre-treatment than post-treatment samples.

https://doi.org/10.1371/journal.pntd.0010188.g006

PLOS NEGLECTED TROPICAL DISEASES Genome-wide analysis of Schistosoma mansoni in a Ugandan hot-spot

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010188 August 18, 2022 15 / 26

https://doi.org/10.1371/journal.pntd.0010188.g006
https://doi.org/10.1371/journal.pntd.0010188


probably because only duplicate counts were available before and after treatment here, so there

was significantly less information to estimate ERR on a per-individual basis.

Despite the small sample size meaning our study is likely to be under-powered to detect any

but the most highly penetrant high-frequency alleles, we attempted to identify genetic variants

associated with differences in ERR, testing the 6.95 million high-quality SNPs found on the 7

autosomes or on the shared ZW scaffold. The smallest p-value for any SNP was 1.393x10-9,

which after adjustment for multiple testing represents an adjusted p-value of 0.01791 (S3A

Fig). However, there was some evidence that p-values are systematically biased in this analysis

(S3B Fig). Correcting for population structure based on PCA coordinates removed the signifi-

cance of hits (lowest p-value = 4.3x10-8; adjusted p-value = 0.274). The most significant hit

(SM_V7_7:1552004) is in an intron of Phosphatidylinositol 4-kinase (Smp_130340) and has

no obvious link to praziquantel mode-of-action. We thus conclude that there is no strong evi-

dence linking any individual genetic variant in these data to variation in estimated ERR.

Discussion

Schistosomiasis is second only to malaria in socio-economic impact among parasitic causes of

morbidity and mortality [87–89]. MDA is the main method for schistosomiasis control, and

there is currently an effort to expand the coverage of community-wide drug treatment to

improve morbidity control [90] and address the persistence of schistosomiasis in some areas

despite many years of PZQ distribution [91]. Understanding whether intensive treatment for

individuals living in high transmission communities has an impact on parasite populations,

potentially leading to drug resistance is of high importance for public health among schistoso-

miasis endemic communities in Africa. Determining the genetic basis of any drug resistance

Fig 7. Egg reduction rate (ERR) estimates. (A) Posterior distributions of ERR for each individual for which pre- and post- egg count data were available. Lines

indicate the 95% credible intervals (highest posterior density intervals) for each estimate, dots are the mean of the posterior distribution. Individuals are shown

on an individual panel for each village, with panel headers coloured by treatment arm. Posterior distribution of average ERRs stratified by (B) treatment arm

and (C) school were constructed by marginalizing over the fixed- and random-effects coefficients of the generalised linear mixed model.

https://doi.org/10.1371/journal.pntd.0010188.g007
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that does emerge is also crucial for tracking the spread of resistance through schistosome pop-

ulations and for future drug or vaccine development designed to circumvent resistance as has

been demonstrated for oxamniquine resistance [92].

Here, we have taken advantage of a large-scale trial in which the entire communities of 26

fishing villages were regularly treated with PZQ. A number of features of the study made this

an ideal place to detect an effect of PZQ treatment on parasite populations. Villages were

assigned randomly to treatment arms, so treatment frequency was independent of morbidity,

parasite prevalence or intensity. Treatment was given under direct observation, avoiding issues

with drug compliance reported in other studies [5]. The four week follow-up interval post-

treatment would minimise the possibility of diagnosing newly acquired infection after treat-

ment based on the development time of S. mansoni [93], as a new infection would take longer

than four weeks to result in egg production that could be detected by Kato Katz and micros-

copy [94]. The exception would be if, during the time of treatment, a patient had juvenile

worms as these would not have been cleared by treatment [95]. We expected that as the study

was based on a group of islands it might help isolate the parasite population and so allow us to

detect drug-induced selection in this population without the confounding effect of high levels

of gene flow from untreated populations. Only individuals who had lived in these villages for

at least three years were included in the study to control for absenteeism and MDA compliance

although it was still not possible to control for movement between villages and islands given

that fishing is the main economic activity within these communities.

The population of parasites present on the islands is closely related to that recently

described from communities on the shoreline of Lake Victoria, and as expected rather diver-

gent from that inland from the lake (Fig 2A and 2B) [55]. This presumably reflects greater

movement of people between the shoreline and island than with the inland populations, as

well as that the inland population included here is further (approximately 160 km) from the

shoreline than are the islands (approximately 80 km). We see little genetic differentiation

between villages on the same island, as fishing villages are close to one another (1–13 km

apart) and movement may be frequent among fishermen and village communities. Less

expected was that we see little or no genetic differentiation between islands, with only a weak

trend for greater genetic differentiation between villages on different islands than villages on

the same island, albeit this is a larger effect than either the distance between villages or the size

of village populations, perhaps suggesting that snail vector movement around the coasts of

islands may play a role in parasite movement. The islands are separated by water that is deep

enough [96] (primary data at http://dataverse.harvard.edu/dataverse/LakeVicFish) to prevent

snails moving actively from one island to the next, but parasites could travel through move-

ment of infected people or through infected snails being carried on fishermen’s or conceivably

by rafting on floating plants such as water hyacinth. Geographical conditions on these islands

are similar except for Lugumba Island which has more rocky/stony shores compared to

Koome and Damba which have more sandy shores and more vegetation, so we would expect

snails to be able to establish similarly at most locations.

Despite seeing little or no genetic structure in the island parasite population, we see some

evidence that PZQ treatment has had a small effect on the genetic diversity of the parasite pop-

ulation in this area. While we do not have baseline samples from before any PZQ treatment

was administered as part of the LaVIISWA trial, we see very slightly higher genome-wide

genetic diversity in the standard treatment arm than in the intensive arm, as would be expected

if intensive treatment has been more effective at reducing the parasite population than the

standard treatment regimen [10], although the effect we observe is very small and so maybe of

limited biological relevance. Differences in the same direction were present when comparing

subsets of samples taken before and after treatment separately, and was more pronounced in
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the post-treatment populations. As we see only very few closely related parasites, and no signif-

icant enrichment in relatedness based on treatment arm or sampling time with respect to treat-

ment, it seems that this effect is unlikely to be due to differences in the number of directly

related miracidia. We observe little or no genetic differentiation between villages in the two

study arms, and only very slightly higher differentiation between the arms in post-treatment

than in pre-treatment samples.

Evidence that PZQ treatment has some effect on the parasite population led us to investi-

gate whether particular variants might be related to exposure to PZQ and so potentially

responsible for any reduced susceptibility of parasites to PZQ within MDA programs [9]. We

identify several regions within the genome that were highly differentiated between samples

from the standard and intensive arms of the study, including a particularly striking region on

chromosome 5 that showed high differentiation between post-treatment samples from the two

arms of the study. This region contained a number of genes with functions that could be

potentially linked to PZQ drug action. These include an ATP-binding cassette (ABC) trans-

porter-associated gene (Smp_136310) that has previously been linked to helminth detoxifica-

tion and drug resistance processes [97]. A gene with calcium dependent/modulatory functions

(Smp_347070) was also found in the enriched region on chromosome 5, which is of interest

given that the mode of action of PZQ has long been linked to increased permeability of the cell

membrane to calcium ions into the cells which then causes contraction, paralysis and eventual

death of the worms [98]. We also investigated regions of the genome under different selective

regimes either with treatment intensity or when comparing pre- and post-treatment samples.

Among the genes under varying selection were purine-nucleoside phosphorylase activity asso-

ciated genes (Smp_197110 and Smp_171620) which are involved in the nucleotide salvage

pathway of S. mansoni. Given that S. mansoni depends entirely on the salvage pathway for its

purine metabolism [99], there is a possibility that ongoing non-random selection within this

gene might affect parasite metabolic processes and a potential future drug target. However, we

note that many biological processes could be contributing to genetic variation between sam-

ples from natural populations apart from variation in drug susceptibility [100]. While this

study has shed some light on possible drug resistance genetic markers, other approaches, such

as genetic crosses between parasites [101, 102] from natural populations that vary in drug effi-

cacy or from lines selected for resistance [21, 92], are likely to have more power to reveal the

genetics of drug resistance and so enable more focused studies of the effect on treatment on

parasite populations.

A limitation in this study was that we did not have parasite populations sampled several

years apart since it has been observed in similar studies that differentiation occurs over time in

a given community [38], so sampling over a longer time-span could provide stronger evidence

of genetic change in the population. In particular, we would ideally have access to baseline

samples from the same population taken prior to any large-scale PZQ treatment being admin-

istered. Despite the falling cost and rising throughput of nucleic acid sequencing, we were lim-

ited in the number of miracidia that we could sequence in this study. An additional limitation

is the labour-intensive process of hatching and washing miracidia necessary to obtain high-

quality data due to the non-selective nature of the whole-genome sequencing approach [70].

As control programmes expand and reduce pathogen populations, we would expect the

genetic diversity of these populations to fall to reflect the reduced population size [13, 41, 103],

and drug resistance to be reflected in particular genotypes being over-represented in samples

collected after large-scale treatment has been applied. As in other recent studies [42, 55], we

find evidence of at best a very limited effect of PZQ treatment on schistosome populations

either post-treatment or over a longer time frame of intensive treatment with a large diverse

parasite population and only minimal population structure. In most previous studies,
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extensive refugia from treatment have been present in the community, as only school-age chil-

dren are routinely treated in most areas, so it is instructive that we find similar results in this

study despite community-wide treatment. Taken together, this body of work suggests that

PZQ treatment may be some way from having a dramatic effect on schistosome transmission

in areas of high infection prevalence, suggesting that additional interventions may be impor-

tant in reducing transmission [91, 104, 105].

We see little evidence that PZQ treatment in these areas is strongly selecting for resistance.

One possibility is that this study–and others–are underpowered to detect the early signs of

selection, as might be expected if multiple resistance-conferring alleles are present in the popu-

lation [106] or are present on many different genetic backgrounds in this large population, so

that any selection for resistance is a very soft selective sweep [107] and so difficult to detect.

While there is some evidence for reduced efficacy of PZQ in Uganda [9], other studies do not

find this effect [11], including one study based on the same population as studied here [10].

Perhaps the most parsimonious explanation is that low efficacy, where reported, is not a sign

of PZQ resistance, but due to host or other factors [91, 108]. If persistent schistosomiasis hot-

spots are due to factors other than PZQ efficacy, this should reassure control programs that

continued PZQ MDA will continue to play an important role–alongside other interventions–

in reducing infection prevalence in these foci. Even in the absence of drug resistance emerging

in natural populations, high-resolution genetic surveillance of African schistosome popula-

tions is ideally suited to detect changes in parasite population structure related to the impact of

control measures [30], and could ultimately inform approaches to eliminate schistosome mor-

bidity in remaining ’hot-spots’ by helping us understand parasite transmission between hosts

and between foci [91].

In summary, we demonstrate a small but significant effect of both short-term PZQ treat-

ment intensity and a recent treatment episode on genome wide-diversity in a schistosome.

This reduction in diversity does not appear to be associated with enrichment of closely related

parasites, but rather could reflect ongoing non-random recent selection within these fishing

communities in Uganda that might be under the influence of continued mass drug administra-

tion. We identify genomic windows that are either particularly differentiated following treat-

ment or appear to be under differing selective regimes with different treatment intensity.

These regions could include genes involved in drug response, but additional data is needed to

prioritise candidates for further investigation.
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