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Abstract

Rift Valley fever virus (RVFV) is a mosquito-transmitted virus with proven ability to emerge

into naïve geographic areas. Limited field evidence suggests that RVFV is transmitted verti-

cally from parent mosquito to offspring, but until now this mechanism has not been con-

firmed in the laboratory. Furthermore, this transmission mechanism has allowed for the

prediction of RVFV epizootics based on rainfall patterns collected from satellite information.

However, in spite of the relevance to the initiation of epizootic events, laboratory confirma-

tion of vertical transmission has remained an elusive research aim for thirty-five years.

Herein we present preliminary evidence of the vertical transmission of RVFV by Culex tarsa-

lis mosquitoes after oral exposure to RVFV. Progeny from three successive gonotrophic

cycles were reared to adults, with infectious RVFV confirmed in each developmental stage.

Virus was detected in ovarian tissues of parental mosquitoes 7 days after imbibing an infec-

tious bloodmeal. Infection was confirmed in progeny as early as the first gonotrophic cycle,

with infection rates ranging from 2.0–10.0%. Virus titers among progeny were low, which

may indicate a host mechanism suppressing replication.

Author summary

Rift Valley fever virus (RVFV) represents a significant threat in terms of its ability to

emerge into naïve geographic areas. Furthermore, RVFV represents a global public health

risk due to the ability of many mosquito species to transmit the virus and the ease with

which the virus can be transported due to increased globalization. The vertical transmis-

sion of RVFV by mosquitoes has long been accepted by the research community due to

limited field evidence. However, laboratory confirmation of vertical transmission has

remained elusive for thirty-five years. We present the first laboratory evidence of vertical

transmission of RVFV in the susceptible North American vector, Culex tarsalis. We pres-

ent two studies that clearly show 1) the accumulation of RVFV antigen in the ovaries of

infected mosquitoes and 2) the transmission of RVFV from parent to offspring immedi-

ately following an infectious blood meal.
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Introduction

Rift Valley fever virus (RVFV) (order: Bunyavirales; family: Phenuiviridae; genus: Phlebovirus)
is an emerging, mosquito-transmitted virus endemic to sub-Saharan Africa [1]. Outbreaks are

episodic and impose a significant economic, veterinary, and public health burden. Both live-

stock animals and humans are susceptible to infection. RVFV mortality rates among adult

ruminant livestock ranges from 10% to 20%. Additionally, RVFV epizootics are characterized

by abortion storms with neonatal mortality rates approaching 100% [2]. Infection in humans

typically results in febrile illness but can progress to more severe illness in 1% to 2% affected

individuals with a case fatality rate between 10% and 20% [3,4]. In 1997–1998, a large trans-

boundary outbreak of RVFV occurred in Africa, resulting in 90,000 human infections and the

loss of approximately 100,000 domestic animals [5]. The outbreak also elicited a ban on live-

stock exports, which caused significant economic hardship for the region [6]. RVFV also poses

significant global emergence potential as evidenced by large and sustained outbreaks in Egypt

and the Arabian Peninsula [7–9]. Furthermore, much work has been conducted demonstrat-

ing that RVFV could invade and establish itself in North America because of frequent travel

from endemic areas, presence of susceptible mosquito vectors, and US agricultural practices

such as intensive livestock production [10–16].

Understanding the transmission mechanisms by which arboviruses maintain themselves in

nature is critical for assessing their potential risk for emergence and establishment in new

places. Arbovirus maintenance is generally perpetuated via horizontal transmission cycles

between arthropod vectors and vertebrate hosts. However, some arboviruses have also evolved

a means of vertical transmission whereby the virus is transmitted from parental arthropods

directly to their offspring. Vertical transmission has been demonstrated among the bunyavi-

ruses, flaviviruses, and alphaviruses indicating that this is a relatively common and convergent

evolutionary strategy for virus persistence in the presence of ecological conditions that are not

conducive to classical horizontal transmission [17,18].

The mechanisms of RVFV persistence through interepidemic periods remains not fully

characterized. RVFV is has the ability to infect and transmit among a wide variety of vectors,

which can be classified into two categories: “reservoir/maintenance”, which include certain

Aedes species (spp.) mosquitoes, and “epidemic/amplifying”, characterized by Culex spp. mos-

quitoes [19]. RVFV relies, at least in part, on vertical transmission in the “reservoir/mainte-

nance” mosquito vector to potentiate itself between epizootic events, however, evidence of this

mode of transmission is limited to a few virus isolations from adult mosquitoes reared from

field-collected larvae and antigen accumulation in mosquito ovaries [20,21]. Endemic trans-

mission does also occur in between epizootic events, although at low levels [22]. Furthermore,

RVFV epizootics have been correlated with periods of abnormally high rainfall and this pat-

tern has been further correlated with El Niño/Southern Oscillation events, providing the capa-

bility to identify environmental conditions favorable to supporting an outbreak [23,24].

Although vertical transmission of RVFV has been generally accepted by the scientific commu-

nity as a mechanism for ecological persistence, to date, this phenomenon has not been

demonstrated in a laboratory environment. Understanding the potential impact of vertical

transmission on RVFV establishment if this virus is introduced to new geographic areas

including North America is critical, as it will provide insight into vector control, mitigation

efforts, and entomological surveillance in the midst of an outbreak. Herein, we present three

preliminary experiments that demonstrate the vertical transmission of RVFV in a North

American mosquito vector Culex (Cux.) tarsalis Coquillett, a vector that has been shown in the

laboratory to have the potential to transmit RVFV very efficiently [13].
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Materials and methods

Ethics statement

All experiments were approved by CSU’s Institutional Biosafety Committee under protocol

number 16-078B. Experiments were also conducted in accordance with the CDC and USDA

regulations governing the utilization of Select Agents and Toxins.

Mosquitoes

All Cx. tarsalis mosquitoes used in these experiments are from the Kern National Wildlife Ref-

uge (KNWR) colony. The colony was established in July 1953 from mosquitoes collected from

the Kern National Wildlife Refuge, Kern County, California, USA [25].

Virus stocks and infectious and non-infectious bloodmeals

Stocks of RVFV (Kenya 128B-15) were generated by infecting Vero cells (ATCC CCL-81,

American Type Culture Collection) at a MOI of 0.01 and incubating for 72 hours in a humidi-

fied incubator set to 37˚C with 5% CO2. DMEM supplemented with 2% FBS and Penicillin/

Streptomycin was used for virus propagation. Virus for infectious bloodmeals was generated

from stock virus in the same manner. At 72 hours post-infection, infectious cell culture super-

natant was clarified by centrifugation at 7,000 x g for 10 minutes and was added to defibrinated

calf blood (Colorado Serum Company) at a 1:1 ratio. Non-infectious blood meals consisted

solely of defibrinated calf blood diluted 1:1 with DMEM, supplemented as described above.

Blood meals were loaded into Hemotek membrane feeders covered in collagen membrane

(Hemotek Ltd, Lancashire, United Kingdom) and were warmed to 37˚C. Mosquitoes were fed

for 2 hours. After feeding, mosquitoes were anesthetized by holding at 4˚C until immobilized

and were sorted in petri dishes on ice; engorged mosquitoes were placed in new containers

and the rest were discarded. Aliquots of infectious bloodmeals were held at the same condi-

tions for the duration of the infectious blood meal, and then were back titrated via plaque

assay as previously described to confirm that the target blood meal viral titer was achieved

[26].

Study 1: Detection of RVFV antigen in mosquitoes receiving infectious

blood meal

Artificial blood meals with RVFV (7.3 log10 PFU/mL) were provided to Cx. tarsalis females

between 5–8 days post-emergence as described above. After feeding, engorged mosquitoes

were incubated at 28˚C with a 16:8 light:dark cycle and 70% relative humidity for 7 days. The

protocol used for fixing and staining of paraffin-embedded sections of mosquitoes was

described previously by Kading et al. [27]. Briefly, female mosquitoes used in immunofluores-

cence assays were injected with 360nl of freshly prepared 4% paraformaldehyde (Electron

Microscopy Products) with a Nanoject III (Drummond) and submerged in 4% paraformalde-

hyde for 24 hours. After 24 hours, samples were transferred to 70% ethanol. Inactivation assays

were conducted on 10% of samples to verify inactivation prior to transfer out of BSL3 condi-

tions as per institution-approved inactivation requirements [27,28]. Sectioning was conducted

by Colorado HistoPrep (Fort Collins, CO). Mosquito sections were stained with a mouse anti-

RVFV polyclonal antibody diluted to 1:1024. Goat anti-mouse Alexa Fluor 488 (Invitrogen)

diluted 1:2000 served as the secondary antibody. Slides were treated with SlowFade Gold with

DAPI (Invitrogen) to prevent bleaching and allow for the visualization of anatomical and cel-

lular structures. An Olympus 1X81 FV1000 confocal microscope was used to visualize the

specimens.
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Study 2a: Detection of RVFV RNA in eggs and first instar larvae of

parental mosquitoes after receiving an infectious blood meal

Female mosquitoes were provided an artificial infectious blood meal (7.3 log10 PFU/mL) as

described above (n = 50 engorged females). Fully engorged mosquitoes were housed in a car-

ton with a cup of water and a small paper towel to allow engorged mosquitoes to deposit egg

rafts in the cup. This process was repeated twice with non-infectious blood meals on day 7 and

day 14 post-infectious blood meal, yielding egg rafts from three gonotrophic cycles, termed E1,

E2, and E3. For this experiment, E1 egg rafts were discarded, E2 egg rafts hatched prior to col-

lection, yielding E2 egg raft husks (n = 21) and E2 1st instar larvae (30 larvae per tube, n = 48).

E3 egg rafts were also collected (n = 20). All mosquito tissues were stored in 2ml screwcap

tubes (Sarstedt) with 2 glass beads (Millipore) and 250μl diluent consisting of DMEM supple-

mented with 10% FBS, 1% Penicillin/Streptomycin, 0.1% Gentamycin, and 0.1% Amphoteri-

cin B. All samples were stored at -80˚C until processing.

Prior to RT-qPCR, samples were homogenized in a MagNA Lyser (Roche) for 1 minute at

3,500 rpm and centrifuged at 12,000 x g for 1 minute. RNA was extracted from 50μl of super-

natant via the MagMAX Viral RNA Isolation Kit (ThermoFisher Scientific). RT-qPCR was

conducted on all RNA samples in duplicate on a QuantStudio 3 (ThermoFisher Scientific)

using TaqMan Fast Virus 1-Step Master Mix (ThermoFisher Scientific). Primers used were

RVFL-2912fwdgg, RVFL-2981revAC, and RVFL-2950-Probe described in Bird et al. [29]. PFU

equivalents were determined by running samples with a standard curve as previously

described [29].

Study 2b: Detection of infectious RVFV particles in parental mosquitoes

and progeny after receiving an infectious blood meal

Female mosquitoes were provided an artificial infectious blood meal (7.6 log10 PFU/mL) as

described above (n = 123 engorged females). Mosquitoes were housed in a carton with a cup

of water to collect egg rafts as described above. Between days 3 and 7 post-engorgement egg

rafts were collected from the cup. This process was repeated twice with non-infectious blood

meals on day 7 and day 14 post-infectious blood meal, yielding egg rafts from three gono-

trophic cycles, termed E1, E2, and E3 (Fig 1). From each gonotrophic cycle, five rafts were col-

lected for plaque assay and the remaining were hatched. For the first two gonotrophic cycles,

the following samples were collected: pools of five first instar larvae (n = 30), pools of five sec-

ond instar larvae (n = 30), individual third instar larvae (n = 50), individual fourth instar larvae

(n = 50), female pupae (n = 50), male pupae (n = 50), whole male mosquitoes (n = 50), and

female mosquitoes (n = 50) that were dissected to yield bodies, legs & wings, saliva, and ovaries

(described below). Pupae were collected and transferred to cartons to emerge, and adult prog-

eny mosquitoes were harvested 72 hours after the last mosquitoes emerged from their pupae.

This resulted in the adult progeny having an age range of 3 to 7 days. Surviving parental mos-

quitoes (n = 25) were dissected on day 21 post-infectious blood meal to yield body, legs &

wings, saliva, and ovaries. By the third gonotrophic cycle, death among the parental mosqui-

toes and a reduction in egg laying resulted in too few offspring to test all life stages; as a result,

only egg rafts, adult males, and adult females were collected for analysis for the E3 progeny.

Female mosquitoes were processed in the following manner: first, legs & wings were

removed, and saliva was collected as previously described [30]. After saliva collection and

prior to dissection, mosquitoes were dipped in 70% ethanol immediately followed by PBS to

remove hydrophobicity. Ovaries were dissected from female mosquitoes on 3x3 glass spot

plates (Pyrex). All plates and tools were disinfected with 70% ethanol between samples to pre-

vent contamination. All mosquito tissues were stored in 2ml screwcap tubes (Sarstedt) with 2
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glass beads (Millipore) and 250μl diluent as described above. Saliva was stored in 1.5ml micro-

centrifuge tubes (Eppendorf) with 100μl diluent. All samples were stored at -80˚C until

processing.

Prior to plaque assays, samples were homogenized in a MagNA Lyser (Roche) for 1 minute

at 3,500 rpm and centrifuged at 12,000 x g for 1 minute, except saliva which was only centri-

fuged, the resulting supernatant was used for plaque assays. Parental and E2 samples were

Fig 1. Experimental diagram for detecting the presence of RVFV among progeny mosquitoes (Study 2b in Materials and methods).

This figure was created using BioRender.com.

https://doi.org/10.1371/journal.pntd.0009273.g001
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titrated by 12-well plaque assay as previously described [26], using 10-fold dilutions and plat-

ing dilutions 0 through 10−5. Specifically, 100μl of inoculum was reserved for inoculation of

the undiluted well, 1:10 dilutions (10−1 thru 10−5) were made on 96-well plates by applying

20μl of the inoculum to 180μl diluent, ensuring the inoculum was sufficiently dispersed in the

diluent by mixing before transferring to the next dilution. All plaque assays were conducted in

duplicate and positive titers were only recorded if both duplicates were positive for virus. Titers

are reported as averages of the two duplicates. The plaque assays were designed as described

above to reduce the limit of detection to the lowest level while still being able to conduct assays

in duplicate and on 12-well plates; one plaque forming unit in the undiluted well (100μl inocu-

lum) translated to 2.5 plaque forming units for the sample in question due to the 250μl diluent

volume in each sample, making this our limit of detection.

Upon visualizing plaques only in the 0 dilution of the E2 samples, only undiluted samples

were plaqued in single wells for virus quantification in the E1 and E3 samples. For pooled sam-

ples, namely the 1st and 2nd larvae, infection rates were determined by maximum likelihood

estimation [31].

Results

Study 1: Detection of RVFV antigen in mosquitoes receiving infectious

blood meal

Rift valley fever virus was administered to female Cx. tarsalis mosquitoes through an infectious

blood meal delivered through an artificial membrane feeding apparatus to approximate natu-

ral exposure. RVFV antigen was identified in the follicular epithelium, oocytes, and nurse cells

in the ovaries of infected parental mosquitoes by immunofluorescence assay (Fig 2). This

observation was made in specimens examined after 7 days incubation. The movement of

RVFV from the midgut to the ovaries was confirmed by plaque titration, demonstrating that

60% of blood-fed female mosquitoes had infectious RVFV in their ovaries at a mean virus titer

of 3.4 log10 PFU (Table 1 and Fig 3).

Study 2a: Detection of RVFV RNA in eggs and first instar larvae of

parental mosquitoes after receiving an infectious blood meal

We then sought to determine if RVFV RNA could be detected in the eggs and first instar larvae

of mosquitoes who had imbibed a RVFV bloodmeal. Parental mosquitoes were orally exposed

to RVFV as above, followed by two subsequent noninfectious blood meals weekly thereafter to

mimic natural blood meal acquisition and associated physiological changes. Egg raft husks and

1st instar larvae from the second gonotrophic cycle (E2) and egg rafts from the third gono-

trophic cycle (E3) were collected. We found that 24% of the E2 egg raft husks, 27 of 48 positive

pools of 30 larvae, and 40% of the E3 egg rafts were positive for viral RNA by RT-qPCR, dem-

onstrating the presence of RVFV RNA in the progeny of infected parental mosquitoes at early

life stages (Table 2). PFU equivalents were unable to be determined on many samples from the

standard curve due to the Ct values being higher than the x-intercept (33.1) of the linear

regression generated from the standards, though many of the samples had Ct values < 33.1 (S1

Table). Samples listed as positive had Ct values less than the average Ct value for the most

dilute sample in the standard dilution series (S2 Table). A Ct of between 30–35 has previously

been shown to represent a positive result and has been associated with recovery of low levels of

infectious RVFV [32,33], consistent with what we observed in our standards (S2 Table).
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Study 2b: Detection of infectious RVFV particles in parental mosquitoes

and progeny after receiving an infectious blood meal

Next, we sought to determine whether viable RVFV was transmitted from the infected ovaries

of the female to her progeny. Parental mosquitoes were orally exposed to RVFV as above, fol-

lowed by two subsequent noninfectious blood meals weekly thereafter to mimic natural blood

meal acquisition and associated physiological changes. Eggs from each of the three gono-

trophic cycles (E1, E2, E3) were reared to the adult stage, with individuals from each develop-

mental stage screened for infectious virus.

Vertical transmission occurred after the first infectious blood meal, as RVFV was detected

in the F1-E1 progeny (Table 3 and Fig 3). Adult female progeny mosquitoes harbored infec-

tious virus in their ovaries and saliva, indicating the potential ability to transmit vertically or

horizontally upon emergence (Table 3), albeit all the titers were at or near the limit of detection

(Fig 3). Third, ovary infection rates were higher than viral dissemination rates from the mid-

gut, which may indicate a unique mechanism for the transit of RVFV from the midgut to the

ovaries (Table 3). Fourth, infection rates among F1 adults appeared consistent between gono-

trophic cycles (Table 3). Fifth, infectious titers were low but detectable, warranting further

Fig 2. Confocal images of RVFV antigen present in ovarian tissue of RVFV-infected Cx. tarsalis (Blue = DAPI, Green = RVFV antigen). A) RVFV

Infected. B) Non-infected control. Yellow arrows: follicular epithelium; red arrows: nurse cells; orange arrows: oocyte. Purple scale bar = 31μm.

https://doi.org/10.1371/journal.pntd.0009273.g002

Table 1. Percent of parental tissues testing positive for RVFV via plaque assay.

Tested Positive Percent Infected†

Body 25 18 72%

Legs & Wings 25 12 48%

Saliva 25 10 40%

Ovaries 25 15 60%

https://doi.org/10.1371/journal.pntd.0009273.t001
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investigations into the physiological mechanisms for virus persistence (Fig 3). While many

questions remain to be investigated, these findings are important in that they represent prelim-

inary demonstration of vertical transmission of RVFV from a female mosquito to her progeny

in a laboratory setting.

Fig 3. RVFV Titers of parental and progeny mosquitoes. A) Parental mosquitoes, B) E1 progeny mosquitoes, C) E2 progeny mosquitoes, D) E3

progeny mosquitoes. LOD: limit of detection for the assay.

https://doi.org/10.1371/journal.pntd.0009273.g003

Table 2. Percent of tissues positive for RVFV RNA among progeny mosquitoes.

F1 E2 Mosquitoes F1 E3 Mosquitoes

Tested Positive Percent Infected† Average Ct Value†† Tested Positive Percent Infected† Average Ct Value††

Egg Rafts 0 0 N/A N/A 20 8 40% 33.5

Egg Raft Husks 21 5 24% 33.6 0 0 N/A N/A

1st Instar Larvae (pools of 30) 48 27 2.7% 33.7 0 0 N/A N/A

†Percent infection rates for pooled samples were calculated using maximum likelihood estimation. These values are indicated with an asterisk.
††Average Ct values reported are the mean of the samples considered to be positive (Ct value < 35.1).

https://doi.org/10.1371/journal.pntd.0009273.t002
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Discussion

Our studies provide several lines of preliminary evidence supporting the vertical transmission

of RVFV among Cx. tarsalis mosquitoes, using molecular, immunological, and virological

methodologies. First, we showed that Cx. tarsalis mosquitoes, upon ingestion of an infectious

blood meal, accumulated RVFV antigen in the developing oocytes of the ovaries by 7 days post

exposure, evidenced by detection of antigen in the ovaries of females who received an infec-

tious blood meal (Fig 2). Second, egg raft husks and egg rafts from the 2nd and 3rd gonotrophic

cycles of infected mosquitoes were positive for RVFV RNA by RT-qPCR (Table 2). Third, in a

separate experiment, infectious virus was detected in the tissues and saliva of progeny mosqui-

toes from multiple gonotrophic cycles by plaque assay (Table 3). Collectively these experiments

demonstrate that RVFV is capable of vertical transmission in Cx. tarsalis, regardless of gono-

trophic cycle.

The nature of this vertical transmission in Cx. tarsalis is yet to be confirmed (i.e. transovar-

ial versus transovum), as well as if this mechanism varies by gonotrophic cycle. While viral

antigen was localized to the interior of developing oocytes suggesting transovarial transmission

(Fig 2), viral RNA was also detected on the husks of hatched eggs suggesting a more superficial

attachment of virions (Table 2) consistent with transovum transmission [21,34]. Antigen for

RVFV has previously been visualized in association with the interior and exterior of develop-

ing oocytes as well as the common and lateral oviducts and genital chamber of Ae. macintoshi
mosquitoes [21]. The observations from our study involving Cx. tarsalis are consistent with

this earlier work even though the mosquito species utilized represent different genera.

Additionally, we found disagreement among the tissue infections in the positive adult prog-

eny, that is, not all mosquitoes who had virus-positive tissues had evidence of a disseminated

or midgut infection (Table 3). Progeny naturally infected through vertical transmission, espe-

cially when viral antigen has been detected in the interior of the developing oocyte, would be

expected to produce adult progeny with a systemic infection since the virus would have the

opportunity to infect cells at an early stage of embryonic development, as opposed to needing

to pass through the standard barriers to infection following oral exposure. We observed infec-

tion of both ovarian and somatic tissues in adult F1 progeny (Table 3) from parental females

with viral antigen that had perfused the yolk interior of the mature oocytes (Fig 2). While we

Table 3. Percent of tissues testing positive for RVFV via plaque assay among progeny mosquitoes.

F1 E1 Mosquitoes F1 E2 Mosquitoes F1 E3 Mosquitoes

Tested Positive Percent Infected† Tested Positive Percent Infected† Tested Positive Percent Infected†

Egg Rafts 5 0 0% 5 4 80% 5 0 0%

1st Instar Larvae (pools of 5) 30 2 1%� 30 2 1%� - - -

2nd Instar Larvae (pools of 5) 30 4 3%� 30 0 0%� - - -

3rd Instar Larvae 50 4 8% 50 6 12% - - -

4th Instar Larvae 50 3 6% 50 0 0% - - -

Pupae-Male 50 4 8% 50 1 2% - - -

Body-Male 50 1 2% 50 6 12% 50 0 0%

Pupae-Female 50 0 0% 50 2 4% - - -

Body-Female 50 1 2% 50 5 10% 50 5 10%

Legs & Wings-Female 50 4 8% 50 1 2% 50 3 6%

Saliva-Female 50 0 0% 50 2 4% 50 2 4%

Ovaries-Female 50 2 4% 50 3 6% 50 7 14%

†Percent infection rates for pooled samples were calculated using maximum likelihood estimation. These values are indicated with an asterisk.

https://doi.org/10.1371/journal.pntd.0009273.t003
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did not specifically investigate the cell types within the chorionated eggs that were infected,

this result suggests that RVFV is able to infect developing cells in different poles of the oocyte

that eventually differentiate into germline or somatic tissues, similarly to what has been

described for Wolbachia [35], but this phenomenon warrants further study.

Importantly, many of our RVFV-positive samples were determined to be at the limit of

detection for the plaque assay, which raises the question of false positives or contamination.

We believe the independent results from the RT-qPCR data showing viral RNA in egg rafts,

egg raft husks, and 1st instar larvae to be compelling evidence that vertical transmission is

occurring, albeit at low levels (Table 2). The threshold for positivity in these samples and

recovering low levels of infectious virus was also consistent with other studies [32,33]. Further-

more, we elected to conduct plaque assays based on the RT-qPCR data to remove any uncer-

tainty regarding the presence of infectious virus as opposed to viral RNA fragments. Samples

were plaqued in duplicate, and samples with plaques in both wells were counted to add further

confidence in the validity of the results. Unfortunately, to obtain low limits of detection and

sample volume constraints we were unable to conduct both plaque assays and RT-qPCR on

the same samples. Variability among infection rates within the same gonotrophic cycle could

be due to the measured titers being at the limit of detection of the plaque assay.

There are a number of factors potentially influencing the inconsistent tissue distribution

patterns observed in F1 adults as well as the low titers of RVFV in emergent progeny. One

hypothesis is the influence of Wolbachia infection. The distribution of the intracellular bacte-

rium Wolbachia varies widely by taxa and species [35] and has been known to influence West

Nile virus infection of Cx tarsalis mosquitoes [36]. Dodson et al. also reported that while Wol-
bachia infection did not influence transmission rates of RVFV by Culex mosquitoes, there was

a negative correlation between Wolbachia density and RVFV titer [37]. Romoser et al. [21]

also postulated that some eggs of Aedes macintoshi infected with RVFV may harbor a latent

infection which may go undetected during experimental investigation but is instrumental in

establishing a stabilized infection in natural mosquito populations. Lastly, immune factors

intrinsic to the vector such as RNA interference (RNAi) could also limit the transstadial pene-

tration of virus through to the adult stage [38,39]. RNAi can be readily triggered in mosquito

larvae following exposure to double-stranded RNA (dsRNA) [40,41]. If exogenous viral RNA

present in oviposited mosquito eggs triggers RNAi in metabolically-active larvae, this natural

anti-viral mechanism may influence the resulting infection rates and viral titers in F1 adults.

Whether the tissue distributions and viral titers observed in this study are due to suppression

by Wolbachia, latent infection, RNAi, or some other combination of mechanisms, this obser-

vation requires further investigation. We also found that male mosquito progeny had low rates

of infection, raising the question of whether venereal transmission can further potentiate

spread of the virus among mosquito populations.

Notably, there was a discrepancy between dissemination rates (48.0%) and the infection

rate of the ovaries (60.0%) of parental Cx. tarsalis mosquitoes (Table 1). This phenomenon

also extends to individual mosquitoes. This observed disagreement could be due to the fact

that the virus titers observed were at the limit of detection and the assay was not sensitive

enough to detect virus in the other tissues, and that positive detections were missed for some

samples due to the low infectious titers. This observation may also be due to the virus making

use of the tracheal system to disseminate throughout the mosquito body, and warrants addi-

tional exploration [42]. Romoser et al [21] localized RVFV antigen to the cytoplasm of the tra-

cheal cells in RVFV-infected Ae. macintoshi mosquitoes and hypothesized that ovarian

infections could occur through this route in addition to infection through the follicular epithe-

lium. Kading et al. [42] also observed viral antigen in tracheal epithelial cells in Ae. aegypti
mosquitoes experimentally infected with RVFV ZH501 strain. Similarly, Chandler et al.
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reported LaCrosse virus (LACV) infection of ovarian tissue in the mosquito triseriatus (Say)

several days prior to virus dissemination from the midgut [43]. Utilization of the tracheal sys-

tem for viral dissemination has been proposed for several other mosquito- and tick-borne

viruses [44,45].

Here we report preliminary laboratory evidence for the vertical transmission of RVFV in

colonized Cx. tarsalis mosquitoes for three consecutive gonotrophic cycles. These data repre-

sent important first steps towards describing the nature of this transmission mechanism and

its role in RVFV environmental persistence. Cx. tarsalis is an ideal model for these preliminary

experiments as the mosquito is very susceptible to infection, and would likely play a significant

role in a RVFV epizootic if RVFV emerged into North America [13,16]. Furthermore, the Cx.

tarsalis colony is well established and easily manipulated. Future studies will focus on validat-

ing the efficiency of vertical transmission in Cx. tarsalis and additional mosquito species, com-

paring virus strains, the effect of a subsequent blood meal on virus replication in F1 progeny,

and understanding the tissue tropisms and immune pathways that may be involved in modu-

lating viral replication in vertically infected Cx. tarsalis.
Demonstration of vertical transmission for RVFV in a laboratory setting has filled a

research gap that has existed since the discovery decades ago that newly emerged mosquitoes

can be infected with RVFV [20]. Certainly, because these experiments were conducted with a

laboratory mosquito colony, the relevance of laboratory controlled vertical transmission to

natural transmission cycles of RVFV in the field remains an important research aim. These

data will also help parameterize models that seek to predict the establishment potential and

persistence of RVFV transmission in different ecological systems, in which critical assump-

tions were previously necessary [46]. Still, these experiments demonstrate the proof-of-concept

that RVFV, under standard laboratory conditions, can be vertically transmitted by

mosquitoes.
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