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Abstract

Spectroscopy-based techniques are emerging diagnostic and surveillance tools for mos-

quito-borne diseases. This review has consolidated and summarised recent research in the

application of Raman and infrared spectroscopy techniques including near- and mid-infrared

spectroscopy for malaria and arboviruses, identified knowledge gaps, and recommended

future research directions. Full-length peer-reviewed journal articles related to the applica-

tion of Raman and infrared (near- and mid-infrared) spectroscopy for malaria and arbovi-

ruses were systematically searched in PUBMED, MEDILINE, and Web of Science

databases using the PRISMA guidelines. In text review of identified studies included the

methodology of spectroscopy technique used, data analysis applied, wavelengths used,

and key findings for diagnosis of malaria and arboviruses and surveillance of mosquito vec-

tors. A total of 58 studies met the inclusion criteria for our systematic literature search.

Although there was an increased application of Raman and infrared spectroscopy-based

techniques in the last 10 years, our review indicates that Raman spectroscopy (RS) tech-

nique has been applied exclusively for the diagnosis of malaria and arboviruses. The mid-

infrared spectroscopy (MIRS) technique has been assessed for the diagnosis of malaria

parasites in human blood and as a surveillance tool for malaria vectors, whereas the near-

infrared spectroscopy (NIRS) technique has almost exclusively been applied as a surveil-

lance tool for malaria and arbovirus vectors.

Conclusions/Significance

The potential of RS as a surveillance tool for malaria and arbovirus vectors and MIRS for the

diagnosis and surveillance of arboviruses is yet to be assessed. NIRS capacity as a
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surveillance tool for malaria and arbovirus vectors should be validated under field condi-

tions, and its potential as a diagnostic tool for malaria and arboviruses needs to be evalu-

ated. It is recommended that all 3 techniques evaluated simultaneously using multiple

machine learning techniques in multiple epidemiological settings to determine the most

accurate technique for each application. Prior to their field application, a standardised proto-

col for spectra collection and data analysis should be developed. This will harmonise their

application in multiple field settings allowing easy and faster integration into existing disease

control platforms. Ultimately, development of rapid and cost-effective point-of-care diagnos-

tic tools for malaria and arboviruses based on spectroscopy techniques may help combat

current and future outbreaks of these infectious diseases.

Author summary

Malaria and many arboviruses such as Dengue virus, Zika virus, Chikungunya virus, and

Ross River virus are persistent and detrimental to the global population. Rapid and accu-

rate diagnosis of these infections in human populations and mosquito vectors is essential

for understanding their epidemiology, for prompt treatment, and to improve and guide

control and elimination strategies. Raman and infrared spectroscopy are rapid and cost-

effective tools that have shown potential as diagnostic and surveillance tools for malaria

and arboviruses. This systematic review presents up-to-date research conducted using RS,

MIRS, and NIRS for the diagnosis of malaria parasite and arboviruses as well as for the

surveillance of malaria and arbovirus vectors.

Introduction

Malaria is a mosquito-borne disease caused by the Plasmodium parasite and transmitted to

humans and other animals through the bite of an infected female Anopheles mosquito [1]. In

2019, an estimated 229 million malaria cases and 409,000 malaria-related deaths were

reported, highlighting malaria as a major public health concern [2]. Arboviruses such as Chi-

kungunya (CHIKV), Dengue (DENV), and Zika (ZIKV) are transmitted to humans through

bites of infected Aedes mosquitoes. CHIKV cases have been reported in Africa, Asia, Americas,

and Europe causing an estimated 693,000 annual cases and an epidemic in over 50 countries

[3,4]. The risk of death with CHIKV is approximately 1 in a 1,000 [5]. DENV infections have

increased dramatically over the last 20 years, particularly in tropical countries. It is estimated

that at least 390 million infections occur each year of which 96 million manifests clinically [6].

ZIKV caused an epidemic in Brazil between 2015 and 2016 resulting in approximately 1.6 mil-

lion infections and 5,968 cases of microcephaly in newborns [7].

Diagnosis of malaria and arboviruses

To achieve the aims set by the World Health Organisation’s (WHO) Global Technical Strategy

for Malaria 2016–2030 which aims to reduce malaria incidence and related mortality by 90%

and to eradicate malaria in at least 35 countries by 2030, new strategies to address residual

malaria transmission and tools to monitor the results of these strategies are urgently needed

[8]. One of the cornerstones for disease control is the availability of good quality vaccines;

however, malaria and some arboviruses vaccines are still under development. For example, the

only approved malaria vaccine RTS,S (Mosquirix) has a relatively low efficacy and is not
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recommended by WHO for vaccination of babies between 6 to 12 weeks of age [9]. To achieve

the WHO’s 2030 goals of reducing malaria-related mortality by 90%, diagnosis of malaria and

mosquito surveillance have been pinpointed as fundamental tools [8]. In addition, to reduce

the spread and unprecedented future outbreaks of mosquito-borne diseases, active surveillance

of vectors and parasites within human populations is crucial.

Current diagnosis of malaria relies primarily on microscopy methods using Giemsa stained

blood smears [10]. However, with a limit of detection of>5 parasites/μL of blood, it requires a

well-trained microscopist [11]. Rapid diagnostic tests are also common diagnostic tools for

malaria. They are very easy to use and do not require qualified personnel, but their sensitivity

and specificity is low in detecting low parasitaemia [12]. Molecular based techniques such as

polymerase chain reaction (PCR), quantitative PCR (qPCR), nested PCR, and enzyme-linked

immunosorbent assay (ELISA) have also been developed for malaria [13] and arboviruses

[14,15]. PCR techniques are gold standards for the diagnosis of arboviruses; however, due to

time, cost inefficiencies, and technical expertise required, they are unsuited for large-scale

diagnoses particularly during disease outbreaks. For example, the cost of DENV1 antibody

ELISA kit is approximately $10.4 USD per sample [16], while a malaria IgG and IgM antibody

ELISA kit costs are estimated at $5.5 USD per sample [17]. Additionally, basic laboratory skills

are required to perform PCR or ELISA techniques efficiently and correctly.

Vector surveillance of malaria and arboviruses

Vector surveillance involves regular monitoring of mosquito populations to assess the effec-

tiveness of vector control interventions. Surveillance assesses vector survival (age), species

diversity, infection status, host preference, and insecticide resistance. These parameters are

currently determined using molecular techniques including PCR and qPCR or ELISA [18–20].

Vector survival is the most important determinant of vectorial capacity of mosquito vectors.

Mosquito age prediction can be useful in identifying potentially infectious vectors, as patho-

gens must incubate for a certain period of time within mosquitoes before they can be transmit-

ted to hosts. For example, the female Anopheline mosquito can only transmit Plasmodium
parasites after 10 to 12 days following ingestion of an infected blood meal due to the long incu-

bation period required for Plasmodium parasite development within the vector [21]. Conse-

quently, a mosquito population that survives longer that this extrinsic incubation period will

be more likely to transmit malaria to susceptible hosts.

Parity dissections to determine whether a mosquito has previously laid eggs or not is the

current gold standard technique to determine mosquito age [22]. A related technique which

determines the number of dilatations in the ovaries indicates how many times a mosquito has

laid eggs [23]. Although these techniques require minimal reagents to operate, they are time

consuming and tedious allowing only a small proportion of samples to be dissected at a time

which can be an accurate representation of the age composition of a mosquito population.

Raman and infrared spectroscopy

Raman spectroscopy (RS) is a technique that provides chemical fingerprints of molecules by

determining their vibrational modes through inelastic scattering of photons known as Raman

scattering or Raman effect [24]. During Raman scattering, molecules gain energy from an inci-

dent light source. Raman effect is therefore the difference between monochromatic incident

and exit radiation. One of the important features that makes RS useful in biological applica-

tions is its ability to avoid interference by water molecules. This is due to inability of water to

induce Raman scattering. RS can be used as a quantification and identification measure for

biological samples. For example, RS has been used to identify molecular compositions in
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biological samples such as the eyes [25], teeth [26], muscles [27], and nerves [28] and quantify

molecular compositions in blood [29–31].

Infrared spectroscopy involves the interaction of infrared radiation with biological samples

to produce a diagnostic spectrum. It capitalises on the fact that molecules absorb light at spe-

cific frequencies characteristic of their chemical composition [32]. This implies that different

biological samples with varying chemical profiles have unique absorption and reflectance

properties characteristic of their functional groups and can therefore be quantified as peaks on

an infrared spectrum. The infrared portion of the electromagnetic spectrum consist of 3

regions: near-, mid-, and far-infrared. The near-infrared region consists of frequencies that

range from 14,000 to 4,000 cm−1 (800 to 2,500 nm wavelength) and is generally used to observe

excitation of overtone or harmonic molecular vibrations (Fig 1). The mid-infrared region con-

sists of frequencies that range from 4,000 to 400 cm−1 (2,500 to 25,000 nm wavelength) and is

used to study key rotational-vibrational structure (Fig 2). Therefore, mid-infrared wavelengths

provide more detailed analyses of a sample. Unlike near-infrared, mid-infrared is invasive and

is unsuited for in vivo studies.

Both Raman and infrared spectroscopy techniques are rapid and inexpensive techniques

compared to molecular and microscopy techniques for similar purposes. Although the initial

outlay for a NIR spectrometer can be costly (approximately $40,000 USD), benefits such as

minimal sample processing, large-scale applications, and minimal labour can outweigh these

initial cost in the long run [33].

Chemometrics/machine learning techniques are usually coupled with spectroscopy tech-

niques to produce diagnostic information required for sample characterisation. Following

development of training models, these techniques only require basic computer and spectra col-

lection skills. However, to date, there has not been a comprehensive review of applications of

these spectroscopy techniques for mosquito-borne diseases.

Fig 1. An example of an averaged NIRS raw spectra collected from the heads and thoraces of ZIKV-infected (red)

and uninfected (blue) Ae. aegypti mosquitoes. Adapted from Fernandes and colleagues [90].

https://doi.org/10.1371/journal.pntd.0009218.g001
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We systematically reviewed published evidence from 2009 to 2021 involving the use of

Raman and infrared spectroscopy techniques for the diagnosis of malaria parasites and arbovi-

ruses and for surveillance of mosquito vectors.

Methods

Search strategy

Standard systematic review and meta-analysis (PRISMA) guidelines were applied for this

review [34]. We searched PUBMED, MEDILINE, and Web of Science databases for peer-

reviewed journal articles published from 2009 to 2021 (January). We manually searched refer-

ence lists of included articles to capture relevant articles [35]. To identify articles on the appli-

cation of RS in the field of mosquito-borne diseases, the following key terms were used:

“Raman spectroscopy arboviruses,” “Raman spectroscopy malaria,” “Raman spectroscopy Chi-

kungunya,” “Raman spectroscopy Dengue,” “Raman Spectroscopy mosquitoes,” “Raman spec-

troscopy Ross River,” and “Raman spectroscopy Zika.” The application of infrared techniques

was searched in the same databases with the following key terms: “Infrared spectroscopy arbo-

virus,” “Infrared spectroscopy malaria,” “Infrared spectroscopy Chikungunya,” “Infrared spec-

troscopy Dengue,” “Infrared spectroscopy mosquitoes,” “Infrared spectroscopy Ross River,”

and “Infrared spectroscopy Zika.” No restrictions were applied to language. EndNote software

(Thompson Reuters, Philadelphia, Pennsylvania, United States of America) was used to store

articles retrieved from databases which were screened for duplicates. Titles and abstracts were

screened by two authors (BG and KC) to identify relevant publications that met the inclusion

criteria. Full-text review was applied by one author (BG) to determine the eligibility of articles.

Eligible articles were grouped into 3 categories based on the spectroscopy technique used, RS,

MIRS, and NIRS.

Inclusion and exclusion criteria

Articles were eligible for inclusion if they demonstrated use of RS, MIRS, and NIRS for the

diagnosis, detection, and visualisation of malaria parasites, arboviruses, or surveillance of mos-

quito vectors. Machine learning articles involving the same sample types were also included in

this review. Articles were excluded based on the following criteria: (a) abstract or full paper

was not accessible; (b) article does not mention RS, MIRS, or NIRS techniques; (c) article does

not mention mosquito-borne diseases; (d) RS, MIRS, or NIRS technique was not used in the

Fig 2. An example of an averaged MIRS spectra from dried blood infected with malaria parasites (red spectrum)

and uninfected blood (blue spectrum). Adapted from Mwanga and colleagues [70].

https://doi.org/10.1371/journal.pntd.0009218.g002
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main experiments; and (e) conference proceedings, commentaries, grey literature, short com-

munications, or review articles (Fig 3). Articles excluded are indicated in S2 Table.

Data extraction

Eligible articles were subjected to data extraction based on the following criteria: (a) type of

spectroscopy technique used; (b) type of sample analysed; (c) method of sample preparation;

(d) method of sample analysis; (e) method of data analysis; and (f) result of the experiment

based on the spectroscopy technique used (i.e., accuracy defined as the percentage of correct

predictions for a sample set, sensitivity defined as the proportion of positive samples that are

correctly predicted as positive, and specificity defined as the proportion of negative samples

that are predicted as negative).

Results of search strategy

Characteristics of journal articles included in this systematic review. A total of 1,023

peer-reviewed journal articles were identified through PUBMED, MEDILINE, and Web of

Science database searches. Seven peer-reviewed journal articles were identified by hand

searching eligible articles. A total of 405 unique articles were retained after duplicates were

removed using Endnote software. A total of 67 articles met our inclusion criteria and were sub-

jected to full text review. After full text assessment, 58 articles met our inclusion criteria for

this systematic review (Fig 3).

Time trend of journal articles in this systematic review. There has been an upward trend

in the number of peer-reviewed articles published in the field of RS, NIRS, and MIRS from 2009

Fig 3. Search and selection process based on PRISMA framework. A total of 58 peer-reviewed articles from 2009 to

2021 (January) were reviewed.

https://doi.org/10.1371/journal.pntd.0009218.g003
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to 2019, with a more than 2-fold increase in 2015. In 2011, a spike in the number of NIRS and

RS articles published was observed. A further increase in articles was observed in 2019 which

was mainly associated with the application of MIRS in the field of malaria. A decline in studies

from 2020 onwards is likely due to the ongoing COVID-19 pandemic (Fig 4).

In this review, 27 RS, 11 MIRS, and 20 NIRS studies were included. RS, MIRS, and NIRS studies

were first split into 2 groups; malaria and arbovirus studies and each of the 2 groups was further

split into articles that focused on diagnostics and vector surveillance (Table 1). All reviewed articles

under RS were related to its application for the diagnosis of malaria or arboviruses in whole blood/

red blood cells (RBCs)/serum/serum. All MIRS articles were related to its use for the diagnosis of

malaria parasite in RBCs and surveillance of malaria vectors. Finally, all but one NIRS article

reviewed assessed its use as a vector surveillance tool for malaria and arbovirus vectors.

Results and discussion

Application of RS for the diagnosis of malaria parasites

The application of RS to differentiate ring, trophozoite, and schizont stages of the malaria par-

asite in human O+ RBCs has been demonstrated. Plasmodium falciparum-infected RBCs at

the ring stage showed a characteristic Raman peak at 6,254 nm, while trophozoite and schizont

Fig 4. The number of articles included in this literature review that are related to RS, MIRS, and NIRS for the

diagnosis and surveillance of malaria and arboviruses classified by year of publication.

https://doi.org/10.1371/journal.pntd.0009218.g004

Table 1. Summary of all articles included in this literature review sorted by type of spectroscopy method and

scope of study.

Scope of study

Spectroscopy Technique

RS MIRS NIRS

Malaria parasite diagnostics 16 8 1

Malaria vector surveillance 0 3 12

Arbovirus diagnostics 11 0 0

Arbovirus vector surveillance 0 0 7

Total number of studies 27 11 20

MIRS, mid-infrared spectroscopy; NIRS, near-infrared spectroscopy; RS, Raman spectroscopy.

https://doi.org/10.1371/journal.pntd.0009218.t001
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stages had distinct peaks at 13,831 nm. The difference in the characteristic peaks were attributed

to the modification of the RBC membrane during the development of the parasite [36]. Another

strategy to enhance limit of detection of RS resonance utilised silver nanoparticles synthesised

within P. falciparum parasites. A limit of detection of 2.5 parasites/μL for the ring stage of P. fal-
ciparum was achieved [37]. In a separate study, both malaria and DENV patient’s whole blood

samples were differentiated from healthy samples with 83.3% accuracy with positive likelihood

ratios of 0.9529 and 0.9584, respectively [31]. When RS was used to predict Plasmodium vivax
infection in human plasma, an accuracy of 86% was achieved [38], whereas 1 parasite/μL of

either P. falciparum and P. vivax infections in whole blood could be detected with surface-

enhanced Raman spectroscopy (SERS) coupled with a nanostructured gold substrate [39]. A

study on how pressure affects the Raman spectra was carried out on synthetic hematin anhydride

equivalent to malaria pigment hemozoin. The intensity of RS peaks decreased when synthetic

hematin anhydride was subjected to increasing pressure up to 27 kbar above atmospheric pres-

sure [40]. As malaria is more prevalent in tropical countries, therefore, higher temperatures in

those countries could lead to increased pressure within blood samples during long-term storage.

This can influence the RS diagnostic signature obtained. Further tests using real-world malaria-

infected blood samples are required to confirm this phenomenon.

RS has also been used to study both blood and tissue stages of Plasmodium berghei-infected

mice. In a study reported by Hobro and colleagues [41], P. berghei infection progression was

monitored with a confocal Raman microscope via infected mouse at days 1, 2, 3, 4, and 7 post

inoculation. Heme-based changes were observed in mice at a parasitaemia of 0.2% in plasma,

and erythrocyte membrane changes were observed on day 4 post inoculation at 3% parasitae-

mia [41]. In mice infected with the P. berghei ANKA strain, significantly higher heme-based

Raman vibrations were observed in the tissue of mice with 5% parasitaemia compared with tis-

sues of uninfected mice indicating possible presence of hemozoin [42].

Several other studies applied RS to visualize the hemozoin pigment produced during

malaria infection. An atomic force Raman microscope was used to observe the effect of in

vitro treatment procedures on P. falciparum-infected RBCs. Results showed that infected

RBCs dried in phosphate buffer solution (PBS) causes localisation of hemichrome at the

periphery of RBCs, formaldehyde causes diffusion of haemoglobin into the surrounding areas

of the RBCs, while a mixture of formaldehyde (3%) and glutaraldehyde (0.1%) maintained the

structural integrity of RBCs [29]. Other studies involving RS visualisation of malaria infection

in RBCs include studies that show (a) an increase in hemozoin crystal size over time of infec-

tion [43], (b) improvement in visualization of β-hematin crystals with the use of magnetised

iron oxide core and silver shell nanoparticles [44], (c) similarity in biochemical compounds

found in intracellular and extracellular hemozoin [45], (d) an increase in intravascular heme

solubility due to nitric oxide interaction with heme [46], (e) a reduced oxygen-affinity for

intracellular haemoglobin [30], and (f) identification of five-coordinate high-spin ferric heme

complex in erythrocyte digestive vacuole [47].

Structural analysis of P. falciparum-infected RBCs using RS indicated a lower number of

domains arranged in transconformation, an increase in membrane protein and lipids, an

increase in deoxygenated haemoglobin, and a decrease in α-helical content with an increase in

undefined structures [48]. When resonance RS was used for the structural analysis of iron por-

phyrins and β-hematin, solid states iron porphyrin [Fe(OEP)]2O exhibited total symmetric

mode v4 when excited with 782 nm and 830 nm lasers. It was also observed that less supramo-

lecular interactions were present. Based on the difference in excitation and supramolecular

interactions, the authors suggested that the intensity of symmetric mode v4 is strongly affected

by C–H–X hydrogen bond interactions [49]. A summary of the studies that applied RS for

diagnosis of malaria are shown in Table 2.

PLOS NEGLECTED TROPICAL DISEASES Spectroscopy techniques for diagnosis and surveillance of malaria and arboviruses

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009218 April 22, 2021 8 / 24

https://doi.org/10.1371/journal.pntd.0009218


Table 2. A summary of articles reviewed that applied RS for the diagnosis of malaria parasite.

Objective/s Key finding/s Excitation

wavelength/nm

Data processing

technique

Reference

To study the effects of in vitro treatment procedures

on human RBCs infected with P. falciparum with

atomic force Raman microscope and Raman

mapping.

Micro-Raman maps and atomic force Raman

microscopic images were related to heme content in fixed

and dried RBCs. Hemichrome was found at periphery of

cells when RBCs were dried in PBS. Formaldehyde as a

fixative causes diffusion of haemoglobin into the

surrounding area of RBCs while a mixture of

formaldehyde (3%) and glutaraldehyde (0.1%) retained

the structural integrity of RBCs with minimal

autofluorescence allowing P. falciparum-infected RBCs to

retain knob like structures.

532 Unsupervised

hierarchical cluster

analysis

[29]

To differentiate P. vivax infected from uninfected

human RBCs with fiber array-based hyperspectral

Raman imaging using Raman optical tweezers.

Raman spectra peaks at regions 1,210–1,223, 1,356–1,366,

and 1,544–1,636 cm−1 were responsible for differentiating

healthy from P. vivax-infected RBCs.

785 None [30]

To monitor nitric oxide coordination with human

RBCs heme in isolated food vacuoles of P.

falciparum using Resonance RS.

Nitric oxide interacts with heme in food vacuoles to form

ferrous heme nitrosyl complexes which influence

intravascular heme solubility.

406.7 None [46]

To observe P. falciparum hemozoin crystals in

sectioned human RBCs with tip enhanced atomic

force Raman microscope.

RBCs were fixed in glutaraldehyde (0.1%) and

formaldehyde (2%) and embedded in LR-white medium.

Crystals with five-coordinate high-spin ferric heme

complex were observed in a digestive vacuole of a malaria

parasite infected cell.

532 PCA [47]

To improve identification of β-hematin crystals

with magnetic field enriched SERS.

β-hematin detection limit was approximately 30

parasites/μL with iron oxide core and silver shell

nanoparticles. Signal intensities were improved by 3 and

5 orders of magnitude with nanoparticles and when

nanoparticles were magnetised, respectively.

633 None [44]

To monitor P. berghei infection progression in mice

blood and plasma with confocal

Raman microscope.

Heme-based changes could be detected at 0.2%

parasitaemia in plasma and erythrocyte membrane

changes were observed when parasitaemia levels reached

3%.

532 PCA [41]

To diagnose P. vivax in human plasma with

resonance RS.

R2 value of 0.981 for training models were obtained.

Independent validation set yielded 86% accuracy.

532 PLS [39]

To analyse P. falciparum-infected human RBCs with

fiber array-based hyperspectral Raman imaging.

Hemozoin deposits in P. falciparum-infected RBCs and

differences based on infection time (up to 44 hours) was

observed. Hemozoin crystals increased in size over time.

532 None [43]

To investigate biochemical changes occurring in

macrophages during hemozoin uptake using

confocal Raman microscope.

Regardless of the macrophage location, intracellular and

extracellular hemozoin were biochemically similar. Some

hemozoin were associated with lipid-based components.

Spatial distribution of hemozoin was observed to be

inhomogeneous.

532 Singular value

decomposition and

PCA

[45]

To analyse the effect of ring-stage P. falciparum in

human RBCs with confocal Raman microscope.

Raman spectra differences between infected and healthy

human RBCs indicated that there was a lower number of

domains which were arranged in transconformation, an

increase in membrane protein and lipids, an increase in

deoxygenated haemoglobin and a decrease in α-helical

content with concurrent increase in undefined structures

in P. falciparum-infected RBCs.

785 PCA [48]

To detect and differentiate P. falciparum ring stage

from trophozoite and schizont stages in infected

human RBCs with SERS.

P. falciparum at ring stage had characteristic Raman peak

at 1,599 cm−1 while trophozoite and schizont stages were

both detected at 723 cm−1.

785 PCA [36]

To detect hemozoin in P. falciparum-infected

human blood using SERS with silver nanoparticles

synthesised inside or outside lysed RBCs.

Limit of detection was 2.5 parasites/μL when

nanoparticles were synthesised internally and 500

parasites/μL when synthesised externally.

633 nm PLS [37]

To identify differences in P. berghei ANKA infected

and noninfected tissue with confocal Raman

microscope.

Although imaging data indicated similar biochemical

profiles for the infected and uninfected tissues, the

presence of heme-based Raman vibrations in infected

cells indicated presence of hemozoin.

532 PCA [42]

(Continued)
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Application of RS for the diagnosis of arboviruses

A sensitivity of 97.38% and a specificity of 86.18% were achieved when RS was used to detect

DENV in blood plasma relative to ELISA testing for nonstructural protein 1, immunoglobulin

M (IgM), and immunoglobulin G (IgG) [50]. However, a lower predictive accuracy of 66% and

47% was observed when RS was used to detect DENV-infected blood sera relative to IgG and

IgM ELISA tests, respectively. The predictive accuracy of DENV based on IgG antibodies was

lower than the accuracy based on IgM probably because IgM is generated at the onset of the

infection before IgG. Overall, low accuracies were due to high false negative results [51]. Elevated

lactate concentration in human blood sera was observed in DENV-infected patients possibly due

to impaired function of body organs [52]. When support vector machine (SVM) learning models

coupled with polynomial kernel order 1 were applied, DENV was predicted with a predictive

accuracy of 85% and a sensitivity of 73% [53]. In a recent study, RS was used to differentiate

between bacteria (Salmonella Typhi) and virus (DENV) infections in human blood serum, with

12 distinct Raman bands linked to typhoid-infected samples and 4 to DENV [54].

Multiple studies have been conducted to determine the limit of detection of RS for identify-

ing arbovirus-related antigens, with emphasis on Rift Valley fever virus (RVFV) and West Nile

virus (WNV) using SERS coupled with gold and silver nanotags [55–58]. When gold paramag-

netic nanoparticles were used, the limit of detection for WNV-specific target DNA sequence

was 10 pM [57]. The same methodology was used to identify the limit of detection of RVFV

(20 nM) and WNV (100 nM) based on their RNA sequences [58]. RS and gold paramagnetic

nanoparticles tags were also used to simultaneously detect WNV and RVFV where detection

limits of 5 fg/mL and approximately 25 pg/mL were achieved when viruses were suspended in

PBS or PBS with fetal bovine serum, respectively [56]. However, when a polyacrylic acid layer

was applied, a reduction in background noise was observed and a limit of detection of 10 pg/

mL for WNV, RVFV, and Yersinia pestis antigens was achieved [55].

Detection limits as low as 10 plaque-forming units (PFU)/mL were achieved for both DENV

and WNV when SERS coupled with a bioconjugated gold nanoparticle was used [59]. Whereas a

limit of detection of 7.67 ng/mL for DENV and 0.72 ng/mL for ZIKV was achieved by coupling

Table 2. (Continued)

Objective/s Key finding/s Excitation

wavelength/nm

Data processing

technique

Reference

To investigate the effects of pressure on synthetic β-

hematin spectra with resonance RS.

Raman shift for key Raman active bands (V2, V10, V15,

V30, V37, V40, and V42) and a decrease in intensity of

Raman bands (at 718 nm excitation) was observed when

pressure was increased to 27 kbar (relative to atmospheric

pressure). Changes in chemical bond energies were

identified to be due to Fe (III) vibrations.

514, 633, and

718

None [40]

To rapidly distinguish between malaria-infected,

DENV-infected, and healthy patient’s blood plasma

with resonance RSa.

Raman spectra accuracy for malaria and DENV

distinction was 83.3%. Malaria infected vs healthy

controls and DENV infected vs healthy controls had

positive likelihood ratios of 0.9529 and 0.9584,

respectively.

785 PCA-DA [31]

To identify P. falciparum and P. vivax infection in

whole blood with nanostructured gold substrate

SERS.

Peaks at 1,370, 1,570, and 1,627 cm−1 were associated

with P. falciparum and P. vivax infection. Limit of

detection for P. falciparum-parasitised blood cells was 1

parasite/μL.

532 None [38]

aIn addition to malaria, this study also presents findings on the application of RS for diagnosis of DENV.

DENV, Dengue virus; PCA, principal component analysis; PCA-DA, principal component analysis-factorial discriminant analysis; PLS, partial least squares; RBC, red

blood cell; RS, Raman spectroscopy; SERS, surface-enhanced Raman spectroscopy.

https://doi.org/10.1371/journal.pntd.0009218.t002
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RS to a lateral flow assay [60]. These detection limits are lower relative to ELISA detection limits

of 120 ng/mL for ZIKV,<1 ng/mL for DENV, and 61 PFU/mL for WNV [61–63]. A summary

of the studies that applied RS for the diagnosis of arboviruses are shown in Table 3.

Application of MIRS for the diagnosis of malaria parasites

Asexual stages of P. falciparum could be differentiated with Synchrotron Fourier transform

infrared microspectroscopy and artificial neural network (ANN) based on the 2,800 to 3,100

cm−1 and to 1,000 to 1,800 cm−1 MIR regions with an accuracy of 100% for all stages tested

(rings, trophozoites, and schizonts) [64]. Stages of P. falciparum in human O+ RBCs were dif-

ferentiated with attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectros-

copy where rings, trophozoites, and gametocytes were distinct within 1,000 to 3,100 cm−1

regions. The study also identified that the limit of detection was <1 parasite/μL for the ring

stage blood samples [65].

Table 3. A summary of the articles reviewed that applied RS for the diagnosis of arboviruses.

Objective/s Key finding/s Excitation

wavelength/nm

Data processing

technique

Reference

To detect WNV DNA with SERS and magnetic

capture Raman active gold nanoparticles.

The limit of detection for the target sequence was 10 pM. 785 None [57]

To detect RVFV and WNV DNA with SERS and

silver-coated paramagnetic nanoparticles.

The limit of detection for RVFV and WNV was 20 nM and 100

nM, respectively.

785 None [58]

To detect RVFV N and WNV E proteins with SERS

and magnetic capture nanoparticles.

For both viruses, the limit of detection was approximately 5 fg/

mL in PBS and approximately 25 pg/mL in PBS with fetal

bovine serum.

785 None [56]

To detect DENV2 and WNV (from in vitro cells)

with bioconjugated gold nanoparticle-based SERS.

The limit of detection for DENV2 and WNV particles was 10

PFU/mL.

670 None [59]

To classify DENV infected from healthy human

blood sera with resonance RS.

An accuracy, precision, sensitivity and specificity of 85%, 90%,

73%, and 93%, respectively, was obtained.

532 SVM [53]

To identify DENV-infected patients blood sera with

resonance RS in comparison to ELISA for detecting

IgG and IgM.

Relative to IgG, an accuracy, precision, specificity, and

sensitivity of 66%, 70%, 72%, and 61% was achieved,

respectively. Relative to IgM, an accuracy, precision,

specificity, and sensitivity of 47%, 46%, 52%, and 43% was

achieved, respectively.

532 None [51]

To screen for DENV in human blood sera via

observation of lactate concentration with resonance

RS.

An increased intensity at 750, 830, and 1,450 cm−1 and

decreased intensity at 1,003, 1,156, and 1,516 cm−1 were

observed for DENV-infected blood sera samples relative to

controls.

532 None [52]

To distinguish between ZIKV and DENV NS1

biomarkers with SERS combined with a lateral flow

assay.

Detection limit for ZIKV NS1 was 0.72 ng/mL and the

detection limit for DENV NS1 was 7.67 ng/mL.

785 PLS [60]

To identify DENV-infected patients blood sera with

resonance RS in comparison to ELISA for detecting

NS1 protein, IgG, and IgM.

A sensitivity of 97.38% and a specificity of 86.18% was

achieved when RS was evaluated against NS1 protein, IgM, and

IgG ELISA.

785 PCA-DA [50]

To detect WNV, RVFV, and Yersinia pestis in fetal

bovine serum with SERS using silica-encapsulated

nanotags.

Limit of detection was approximately 10 pg/mL in 20% fetal

bovine serum for all infections tested.

785 None [55]

To differentiate typhoid and DENV infections in

human sera with confocal Raman microscope.

12 distinct bands were identified for typhoid infected samples

(562, 649, 716, 780, 838, 1,099, 1,144, 1,156, 1,260, 1,386, 1,556,

and 1746 cm−1) and 4 for DENV-infected samples (756, 1,218,

1,672, and 1,686 cm−1).

785 PCA-DA [54]

DENV, Dengue virus; IgG, immunoglobulin G, IgM, immunoglobulin M; NS1, nonstructural protein 1; PCA-DA, principal component analysis-factorial discriminant

analysis; PFU, plaque-forming unit; PLS, partial least squares; RS, Raman spectroscopy; RVFV, Rift Valley fever virus; SERS, surface-enhanced Raman spectroscopy;

SVM, support vector machine; WNV, West Nile virus; ZIKV, Zika virus.

https://doi.org/10.1371/journal.pntd.0009218.t003
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When MIRS was used for the detection of P. falciparum in human whole blood with parasi-

taemia ranging from 0% to 5%, a sensitivity of 70% and a specificity 98% was achieved [66].

Moreover, high-resolution infrared images of single cells infected with P. falciparum, changes

in MIRS spectra region relating to increases in amide A band (consisting of N–H stretching

modes of protein and C–H stretching region of lipids), and unsaturated fatty acids in infected

cells could be identified [67]. Focal plane array-Fourier transform infrared (FPA-FTIR) imag-

ing spectroscopy identified P. falciparum blood stages at a single-cell level [68] and a high-res-

olution FTIR could detect single malaria parasite-infected erythrocytes [67].

The effect of 3 different anticoagulants including sodium citrate, potassium ethylenedi-

aminetetraacetic acid, and lithium heparin on plasma and whole blood in aqueous and dry

phase on ATR-FTIR spectral signatures was tested. It was found that anticoagulants heavily

influenced the spectra of dry blood samples compared to wet samples. Of the 3 anticoagulants

tested, lithium heparin affected the mid-infrared spectra the least [69]. Findings from 2 most

recent studies indicate MIRS can detect P. falciparum field-collected human blood spots on fil-

ter paper. Mwanga and colleagues identified P. falciparum with FTIR from field samples col-

lected in Tanzania where an accuracy of 92%, sensitivity of 92.8%, and specificity of 91.7% in

comparison to PCR findings was achieved [70]. The second study was done with P. falciparum
samples collected in Thailand where a sensitivity of 92% and a specificity of 97% in compari-

son to PCR was observed [71]. A summary of the studies that applied MIR for diagnosis of

malaria are indicated in Table 4, and an example of a MIR spectra for malaria infected and

uninfected red blood cells is shown in Fig 2.

Application of MIRS for surveillance of malaria and arbovirus vectors

Highly variable accuracies were observed when MIRS was used to predict the age of labora-

tory-reared Anopheles arabiensis and Anopheles gambiae that ranged between 1 to 15 days old.

Predictive accuracies of 15% to 97% and 10% to 100% were attained for An. gambiae and An.

arabiensis mosquito species, respectively. Lower predictive accuracies were observed for mid-

dle age mosquitoes within 3 to 11 days old age group compared to 1 or 15 days old mosquitoes

for both species [72]. The same technique also differentiated between field-collected An. ara-
biensis and An. gambiae with an accuracy of 82.6% [72]. A separate study used ATR-FTIR

spectroscopy to predict the age of laboratory-reared wMel-infected Ae. aegypti with an accu-

racy of 95% to 97% and to detect Wolbachia infections in Ae. aegypti field mosquitoes with an

accuracy of 90% compared with that of PCR results. However, higher predictive accuracies of

95% to 97% were observed when mosquitoes were 2 and 10 days old. A significant difference

in biochemical components between male and female was also identified by ATR-FTIR spec-

troscopy and the technique differentiated the 2 groups with a specificity and sensitivity of 95%

to 100% [73].

Identification of the origin of a mosquito blood meal is crucial for the assessment of their

host preference. Furthermore, upscaling MIRS into field studies will require models that are

robust enough to accurately predict mosquitoes with various abdominal statuses including the

source of their blood and blood digestion stages. MIRS has been used to successfully differenti-

ate laboratory-reared An. arabiensis fed on goat, bovine, chicken, and human blood meals

with predictive accuracies of 96%, 97%, 100%, and 100%, respectively [74]. A summary of the

studies that applied MIR for surveillance of malaria and arbovirus vectors is shown in Table 5.

Application of Visible-NIRS for malaria and arbovirus vector surveillance

All studies on surveillance of mosquito vectors were conducted using a Labspec NIR spectrom-

eter (Malvern Panalytical, Malvern, United Kingdom) whose wavenumber range is 4,000 to
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28,571 cm−1. Most studies applied partial least squares (PLS) regression for data analysis to

predict the age, infection, and species of mosquitoes of malaria and arbovirus-transmitting

mosquitoes (Table 6).

In the past 12 years, NIRS has been used as an alternative strategy for age and species deter-

mination for malaria and arbovirus vectors in a range of studies under varying environmental

conditions. Initially, NIRS’ potential for predicting the age and species was demonstrated on

laboratory-reared mosquitoes where it was reported to be accurate for predicting the age of

those mosquitoes into ±3 days of their actual age or into� 7 days� old age group and for dif-

ferentiating An. gambiae from An. arabiensis with>90% accuracy [75]. Subsequent studies

using An. gambiae and An. arabiensis reared in a semi-field system reported similar accuracies

for age and species prediction [33,76]. More recent studies have indicated that the

Table 4. A summary of articles reviewed that applied MIRS for diagnosis of malaria parasites.

Objective/s Key finding/s Wavenumber

range/cm−1
Data

processing

technique

Reference

To distinguish asexual life cycle stages of P. falciparum in

human RBCs with Synchrotron-FTIR microspectroscopy and

ANN.

ANN analysis of the 1,000–1,800 cm−1 and 2,800–

3,100 cm−1 spectral region differentiated infected

from noninfected RBCs with a sensitivity of 100%

and a specificity 92%. The regions also differentiated

rings, trophozoites, and schizonts with 100%

accuracy.

1,000–3,100 ANN [64]

To differentiate and quantify early stage P. falciparum
parasites in human RBCs with ATR-IR.

Best predictions were obtained from lipid C–H

stretching at 2,800–3,100 cm−1. Ring, trophozoite,

and gametocyte stages could be differentiated. The

detection limit was 0.00001% parasitaemia.

600–4,000 PCA and PLS [65]

To detect and differentiate P. falciparum stages in human

RBCs with FPA-FTIR imaging spectroscopy.

Gametocyte and trophozoite haemozoin band were

observed at 1,208 cm−1 compared to uninfected and

ring stage RBCs. Other spectra peaks used to

differentiate P. falciparum stages were in the 2,917

cm−1 and 2,955 cm−1 regions. Images of uninfected,

ring, schizont, and trophozoite stages could be

differentiated.

950–3,100 PCA [68]

To diagnose P. falciparum-infected human RBCs at a single-

cell level on a microscope slide with FPA-FTIR spectroscopy.

High-resolution infrared images of single cells

infected with P. falciparum were taken and the

distinction of the digestive vacuole was observed. A

higher amount of amide A band and unsaturated

fatty acids were observed in infected cells.

2,500–3,600 PLS-DA [67]

To explore the effects of 3 anticoagulants (sodium citrate,

potassium ethylenediaminetetraacetic acid, and lithium

heparin) on aqueous and dry phase of human whole blood

with ATR-FTIR spectroscopy.

Among the 3 anticoagulants tested, lithium heparin

caused the least difference in the mid-infrared

spectra. In wet blood samples, the anticoagulant

influence on spectra was much less significant than

dry samples.

650–3,900 PCA and PLS [69]

To detect spiked P. falciparum, glucose, and urea in human

whole blood with ATR-FTIR spectroscopy.

Sensitivity and specificity for detecting P. falciparum
with parasitaemia >0.5% in whole blood was 70%

and 98%, respectively.

700–3,000 PLS-regression

and PLS-DA

[66]

To diagnose malaria infection in blood from malaria patients

in Thailand with ATR-FTIR spectroscopy.

A sensitivity of 90% and specificity of 91% were

achieved with PLS-DA and a sensitivity of 92% and

specificity of 97% were achieved when SVM was

used.

700–3,140 PLS-DA and

SVM

[71]

To distinguish between malaria positive and negative dried

blood spots contained in filter papers from malaria patients in

Tanzania with ATR-FTIR spectroscopy relative to qPCR.

An accuracy of 92%, sensitivity of 92.8%, and

specificity of 91.7% was achieved.

883–1,730 Logistic

regression

[70]

ANN, artificial neural network; ATR-IR, attenuated total reflectance infrared; FPA, focal plane array; FTIR, Fourier transform infrared; MIRS, mid-infrared

spectroscopy; PCA, principal component analysis; PLS, partial least squares; PLS-DA, partial least squares-discriminant analysis; qPCR, quantitative PCR; RBC, red

blood cell; SVM, support vector machine.

https://doi.org/10.1371/journal.pntd.0009218.t004
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chronological age of An. gambiae and An. arabiensis can be improved using alternative

machine learning techniques such as ANN as opposed to PLS regression analysis used in previ-

ous studies [77,78].

NIRS spectral features of laboratory-reared and wild-type An. arabiensis mosquitoes were

shown to be identical regardless of the environment and diet of the mosquito (i.e., field-caught

and laboratory-reared mosquitoes). Based on these findings, NIRS prediction models devel-

oped from laboratory-reared mosquitoes with known age could be possibly relied upon for

predicting the age of wild mosquito populations with unknown age [79]. Two studies have

demonstrated the potential of NIRS to predict the age of wild An. arabiensis and An. gambiae
mosquitoes. Krajacich and colleagues [80] reported age prediction accuracy of 73.5% to 97%

for wild and 69.6% for semi-field mosquitoes. This accuracy has recently been improved using

an autoencoder and ANN to predict the parity status of field mosquitoes [78]. Findings from 2

other studies indicated that NIRS could differentiate field-caught An. gambiae and An. ara-
biensis with a predictive accuracy of 90% [33,75]. NIRS has also been used to predict the age of

laboratory-reared Ae. aegypti [81] and Ae. albopictus [82] with or without Wolbachia with sim-

ilar accuracies as those recorded for An. gambiae and An. arabiensis. However, when NIRS

was used to predict Ae. albopictus mosquitoes reared from wild pupae using a model developed

from laboratory-reared mosquitoes, young and old mosquitoes could not be differentiated

[83]. Based on the authors’ description of their experimental design, the inability to predict the

age of mosquitoes collected from wild pupae is most likely due to a weak predictive model that

failed to capture the heterogeneity of the wild population including variation in the larval diet.

Alternatively, the small sample size used for model development was not robust [83]. A previ-

ous study indicated that Anopheles mosquitoes reared from wild pupae could be predicted

accurately if models were developed from a similar mosquito population and neither species

type nor exposure to pyrethroids affected the ability of NIRS to predict their age [76]. How-

ever, larval and adult diets have been previously shown to have an influence on age-related

spectral signatures [84].

Table 5. A summary of articles reviewed that applied MIRS for surveillance of malaria and arbovirus vectors.

Objective/s Key finding/s Wavenumber

range/cm−1
Data processing

technique

Reference

To differentiate between age and species of An.

gambiae and An. arabiensis with ATR-FTIR

spectroscopy.

MIRS differentiated field-collected sugar-fed and gravid

mosquitoes with an accuracy of 82.6%. Age prediction for

An. gambiae ranged from 90%–95% for 1 and 15 days old

and 10%–60% for 3, 5, 7, 9, and 11 days old. Age

prediction for An. arabiensis ranged from 60%–100% for 1,

7, 9, and 11 days old and 5%–40% for 3, 5, and 15 days old

mosquitoes.

400–4,000 Logistic

regression

[72]

To distinguish between various vertebrate abdominal

blood meals ingested by An. arabiensis with ATR-FTIR

spectroscopy and supervised machine learning.

Accuracies of 97% (Bovine blood), 100% (Human blood),

96% (Goat blood), and 100% (Chicken blood) were

achieved.

500–4,000 Logistic

regression

[74]

To determine sex, age, and the presence of Wolbachia
(wMel strain) in laboratory and field mosquitoes with

ATR-FTIR spectroscopy.

Infection among laboratory-reared mosquitoes was

predicted with >95% sensitivity and specificity.

Mosquitoes were grouped into 2 or 10 days old age groups

with an ROC of 0.991, and their sex was predicted with

97.4%. The infection status of field mosquitoes was

predicted with a sensitivity of 84% and a specificity 92%,

and their sex was differentiated with sensitivity and

specificity ranging from 95%–100%.

700–3,600 PLS-DA [73]

ATR, attenuated total reflectance; FTIR, Fourier transform infrared; MIRS, mid-infrared spectroscopy; PLS-DA, partial least squares-discriminant analysis; ROC,

receiver operation characteristic.

https://doi.org/10.1371/journal.pntd.0009218.t005
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Table 6. A summary of articles reviewed that applied Visible-NIRS for diagnosis and surveillance of malaria and arbovirus vectors. All studies on surveillance of

mosquito vectors were conducted using a LabSpec NIR spectrometer (Malvern Panalytical, Malvern, UK).

Objective/s Key finding/s Wavenumber

range/ cm−1
Data processing

technique

Reference

To determine the effects of dietary status on NIRS age

grading of laboratory-reared Ae. aegypti.
When all experimental groups were used in the model,

the highest predictive accuracy of 90% was achieved.

4,255–14,286 PLS [84]

To detect and differentiate 2 strains of laboratory-

reared Ae. aegypti infected with Wolbachia pipientis
(wMelPop and wMel).

wMelPop infected and uninfected females and males

were differentiated with 96% and 87.5% accuracy,

respectively. wMel infected and uninfected females and

males were differentiated with an accuracy of 92% and

89%, respectively. wMelPop and wMel infected females

and males were differentiated with an accuracy of

96.6% and 84.5%, respectively.

4,255–14,286 PLS [91]

To predict the age of laboratory-reared male and

female wild-type and Wolbachia-infected Ae. aegypti.
The age of female wMel and wMelPop-infected Ae.
aegypti was predicted as <8 or�8 days old with 83%

and 78% accuracy, respectively. The age of wild-type

female Ae. aegypti for the same age group was

predicted with 91% accuracy.

4,255–14,286 PLS [81]

To predict the age of laboratory-reared Ae. albopictus
Skuse.

When grouped into <7 or�7 days old age groups, an

accuracy of 94.5% was achieved, and when grouped

into >7, 7–13, and > 13 days old, an accuracy of 70.5%

was achieved.

4,255–14,286 PLS [82]

To detect ZIKV in heads/thoraces and abdomens of

laboratory-reared Ae. aegypti mosquitoes.

The predictive accuracy was 97.3% when spectra from

heads/thoraces were used. However, when spectra

from abdomens were used, a predictive accuracy of

88% was observed relative to RT-qPCR findings.

4,255–14,286 PLS [90]

To predict the age of Ae. albopictus adults reared

from the laboratory and wild pupae.

Age prediction models for laboratory-reared Ae.
albopictus differentiated 2- and 15-day-old mosquitoes

but could not distinguish Ae. albopictus mosquitoes

reared from wild pupae.

4,255–14,286 PLS and PCA [83]

To determine age and species of An. arabiensis and

An. gambiae from the lab and field.

Field-caught and laboratory samples of the 2 cryptic

species were differentiated with approximately 80%

and 100% accuracy, respectively. Age prediction

accuracy into <7 and�7 days old age groups was

approximately 80% for female mosquitoes. Age

prediction accuracy for male mosquitoes >7 days old

was�85% and for <7 days old was approximately

50%.

4,255–14,286 PLS [75]

To differentiate and predict the age of An. arabiensis
and An. gambiae s.s reared in a semi-field system.

Age prediction accuracy of An. arabiensis and An.

gambiae into <7 or�7 days old age groups were at

89% and 78%, respectively. Species were differentiated

with 89% accuracy. Wild-caught An. gambiae were

identified with 90% accuracy.

4,255–14,286 PLS [33]

To investigate the effects of various preservation

methods (Carnoy, drierite, ethanol, refrigerated, and

silica gel) on An. gambiae age prediction with NIRS.

Desiccants, refrigeration, and RNAlater were generally

good preservation methods based on NIRS age

prediction accuracies when compared to fresh samples

(>80% accuracy) and 95% confidence interval of <1.2

days). For mosquitoes stored >50 days, Carnoy and

silica gel had the closest accuracies of 81.7% and 81%,

respectively, compared with that of fresh samples.

4,255–20,000 PLS and regression [86]

To evaluate RNAlater as a preservative tool for An.

gambiae and An. arabiensis when using NIRS for age

and species grading.

Age prediction accuracy of mosquitoes into <7 or�7

days old age groups was 83% for fresh and 90% for

preserved. For species identification, accuracies were

82% for fresh and 80% for RNAlater.

4,255–20,000 PLS [85]

To predict the age of mixed species of Anopheles
mosquitoes reared from wild larvae/pupae under

varying environmental conditions and to determine

whether exposure to pyrethroids affected their age

prediction accuracy.

The age of wild larvae into <7 or�7 days old age

groups was predicted with an accuracy of 79%.

Anopheles mosquitoes that were not exposed, exposed,

resistant, and susceptible, to pyrethroids were

predicted with 79%, 79%, 82%, and 78% accuracies,

respectively.

4,255–20,000 PLS [76]

(Continued)
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Mosquitoes are commonly stored in various preservatives prior to spectral collection. Sev-

eral studies have demonstrated the effect of a range of preservation techniques on the predic-

tive accuracy of NIRS for age and species of An. gambiae and An. arabiensis. When RNAlater

was used as a preservative for 1 to 3 weeks, the prediction accuracy was relatively higher (90%)

for An. gambiae s.s and An. arabiensis compared to the accuracy of 83% for freshly scanned

mosquitoes [85]. However, there appeared to be a decline in accuracy from 86% to 75.6%

when mosquitoes were preserved for a longer period of time (50 to 62 days) [86]. Similarly, a

light decrease (on average as 3.6%) in accuracy when differentiating An. arabiensis from An.

gambiae were observed after 50 weeks of storage in silica gel [87]. For storage up to 4 weeks,

Table 6. (Continued)

Objective/s Key finding/s Wavenumber

range/ cm−1
Data processing

technique

Reference

To evaluate the effect preservation methods on the

predictive accuracy of NIRS for species differentiation

of laboratory-reared An. gambiae s.s. and An.

arabiensis.

Mosquitoes can be preserved in silica gel for up to 50

weeks with a predictive accuracy of 89.6% for An.

gambiae and 90.4% for An. arabiensis when compared

with fresh mosquitoes.

4,000–14,286 PLS [87]

To develop regression and classification models for

predicting parity status and P. falciparum sporozoites

using wild and lab-reared mosquitos.

Age prediction accuracy of independent datasets varied

from 41%–69.6% after PLS regression analysis was

applied. Highest accuracy of predicting nulliparous

from sporozoite positive mosquitoes was 62.5%.

4,255–20,000 PLS [80]

To identify P. berghei-infected laboratory-reared An.

stephensi mosquitoes.

Differentiated between infected and uninfected An.

stephensi female mosquitoes with an accuracy of 72%,

sensitivity of 70%, and specificity of 84%.

4,000–28,571 PLS [88]

To identify differences between spectra of laboratory-

reared and wild-caught An. arabiensis mosquitoes.

No significant differences were observed between

spectral signatures of laboratory-reared and wild-type

An. arabiensis. Silhouette coefficient of 0.25 indicated

no clustering of data points based on the environment

of the mosquitoes.

4,000–20,000 k-means, hierarchical

cluster analyses, and

PLS

[79]

To detect oocyst and sporozoite stage P. falciparum
infection in laboratory-reared An. gambiae.

Oocyst stages were predicted with 87.7% accuracy and

sporozoite stages were predicted with 94.5% accuracy

when validated against qPCR findings. These

predictive accuracies positively correlated with the

parasite concentration

4,167–20,000 PLS [89]

To determine if ANN instead of PLS regression age

prediction models for Anopheles and Aedes improves

the current accuracy of NIRS for mosquito age

grading.

Compared to PLS, the root mean squared error was

approximately 2% lower when ANN was used for age

prediction. When regression models were interpreted

as binary classifiers, ANN regression model accuracies

improved by approximately 10% for both species.

Generally, higher predictive accuracies were observed

for ANN compared to PLS in independent test sets.

4,000–14,286 PLS and ANN [77]

To predict the parity status of wild, An. arabiensis and

An. gambiae, with the use of an autoencoder coupled

with ANN models.

The prediction of accuracies of parity status were

improved by 13%–21% depending on the source of

mosquitoes and the sample size for An. arabiensis and

An. gambiae with the use of autoencoder coupled with

ANN models in comparison to ANN models alone.

4,000–20,000 ANN and

autoencoder

[78]

To predict the time post death of ZIKV, CHIKV, and

Wolbachia infection in female Ae. aegypti
mosquitoes.

The prediction accuracy for fresh, 1 day old, 2–4 days

old, and 5–7 days old achieved overall accuracies of

93.2%, 97%, and 90.3% for ZIKV, CHIKV, and

Wolbachia, respectively, in dead Ae. aegypti female

mosquitoes.

4,255–14,286 PLS [92]

To identify P. berghei infection in mice whole blood.a A peak at 650 nm was associated with P. berghei
infection at 4 to 7 days post infection. (P = 0.1094).

200–1,200 None [93]

aDiagnosis of malaria parasites study.

ANN, artificial neural network; CHIKV, Chikungunya virus; NIRS, near-infrared spectroscopy; PCA, principal component analysis; PLS, partial least squares; qPCR,

quantitative PCR; RT-qPCR, quantitative reverse transcription PCR; ZIKV, Zika virus

https://doi.org/10.1371/journal.pntd.0009218.t006
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RNAlater at 4˚C, refrigeration at 4˚C and silica gel are the recommended options for age and

species prediction [86,87]. The fact that the prediction accuracy of samples stored in silica gel

is comparable to the accuracy of fresh samples is encouraging as it means vector control pro-

grams would not be required to modify their current collection and storage protocols to adopt

the NIRS technique. However, although silica gel is cost-effective, maintaining desiccation for

a long period of time is a challenge. Due to its high cost, RNAlater is generally recommended

for small-scale studies that require RNA extraction to stabilise RNA in the samples prior to

analysis. Samples in RNAlater can stay at room temperature for a maximum of 2 weeks, hence

RNAlater could be an alternative to silica gel for field work where access to a fridge is limited.

NIRS has been used to identify mosquitoes infected with various pathogens such as P. ber-
ghei, P. falciparum, Wolbachia, CHIKV, and ZIKV. A prediction accuracy of 72% was achieved

when P. berghei-infected Anopheles stephensi were differentiated from uninfected mosquitoes

[88]. P. falciparum was detected in laboratory-reared An. gambiae, with accuracies of 88% for

oocyst stage and 95% for sporozoite stage (14 dpi). This predictive accuracy positively corre-

lated with the concentration of the parasite within the mosquito [89]. ZIKV in laboratory-

reared Ae. aegypti mosquitoes was predicted with an overall accuracy of 97.3% in the heads/

thoraces and 88.8% in abdomens in comparison to RT-qPCR [90] and wMel-infected Ae.
aegypti mosquitoes were predicted with accuracies of 92% for female and 89% for male mos-

quitoes [91]. Similarly, the presence of wMelPop in Ae. aegypti females and males was pre-

dicted with accuracies of 96% and 87.5%, respectively [91]. Furthermore, NIRS could

differentiate between wMel and wMelPop-transinfected mosquitoes with predictive accuracies

of 96.6% for females and 84.5% for males [91]. Overall, NIRS detected Wolbachia in females

more accurately than in male mosquitoes and in wMelPop more accurately than wMel proba-

bly based on concentration levels. Lastly, a recently published article provides evidence that

NIRS can also detect the presence of Wolbachia, ZIKV, and Chikungunya viruses in mosqui-

toes 7 days post their death [92]. A summary of the studies that applied NIRS for surveillance

of malaria and arbovirus vectors is shown in Table 6, and an example of NIRS raw spectra of

ZIKV infected and uninfected female Ae. aegypti is shown in Fig 1.

Application of Visible-NIRS for diagnosis of malaria parasites

Only one study has applied NIRS to detect P. berghei in the whole blood of mice infected with

rodent malaria. The study compared NIRS spectra of 6 P. berghei-infected mice and 6 uninfected

mice. A characteristic peak at 650 nm related to P. berghei infection increased in intensity with

rising parasitaemia (R2 value = 0.68) [93]. The study referenced has been added to Table 6.

Knowledge gaps in the application of Raman and infrared spectroscopy for

malaria and arboviruses

Although several studies have demonstrated the potential of RS for diagnosis of both malaria

and arboviruses in laboratory settings (Table 2), the validation of RS under real-world condi-

tions is an area that has not been fully investigated. Moreover, no studies were identified that

have assessed the potential of RS for surveillance and characterisation of mosquito vectors.

The use of MIRS for diagnosis of malaria has been recently demonstrated in the laboratory by

several studies and in the field by 2 studies [70,71], whereas its application as surveillance tool

for malaria vectors has only been demonstrated by 3 studies in the laboratory [72–74]. Future

research should assess the potential of MIRS for the diagnosis of arboviruses in humans and

validate its feasibility under field conditions for both malaria and arboviruses. NIRS has been

used in several studies for the surveillance and characterisation of mosquito vectors into age

groups, species identity, and infection status. However, most of the studies were conducted on
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laboratory samples. Only 2 studies reported that NIRS can differentiate field-collected An.

gambiae from An. arabiensis [33,75] and parous from nulliparous malaria vectors [78,80]. Fur-

ther work is required to demonstrate the full potential of NIRS in the field and to validate it

against gold standard techniques. Finally, only 1 study demonstrated that NIRS can detect

Plasmodium in mice blood [93] opening an opportunity to investigate its diagnostic capacity

for malaria and arboviruses in human tissues.

Conclusions

The objective of this systematic review was to demonstrate the various studies that have used

RS, MIRS, and NIRS as diagnostic tools for malaria and arboviruses or as surveillance tools for

mosquito vectors. These spectroscopy techniques are rapid, and NIRS and RS for example can

be applied non-invasively without consuming reagents. Their application for the diagnosis or

surveillance of malaria and arboviruses is a relatively new area of research. This review has

identified opportunities which could potentially assist in the development of these techniques

as future cost-effective, point-of-care diagnostics, or rapid surveillance tools for mosquito vec-

tors. For example, the recent development of multiple infrared-based and Raman devices

paired with advances in machine learning could revolutionise the application of these tech-

niques and subsequently enable their real-time application in the field. Of importance is the

standardisation and optimisation of currently available infrared and Raman spectra collection

techniques to enable reproducibility between samples and instruments. Also required is a

comprehensive assessment of Raman and infrared spectroscopy techniques to determine their

utility in the diagnosis of infections that cause similar symptoms in humans such as arbovi-

ruses. Finally, comparative studies to determine the relationship between spectral signatures

for mosquitoes infected with various pathogens including those that carry resistance genes

should be investigated. Other factors that need to be investigated include how host immunity,

age, gender, and blood type may all have an influence on spectral signatures collected.

The assessment of these devices in the field should be prioritised with the aim of developing

point-of-care tools to support epidemiological studies of malaria and arboviruses and ulti-

mately aide in combating current and future outbreaks of these infectious diseases. User-

friendly protocols coupled with field deployable devices and cloud-based artificial intelligence

platforms would improve the speed and reduce the cost of current disease surveillance pro-

grams by several magnitudes to facilitate rapid decision making by policy makers.

Key learning points

• Research in the application of RS as a potential surveillance tool for mosquito vectors

is recommended.

• Research in the application of MIRS as a potential tool for diagnosis of arboviruses is

recommended.

• Research in the application of NIRS for diagnosis of malaria and arboviruses is

recommended.

• A protocol for standardisation of sample and spectra collection is required to harmo-

nise the application of various spectroscopy techniques in multiple settings.
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