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Abstract

Amino acid metabolism within Trypanosoma brucei, the causative agent of human African

trypanosomiasis, is critical for parasite survival and virulence. Of these metabolic pro-

cesses, the transamination of aromatic amino acids is one of the most important. In this

study, a series of halogenated tryptophan analogues were investigated for their anti-para-

sitic potency. Several of these analogues showed significant trypanocidal activity. Metabolo-

mics analysis of compound-treated parasites revealed key differences occurring within

aromatic amino acid metabolism, particularly within the widely reported and essential trans-

amination processes of this parasite.

Author summary

The uptake and metabolism of amino acids, particularly the aromatic amino acids trypto-

phan, phenylalanine and tyrosine, is greatly important to the survival of Trypanosoma
brucei, the causative agent of human African trypanosomiasis (HAT). Substantial differ-

ences in amino acid metabolism between parasite and human host cells provide a poten-

tial route to selective chemotherapeutic agents, which has previously been exploited in the

case of the frontline HAT drug eflornithine. We have investigated analogues of the amino

acid tryptophan and found that several analogues displayed selective trypanocidal

potency, which strongly correlated to a structural modification of halogenation at the 7-

position of the indole ring. The trypanocidal activity of these potent compounds could be

reversed by supplementing growth media with excess levels of natural tryptophan, sug-

gesting competition and direct involvement of the compounds in tryptophan metabolism.

Investigation of parasite metabolism when treated with potent analogues revealed large

disturbances of the parasites’ metabolic function. Importantly, significant disruptions to

the metabolism of aromatic amino acids were observed, giving evidence for the direct dis-

ruption of this pathway by these compounds. In the future, these analogues could serve as

vital tools to gain a deeper understanding of the functional significance of these transami-

nation processes within T. brucei parasites.
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Introduction

The trypanosomatids are a group of biochemically related protozoan parasites, which cause a

wide range of both human and animal disease across the world [1]. African trypanosomatids

are endemic in sub-Saharan Africa, where they pose a significant risk to human life and inflict

economic losses of up to $4.5 billion per year through animal infection [2–6]. The two human-

infective sub-species of Trypanosoma brucei are transmitted by the tsetse fly (Glossina sp.) and

cause different forms of Human African Trypanosomiasis (HAT). T. b. gambiense causes a

slow-onset, chronic form of the disease throughout Western and Central Africa; while T. b.

rhodesiense causes a rapid, acute form of the disease in Eastern and Southern Africa. Current

treatments for HAT are inadequate and severely outdated, with many showing unacceptable

side-effects and mounting parasite resistance [7,8]. The World Health Organization (WHO)

has reported a drastic need for the development of new affordable and efficacious drugs for the

treatment of these diseases [9]. Whilst significant progress has been made in recent years, a

sustained effort is required to maintain disease control and the efficacy of new drugs now

entering the field if elimination targets are to be met.

Amino acid uptake is of paramount importance to trypanosomatid parasites and T. brucei
is auxotrophic for a number of amino acids [10–12]. In addition to their functional use in pro-

tein synthesis, T. brucei engages in the complex metabolism of amino acids for different cellu-

lar functions across the different morphologies of its life cycle. A recently published review

describes, in significant detail, the uptake and metabolism of amino acids in trypanosomatids.

[13] The frontline drug eflornithine is a non-natural amino acid analogue that targets amino

acid metabolism in T. brucei for the treatment of HAT. Eflornithine prevents the metabolism

of ornithine within T. brucei by covalently inhibiting ornithine decarboxylase [14,15]. While

Eflornithine may successfully inactivate both trypanosomal and human enzymes, the drug

achieves good species selectivity through differences in enzyme turnover rate [16]. Amino acid

metabolism is, therefore, a validated target for the treatment of trypanosomatid-derived dis-

ease, with potential for high parasite specificity.

The rapid consumption and turnover of the aromatic amino acids tryptophan, phenylala-

nine and tyrosine by T. brucei is one of the most important and widely studied aspects of

amino acid metabolism by trypanosomatids [17–19]. It is well reported that these aromatic

amino acids are depleted from host plasma during trypanosome infection [20–22] and T. bru-
cei converts exogeneous sources of these amino acids to their corresponding α-ketoacids indo-

lepyruvate, phenylpyruvate and 4-hydroxyphenylpyruvate that are mostly excreted by the

parasite and, in turn, by the host [20,23–25]. While the functional significance of this transami-

nation process is not fully understood, it has been suggested that the excreted products are

responsible for some of the second stage neurological symptoms of HAT [21,22] and/or help

potentiate T. brucei infections by reducing the effectiveness of the host’s innate immune sys-

tem [26].

Given the importance of the uptake and metabolism of aromatic amino acids in T. brucei
and the established use of eflornithine in the treatment of HAT, we sought to investigate non-

natural tryptophan analogues for their trypanocidal activity and mode of action.

Methods

Cell culture

Bloodstream trypomastigote form Trypanosoma brucei brucei Lister 427 strain were grown at

37˚C in HMI-11 medium [27] supplemented with 10% heat-inactivated foetal bovine serum
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(HI-FBS, Sigma) and 2.5 μg/mL G418 (Calbiochem) with 5% v/v CO2 atmosphere. Cells were

passaged every 2–3 days to maintain mid-log phase.

Procyclic trypomastigote form Trypanosoma brucei brucei strain 29–13 were grown at 28˚C

in SDM-79 medium [28] (Gibco) supplemented with 10% heat-inactivated foetal bovine

serum (HI-FBS, Sigma) and 12.5 μg/mL G418 (Calbiochem) and 25 μg/mL hygromycin (For-

medium) with 5% v/v CO2 atmosphere, as described. Cells were passaged every 2–3 days to

maintain mid-log phase.

Epimastigote form Trypanosoma cruzi CL Brener strain were grown at 28˚C in RTH

medium [29] (RPMI 1640) (Sigma) supplemented with 20 mM HEPES pH 7.2, 4.9 mg/mL

tryptone, PGAB (2 mM sodium glutamate, 2 mM sodium pyruvate, 100 μg/mL streptomycin

and 100 U/mL penicillin, 20 mg/mL hemin and 10% HI-FBS; all Sigma). Cells were passaged

every 3–4 days to maintain mid-log phase.

Promastigote form Leishmania major Freidlin strain were grown at 28˚C in M199 medium

(Sigma) pH 7.4, supplemented with 40 mM HEPES pH 7.4, 100 μM adenosine, 5 μg/mL

hemin and 10% HI-FBS. Cells were passaged every 2–3 days to maintain mid-log phase.

HeLa cells (ATTC CCL-2) were grown at 37˚C in Dulbecco’s Modified Eagle Medium

(DMEM, Sigma) supplemented with 10% HI-FBS with 5% v/v CO2 atmosphere. Cells were

passaged every 3–4 days to maintain confluence.

Dose-response cytotoxicity assays

Specific details for each cell line are given below. In general: parasites were counted using

CASY TT Cell Counter and mammalian cells were counted using a haemocytometer. Alamar

blue cell viability assays were performed, whereby cells were incubated in the appropriate

media containing the treatment compound (dissolved in DMSO) in serial dilution, after which

the alamar blue cell viability reporter was added and the cells incubated further. Fluorescence

was recorded using a FLx 800 plate reader (BioTek) with excitation wavelength 530–535 nm

and emission wavelength at 590–610 nm using Gen5 Reader Control 2.0 Software (BioTek).

EC50 values were determined using a 4-parameter non-linear logistic regression equation

using GraFit 5.0 (Erithacus Software). SD values were calculated based on curve fitting to n
biological replicates performed in parallel.

Bloodstream trypomastigote form T. b. brucei were maintained in HMI-11 medium as

described above. Mid-log-phase cells were added to compound (2-fold serially diluted in

HMI-11 growth medium) to a density of 1×103 cells/well (final volume 200 μL) and incubated

at 37˚C with 5% v/v CO2 for 72 h. After which, 10 μL alamar blue (1.1 mg/mL resazurin

sodium salt in PBS) was added to all wells and the cells incubated for a further 7 h before

recording fluorescence.

Procyclic trypomastigote form T. b. brucei were maintained in SDM-79 medium as

described above. Mid-log-phase cells were added to compound (2-fold serially diluted in

SDM-79 growth medium) to a density of 1×104 cells/well (final volume 200 μL) and incubated

at 28˚C with 5% v/v CO2 for 72 h. After which, 10 μL alamar blue (1.1 mg/mL resazurin

sodium salt in PBS) was added to all wells and the cells incubated for a further 7 h before

recording fluorescence.

Epimastigote T. cruzi CL Brener was maintained in RTH growth medium as described

above. Mid-log-phase cells were added to compound (2-fold serially diluted in RTH

growth medium) to a density of 5×105 cells/well and incubated at 28˚C (final volume

200 μL) for 72 h. After which, 10 μL alamar blue (1.1 mg/mL resazurin sodium salt in

PBS) was added to all wells and the cells incubated for a further 7 h before recording

fluorescence.
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Promastigote L. major strain Freidlin were maintained in M199 growth medium as

described above. Mid-log-phase cells were added to compound (2-fold serially diluted in

M199 growth medium) to a density of 2×104 cells/well (final volume 200 μL) and incubated at

28˚C for 72 h. After which, 10 μL alamar blue (1.1 mg/mL resazurin sodium salt in PBS) was

added to all wells and the cells incubated for a further 7 h before recording fluorescence.

HeLa cells were maintained in DMEM as described above. Cells were added to compound

(2-fold serially diluted in HMI-11 growth medium) to a density of 1×104 cells/well (final vol-

ume 200 μL) and incubated at 37˚C with 5% CO2 for 72 h. After which, 10 μL alamar blue (1.1

mg/mL resazurin sodium salt in PBS) was added to all wells and the cells incubated for a fur-

ther 7 h before recording fluorescence.

Imaging of T. brucei cells

Bloodstream form T. b. brucei were grown in HMI-11 media containing EC10 concentration of

the compound, or without the compound as a control, at 37˚C with 5% CO2 for 72 h. Cells

were counted and 1×106 cells removed, adjusted to 1 mL final volume and Mitotracker red

(Invitrogen) added to a final concentration of 100 nM. Samples were incubated for 30 min,

37˚C, before cells were pelleted by centrifugation (1000 g, 10 min, 4˚C) and the supernatant

removed. Cells were washed with HMI-11 medium (1 mL), resuspended in fresh HMI-11

medium (1 mL) and incubated for 30 min, 37˚C, before being pelleted by centrifugation (1000

g, 10 min, 4˚C). Cells were fixed in paraformaldehyde solution (100 μL, 4% in PBS) and incu-

bated in the dark for 10 min, 20˚C. Cells were pelleted (1000 g, 10 min, 4˚C), resuspended in

PBS containing 1 μg/mL 40,6-diamidino-2-phenylindole (DAPI, ThermoFisher) before

mounting on slides. Cells were imaged using a DeltaVision Ultra microscope, measuring fluo-

rescence independently for DAPI and MitoTracker red, as well as capturing differential image

contrast (DIC) to show overall morphology. A total of 20 images were captured for both

treated and untreated cells: 4 separate biological replicates, 5 images per replicate. The total

number of clearly visible and non-overlapping parasites was 52 and 44 for untreated and

treated conditions, respectively. Each image was captured on all 3 channels and processed

using SoftWoRx imaging software. Representative images were selected for use in figures.

Preparation of samples for proteomic analysis

Bloodstream form T. b. brucei were grown in HMI-11 media containing EC10 concentration of

compound, or without the compound as a control, at 37˚C with 5% CO2 for 72 h. Cells were

counted and 2×107 cells collected, then pelleted by centrifugation (1000 g, 10 min, 4˚C) and

the supernatant removed. Cells were resuspended in PBS (1.0 mL) and transferred to pre-

cooled Eppendorf tubes, then pelleted by centrifugation (2500 g, 5 min, 4˚C) and the superna-

tant removed. Cells were then washed with PBS (1.0 mL), pelleted by centrifugation (2500 g, 5

min, 4˚C) and the supernatant removed. Cell pellets were lysed with aqueous urea (aq, 5 M,

20 μL) and stored at -80˚C until analysis.

MS analysis of cellular protein samples

Cell samples dissolved in urea (aq, 5 M, 20 μL) were analysed. Briefly, following disulfide

reduction (dithiothreitol), cystine alkylation (iodoacetamide) and digestion by trypsin prote-

ase, peptide fragments were eluted through a C18 RP-LC column and analysed by MALDI-MS.

Results were analysed by Mascot software compared to the T. brucei 927 database, both with

and without a mass modification of tryptophan accounting for chlorination (+34 Da).
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Preparation of samples for metabolomics analysis

Cell and media metabolite extractions were performed in at least triplicate for each condition,

using a single separate parasite culture for each replicate and compared to untreated control cell

and media samples. Bloodstream form T. b. brucei were grown in HMI-11 media containing

EC10 concentration of compound at 37˚C with 5% CO2 for 72 h. Cells were counted and 1×108

cells collected, then their metabolism was quenched by rapid cooling to 4˚C using a CO2/ethanol

bath. Cells were stored on ice for the remainder of the procedure. Cells were pelleted by centrifu-

gation (1000 g, 10 min, 4˚C) and 5 μL of the supernatant collected for metabolite analysis (spent

media samples) with the remainder being discarded. Cells were resuspended in PBS (1.0 mL) and

transferred to pre-cooled Eppendorf tubes, then pelleted by centrifugation (2500 g, 5 min, 4˚C)

and the supernatant removed. Cells were then washed with PBS (1.0 mL), pelleted by centrifuga-

tion (2500 g, 5 min, 4˚C) and the supernatant removed. The cell pellets and spent media samples

were resuspended in a cooled mixture of chloroform:methanol:water (1,3:1, 200 μL) followed by

rocking (1 h, 4˚C). Insoluble debris was then removed from the extraction mixture by centrifuga-

tion (13000 g, 5 min, 4˚C) and the supernatant collected. A quality control sample was created to

ensure accurate metabolite analysis by combining 20 μL of each sample within the study (both

cells and media). Samples were stored under argon and frozen (-80˚C) until analysis.

MS analysis of metabolite samples

Metabolomics samples were analysed via liquid chromatography-mass spectrometry (LC-MS)

based on methods previously described [30]. Hydrophilic interaction liquid chromatography

(HILIC) was performed using a Dionex UltiMate 3000 RSLC system (Thermo Fisher Scien-

tific, Hemel Hempstead, UK) using a ZIC-pHILIC column (150 mm x 4.6 mm, 5 μm column,

Merck Sequant). The column was maintained at 25˚C and samples were eluted with a linear

gradient using the solvent system A) 20 mM (NH4)2CO3 in H2O and B) C2H3N over 26 min-

utes (flow rate 0.3 ml/min). Samples were injected (10 μl) and were maintained at 5˚C prior to

injection. MS analysis was performed using a Thermo Orbitrap QExactive (Thermo Fisher Sci-

entific) operated in polarity switching mode (Resolution = 70000; AGC = 1e6; m/z = 70–1050;

Sheath gas = 40, Auxiliary gas = 5, Sweep gas = 1; Probe temperature = 150˚C, Capillary

temperature = 320˚C). For positive mode ionisation: source voltage +3.8 kV, S-Lens RF Level

30.00, S-Lens Voltage -25.00 (V), Skimmer Voltage -15.00 (V), Inject Flatopole Offset -8.00

(V), Bent Flatapole DC -6.00 (V). For negative mode ionisation: source voltage -3.8 kV. Pooled

samples were employed for quality control purposes to assess reproducibility of the instru-

ment, being analysed at 5-sample intervals throughout the run. Data analysis was performed

using the IDEOM analysis pipeline [31] for data filtering and metabolite annotation. Metabo-

lite annotations are assigned at Level 2 in accordance with Metabolomics Standards Initiative

directives [32], given annotations are putative annotations made based on accurate masses and

predicted retention times. For metabolites matched to authentic standards in IDEOM, putative

annotations equate to Level 1 identification. IDEOM Excel output files and raw data files are

available from the Metabolights database [33] (https://www.ebi.ac.uk/metabolights/

MTBLS1657). The Polyomics Integrated Metabolomics Pipeline (PiMP)[34] was also used for

data visualisation, particularly for the assessment of fragmentation data.

Synthesis of compounds 8–13

Parent halogenated L-tryptophan derivatives 1–7 were kindly synthesized and provided by R.

J. M. Goss and co-workers (University of St Andrews) in their free-base form and were used

without further purification. Information on their synthesis and characterization has been pre-

sented in a recent publication [35].
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General Procedure for the Preparation of Substituted L-Tryptophan Methyl Esters 8–13

To a solution of substituted L-tryptophan (ca. 45 mg) in methanol (2 mL) at 0˚C was added

Acetyl chloride (200 μL) dropwise. The reaction was heated to reflux for 2 h then the solvents

removed under reduced pressure to give substituted tryptophan methyl esters as their hydro-

chloride salts which were used without further purification.

8 –methyl 5-chloro-L-tryptophanate hydrochloride

8 was prepared via the general method above, using 5-chloro-L-tryptophan (46.1 mg, 0.19

mmols) to give the ester as an off white solid (54.1 mg, 97%). 1H NMR (500 MHz, MeOD) δ
7.51 (d, J = 1.9 Hz, 1H, H7), 7.35 (d, J = 8.6 Hz, 1H, H10), 7.26 (s, 1H, H13), 7.09 (dd, J = 2.0, 8.6

Hz, 1H, H9), 4.31 (t, J = 6.2 Hz, 1H, H3), 3.79 (s, 3H, H1), 3.45–3.31 (m, 2H, H4).

9 –methyl 6-chloro-L-tryptophanoate hydrochloride

9 was prepared via the general method above, using 6-chloro-L-tryptophan (46.6 mg, 0.20

mmols) to give the ester as a pale brown solid (56.0 mg,>99%). 1H NMR (500 MHz, MeOD)

δ 7.52 (d, J = 8.4 Hz, 1H, H7), 7.42 (d, J = 1.7 Hz, 1H, H10), 7.26 (s, 1H, H13), 7.06 (dd, J = 1.7,

8.5 Hz, 1H, H8), 4.35 (t, J = 6.2 Hz, 1H, H3), 3.80 (s, 3H, H1), 3.48–3.38 (m, 2H, H4).

10 –methyl 7-chloro-L-tryptophanoate hydrochloride

10 was prepared via the general method above, using 7-chloro-L-tryptophan (45.7 mg, 0.19

mmols) to give the ester as a cream solid (55.2 mg,>99%). 1H NMR (500 MHz, MeOD) δ 7.52

(dd, J = 0.9, 7.9 Hz, 1H, H7), 7.32 (s, 1H, H13), 7.19 (dd, J = 0.8, 7.6 Hz, 1H, H9), 7.07 (t, J = 7.8

Hz, 1H, H8), 4.36 (dd, J = 5.7, 7.1 Hz, 1H, H3), 3.80 (s, 3H, H1), 3.54–3.37 (m, 2H, H4).

11 –methyl 5-bromo-L-tryptophanoate hydrochloride
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11 was prepared via the general method above, using 5-bromo-L-tryptophan (43.9 mg, 0.16

mmols) to give the ester as a red-brown solid (48.0 mg, 98%). 1H NMR (500 MHz, MeOD) δ
7.70 (d, J = 1.8 Hz, 1H, H7), 7.35 (d, J = 8.6 Hz, 1H, H10), 7.27 (s, 1H, H13), 7.25 (dd, J = 1.8, 8.6

Hz, 1H, H9), 4.35 (t, J = 6.2 Hz, 1H, H3), 3.83 (s, 3H, H1), 3.40 (t, J = 6.4 Hz, 2H, H4).

12 –methyl 6-bromo- L-tryptophanoate hydrochloride

12 was prepared via the general method above, using 6-bromo-L-tryptophan (43.0 mg, 0.15

mmols) to give the ester as a pale brown solid (47.9 mg,>99%). 1H NMR (500 MHz, MeOD)

δ 7.59 (d, J = 1.7 Hz, 1H, H10), 7.48 (d, J = 8.5 Hz, 1H, H7), 7.25 (s, 1H, H13), 7.20 (dd, J = 1.7,

8.5 Hz, 1H, H8), 4.35 (t, J = 6.4 Hz, 1H, H3), 3.81 (s, 3H, H1), 3.45 (dd, J = 5.6, 15.2 Hz, 1H,

H4), 3.38 (dd, J = 7.1, 15.3 Hz, 1H, H4’).

13 –methyl 7-bromo- L-tryptophanoate hydrochloride

13 was prepared via the general method above, using 7-bromo-L-tryptophan (47.6 mg, 0.17

mmols) to give the ester as a red-brown solid (53.1 mg,>99%).1H NMR (500 MHz, MeOD) δ
7.56 (d, J = 7.9 Hz, 1H, H7), 7.34 (d, J = 7.5 Hz, 1H, H9), 7.34 (s, 1H, H13), 7.02 (t, J = 7.8 Hz,

1H, H8), 4.36 (t, J = 6.4 Hz, 1H, H3), 3.80 (s, 3H, H1), 3.47 (dd, J = 5.7, 15.2 Hz, 1H, H4), 3.40

(dd, J = 7.1, 15.2 Hz, 1H, H7).

14 –methyl 7-iodo- L-tryptophanoate hydrochloride

14 was prepared via the general method above, using 7-iodo-L-tryptophan (49.2 mg, 0.15

mmols) to give the ester as a cream solid (51.4 mg, 90%). 1H NMR (400 MHz, MeOD) δ 7.58

(dd, J = 0.9, 8.0 Hz, 1H, H7), 7.56 (dd, J = 0.9, 7.5 Hz, 1H, H9), 7.32 (s, 1H, H13), 6.89 (t, J = 7.7

Hz, 1H, H8), 4.36 (dd, J = 5.7, 7.1 Hz, 1H, H3), 3.80 (s, 3H, H1), 3.50–3.34 (m, 2H, H4).

Results

Synthesis and initial bioactivity

Recent work by Goss and co-workers investigated modified tryptophan synthase enzymes

capable of synthesizing a range of halogenated tryptophan derivatives from halo-indole and

serine [35]. A range of substituted tryptophan analogues (1–7) were chosen for investigation

into their trypanocidal activities. Free acids 1–7 were also converted to their corresponding

methyl esters 8–14, in order to aid cellular uptake by masking of the carboxylate functionality

(Fig 1). Compounds 1–14 were tested for bioactivity activity against T. brucei bloodstream

form (BSF) trypomastigotes and the HeLa mammalian cell line, alongside natural tryptophan

(15) and its methyl ester (16). Corresponding EC50 values and selectivity indexes (SI) are
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shown in Table 1. Compounds were also tested against Trypanosoma cruzi epimastigotes and

Leishmania major amastigotes, however, they showed no activity below 250 μM (S1 Table).

A distinct trend in bioactivity was observed regarding the different positions of indole haloge-

nation, where 7-substituted compounds displayed significantly more potent activity than their 5

and 6-substituted counterparts. The trend was conserved for both compound types, with free

acids 3, 6, 7 and methyl esters 10, 13, 14 displaying up to 45-fold higher trypanocidal activity

than their analogues bearing alternative substitution patterns. Methyl esterification increased try-

panocidal activity of all compounds except natural L-tryptophan, with 7-substituted compounds

10, 13 and 14 displaying a>10-fold increase over 3, 6 and 7, respectively. All compounds showed

no detectable activity against the HeLa human cell line, giving compounds 10, 13 and 14 promis-

ing selectivity indexes (SI) of 71.4, 67.6, 92.6, respectively. This data provided encouraging evi-

dence that these compounds possess a trypanosome-selective mechanism of cytotoxicity.

T. brucei express prolific cytosolic esterase enzymes, which are capable of hydrolyzing a

broad range of esters. It is likely that esters 7–14 are precursors that are rapidly cleaved within

the parasite cells, giving the corresponding free acids as the active intracellular agents. The

improved activity of methyl esters 7–14 can, therefore, be explained by their improved cell per-

meability, due to their ability to passively diffuse across trypanosomal membranes [36]. Their

free acid counterparts 1–7 would likely require the use of aromatic amino acid transporters to

permeate cells [13,37] and would, therefore, display comparatively reduced bioavailability. It is

not clear whether methyl esters may also capitalize on the use of these transporters to gain

additional cellular permeability.

As closely related structural analogues of tryptophan, we first sought to investigate the rela-

tionship between analogue activity against T. brucei and concentrations of natural tryptophan

within growth medium. The EC50 values of the most active methyl esters 10, 13 and 14 were

Fig 1. Conversion of halogenated tryptophan analogues 1–7 to their corresponding methyl esters 8–14, as well as

natural tryptophan (15) to 16. The general structure for tryptophan analogues 1–7 is labelled with standard indole

ring system numbering for clarity.

https://doi.org/10.1371/journal.pntd.0008928.g001

Table 1. Bioactivity of tryptophan derivatives 1–7 and their methyl esters 8–14, as well as natural tryptophan (15) and its methyl ester 16, against T. brucei blood-

stream form trypomastigotes and HeLa cells. Mean half maximal growth inhibition (EC50) values (μM) determined from n = 4 replicates, all SD values (not shown)

were within 10% of each EC50 value. nd-not determined.

Free Acids 1 2 3 4 5 6 7 15

T. bruceia (SId) >250 (nd) >250 (nd) 47.4 (>5.3) >250 (nd) >250 (nd) 46.1 (>5.4) 42.0 (>5.9) >250 (nd)

HeLa >250 >250 >250 >250 >250 >250 >250 >250

Methyl Esters 8 9 10 11 12 13 14 16

T. bruceia (SId) 149.5 (>1.7) 157.9 (>1.6) 3.5 (>71) 101.7 (>2.5) 139.7 (>1.8) 3.7 (>67) 2.7 (>92) >250 (nd)

HeLa >250 >250 >250 >250 >250 >250 >250 >250

aTrypanosoma brucei brucei bloodstream form trypomastigotes.
dEC50 of mammalian cells/EC50 off parasite

https://doi.org/10.1371/journal.pntd.0008928.t001
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measured in varying levels of tryptophan supplementation (Fig 2), revealing a decrease in

compound potency when exposed to elevated levels of tryptophan (>15 μM supplement). In

growth medium treated with the maximal 250 μM of additional tryptophan, compounds dis-

played approximately 20-fold reduced activity.

Proteomic analysis

Since tryptophan is an important amino acid in protein structure [38], we assessed the poten-

tial incorporation of substituted tryptophan analogues into trypanosomal protein synthesis,

which could potentially result in the production of non-functional proteins. Cellular protein

samples from T. brucei treated with 3 μM (EC10) of the 7-chloro methyl ester 10 were digested

Fig 2. The effect of supplementary tryptophan (μM) added to media on the EC50 values (μM ±SD) of substituted tryptophan methyl

esters 10, 13 and 14 against T. brucei BSF. SD determined from n = 3 replicates.

https://doi.org/10.1371/journal.pntd.0008928.g002
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with trypsin and analyzed by mass spectrometry (MS). Analysis of the resulting MS Data by

MASCOT identified 5 peptides in treated parasites potentially containing the +34 Da modifi-

cation (corresponding to the substitution of Trp with 35Cl-Trp), and 1 peptide in untreated

parasites (S2 Table and S3 Table). Each of these six peptides belonged to a separate protein and

only the modified peptide was detected for each protein. Assignments are, therefore, of low

confidence, meaning identification of these modified peptide masses may be a result of mis-

assignment. As incorporation into protein synthesis would be ubiquitous, the absence of Cl-

Trp in high-abundance, high-turnover proteins (such as tubulin α and β subunits), as well as

the low confidence in assigning possible detected peptides, suggests that the 7-substituted tryp-

tophan analogues are not incorporated during protein synthesis.

Metabolomic analysis

We next investigated the effect of the substituted tryptophan analogues on the amino acid

metabolism of T. brucei. Trypanosomes grown in both treated (with EC10 of ester 10 for 72 hr)

and untreated media were stained with DAPI and MitoTracker Red, to highlight nuclear and

mitochondrial structures, then examined by optical and fluorescence microscopy (Fig 3). Para-

sites grown in both treated and untreated media show healthy morphology, with preserved

mitochondrial form and function (shown by the successful accumulation of mitotracker dye,

which requires mitochondrial potential, (Fig 3). K/N analysis was performed, albeit with a

somewhat low sample size (n = 52 and 44 for untreated and treated, respectively), and showed

comparable values between treated and untreated parasites: Untreated 1K/1N 67%; 1K�/1N

19%; 1K/1N� 4%; 2K/1N 4%; 2K/2N 2%. Treated 1K/1N 61%; 1K�/1N 18%; 1K/1N� 7%; 2K/

1N 11%; 2K/2N 2%. (� denotes an elongated organelle, likely in the process of replication). The

maintenance of healthy cellular function was crucial to subsequent metabolomic investiga-

tions, so that observations could be linked solely to analogue effect and not metabolic shut-

down caused by cell death.

Due to the limited supply of the tryptophan analogues, the 7-bromo ester 13 was used for

further metabolomic analysis. Since the compounds’ structures and efficacy are highly similar,

Fig 3. Representative images of T. brucei BSF. A. Control cells. B. Cells treated with analogue 10 (EC10). From left to right: DIC

microscopy identifying cellular structure; MitoTracker Red fluorescence identifying parasite mitochondria; DAPI fluorescence

identifying parasite DNA (nucleus and kinetoplast); DAPI and MitoTracker Red fluorescence overlay; DIC, DAPI and MitoTracker

Red overlay.

https://doi.org/10.1371/journal.pntd.0008928.g003
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it is likely that these compounds’ metabolic effects are also comparable. Parasites were grown

in media treated with the 7-bromo ester 13 to a final concentration of 3 μM (EC10) and 7 μM

(EC30), then cellular metabolites were extracted for analysis, along with metabolites extracted

from the spent media of EC10 treated parasites. Cellular and media metabolites were extracted

from parasites grown in untreated media, as well as naïve media and analyzed as control sam-

ples. Extracted metabolites were analyzed by ZIC-pHILIC LC-MS and spectra were processed

using IDEOM [31] as a platform for peak identification and metabolite analysis. As an untar-

geted metabolomics approach, calculation of compound or metabolite concentrations is

beyond the scope of the employed methods. Instead, relative levels of analyte detection by MS

(ion counts) are used to compare metabolite amounts within each sample and, as such, data

are qualitative in nature and should not be considered as absolute concentrations. It should be

noted untreated parasite samples display a wider spread than treated samples. One control rep-

licate consistently displayed slightly lower metabolite counts than the remaining two, however

the sample was included in analyses to show a true reflection of the complete dataset.

The initial focus was directed towards metabolites directly involved with tryptophan metab-

olism in T. brucei. This was prompted by the close structural homology between tryptophan

and the treatment compound 13 (as well as active analogues 10 and 14) and the observed dis-

ruption of 10, 13 and 14’s trypanocidal activity upon addition of excess tryptophan, which

indicated direct competition. Indolepyruvate (17), the major reported product of tryptophan

metabolism by T. brucei, was observed in significantly reduced levels in both EC10 and EC30

treated cell extracts (61% and 75% reduction, respectively) compared to untreated cells. 17 was

also greatly reduced (91% reduction) in spent EC10 treated media, compared to spent

untreated media (Fig 4). Levels of the downstream metabolite indole lactate (18) were similarly

reduced in treated cells, although showed a less significant reduction in spent media than 17,

likely due to the presence of 18 in naïve media. Alternatively, indole lactate (18) may be con-

sumed by the cells when treated 13 even at its EC10.

The related metabolites phenylpyruvate (19), 4-hydroxyphenylpyruvate (20) and imidazo-

lylpyruvate (21), the transamination products of the aromatic amino acids phenylalanine, tyro-

sine and histidine, are also widely reported cellular products of T. brucei [19]. Levels of 19, 20

and 21 were significantly reduced in treated media, with a 79% decrease in detected levels for

all three annotated metabolites. Cellular levels of these metabolites were comparatively better

maintained in treated parasites: 19 showed 5% for EC10 and 22% for EC30 treated cells; 20

showed 8% for EC10 and 32% for EC30 treated cells; while 21 showed 13% for EC10 and 45%

for EC30 treated cells, respectively (Fig 5).

We next searched the recorded metabolite profile for metabolite masses accounting for

compound 13, as well as any potential brominated analogues of reported tryptophan metabo-

lites. The parent compound 13 could not be detected in significant levels in either treated cell

(EC10 or EC30) or media (EC10) media extracts. The brominated free acid 6 was detected in

small amounts in cells grown in EC30 of compound 13, however, this had been consumed

beyond detectable levels in cells grown in EC10 concentration. Two distinct brominated

metabolites with equivalent molecular masses of 280.9688 {79Br} and 282.9669 {81Br} were

identified in treated cell extracts (EC10 and EC30). The first metabolite was identified as the

transamination product 7-bromoindolepyruvate (22), through comparison of retention time

to natural indole pyruvate (17) (RT22 = 7.07; RT23 = 7.03–7.02). The second metabolite

(referred to as compound 23) could not be aligned to a known natural tryptophan metabolite

of similar retention time (RT24 = 6.19–6.24), so a probable structure could not be assigned. 23

is likely a specific product of compound 13’s metabolism, or a typically short-lived intermedi-

ate, which is stabilized within the cell by the bromo-modification. No brominated metabolites

were detected in significant levels within media extracts.
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The absence of 13 in media or cellular samples confirms the uptake and rapid hydrolysis of

the analogue by T. brucei, confirming its status as a precursor of the free acid 6, which is sub-

ject to further metabolism within parasites. It is clear that the modified tryptophan 6 is a suit-

able substrate for the well-reported prolific transamination of natural tryptophan by T. brucei
and is itself converted into the brominated pyruvate derivative 22 (Fig 6).

Conversion of the treatment analogue, 13 first to the parent tryptophan analogue 6, then to

7-bromoindolepyruvate (22), combined with the observed changes in the key keto-acid metab-

olites 17 and 19–21 may allude to its trypanocidal mechanism of action. The transamination

of tryptophan, phenylalanine and tyrosine within T. brucei BSF is catalyzed by a cytosolic

aspartate aminotransferase (TbcASAT) [26,39,40]. The transamination products 17, 19 and 20

were all observed at significantly decreased levels in the spent media of treated cells with

Fig 4. The effect of 7-Br tryptophan methyl ester (13) treatment on the relative medium and cellular levels of

selected metabolites indolepyruvate (17) and indole lactate (18). Relative levels are detected ion counts by MS from

separate samples. Error bars show SD calculated from n = 3 replicates.

https://doi.org/10.1371/journal.pntd.0008928.g004
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average reductions of 91%, 79% and 79%, respectively, compared to untreated samples. These

observations point to the significantly reduced activity of TbcASAT within treated parasites,

and are in-line with similar reductions in overall aromatic keto-acid production from induced

RNAi cASAT cells measured by Nolan and co-workers [26]. These findings suggest that 13, or

one of its metabolites 6 and 22, acts as a potential inhibitor of TbcASAT. Although the enzyme

responsible for the transamination of histidine in T. brucei has not been fully characterized,

the cytosolic fraction of T. brucei has been shown to successfully complete this process [39].

We suggest that TbcASAT may also be responsible for this transamination process, explaining

the similar observed decrease in the production of 21 within treated cells.

TbcASAT has been shown to be essential in T. brucei BSF [26], thus is a reasonable candi-

date for the trypanocidal target of the compound series. Since mammalian cells do not engage

Fig 5. The effect of 7-Br tryptophan methyl ester (13) treatment on the relative medium and cellular levels of selected metabolites phenylpyruvate (19),

4-hydroxyphenylpyruvate (20), and imidazolylpyruvate (21). Relative levels are detected ion counts by MS from separate samples. Error bars show SD calculated

from n = 3 replicates.

https://doi.org/10.1371/journal.pntd.0008928.g005
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in the rapid transamination of these aromatic amino acids this, importantly, provides a mecha-

nism for the observed selective trypanosomal growth inhibition. In the procyclic form (PCF)

of T. brucei, a highly specific mitochondrial aspartate aminotransferase (TbmASAT) accounts

for transamination activity using only aspartate, with TbcASAT comprising a minor portion

of ASAT activity. [26,40] The activity of tryptophan derivatives 1–16 were examined against

PCF T. brucei, revealing a similar bioactivity profile to that observed in BSF T. brucei, with

7-substituted esters 10, 12 and 13 displaying the most potent activity against both parasite

forms (Table 2). Notably, however, the addition of natural L-tryptophan did not diminish com-

pound activity against PCF T. brucei as drastically as was seen with BSF. Compound potency

was modified only at the maximum 250 μM supplement level (Fig 7), significantly higher than

the 15 μM tryptophan supplement that caused a reduction in activity within BSF T. brucei.

Discussion

The substituted tryptophan analogues 1–14 show a range of trypanocidal activity against T.

brucei BSF, with 7-substituted methyl ester analogues 10, 13 and 14 showing low-micromolar

activity and high selectivity. Compounds 10, 13 and 14 display a competitive relationship with

L-tryptophan, which diminishes their trypanocidal activity at elevated levels in growth media.

Since tryptophan is actively taken up by T. brucei, it is possible that methyl esters 10, 13 and 14

compete with tryptophan for active transport, as well as passively diffusing across the cellular

membrane. Similar studies have shown that modified sugar derivatives, including halogenated

examples, exhibit trypanocidal activity through the inhibition of key hexose transporters. [41]

The metabolomics data indicate that ester 13 is rapidly cleaved within the cytosol of T. bru-
cei to give free acid 6, then converted to the corresponding substituted pyruvate 22, most likely

catalyzed by the aminotransferase TbcASAT. The rapid hydrolysis of ester 13 means it is

Table 2. Bioactivity of tryptophan derivatives 1–7 and their methyl esters 8–14, as well as natural tryptophan (15) and its methyl ester 16, against T. brucei blood-

stream form trypomastigotes (BSF) and T. brucei procyclic form trypomastigotes (PCF). Mean EC50 values (μM) determined from n = 4 replicates, all SD values

(not shown) within 10% of EC50 value.

Free Acids 1 2 3 4 5 6 7 15

T. brucei BSFa >250 >250 47.4 >250 >250 46.1 42.0 >250

T. brucei PCFb >250 >250 39.7 >250 154.2 33.8 47.6 >250

Methyl Esters 8 9 10 11 12 13 14 16

T. brucei BSFa 149.5 157.9 3.5 101.7 139.7 3.7 2.7 >250

T. brucei PCFb 82.8 81.2 3.1 77.2 72.4 1.8 1.5 >250

aTrypanosoma brucei brucei bloodstream form trypomastigotes.
bTrypanosoma brucei brucei procyclic form trypomastigotes.

https://doi.org/10.1371/journal.pntd.0008928.t002

Fig 6. Proposed turnover of substituted tryptophan 6 to its corresponding α-ketoacid 22 by TbcASAT.

https://doi.org/10.1371/journal.pntd.0008928.g006
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unlikely to be the active trypanocidal agent, however the ester is obviously acting as a pro-drug

and therefore either the free acid or a downstream metabolite thereof is the active trypanocidal

compound. Reduced excretion of aromatic α-ketoacids indolepyruvate, phenylpyruvate and

4-hydroxyphenylpyruvate suggest reduced activity of TbcASAT in treated parasites. Since

TbcASAT is not essential within PCF T. brucei, its inhibition is not likely to account for the

trypanocidal activity observed in this parasite form. The main aminotransferase of PCF T. bru-
cei is a highly aspartate-specific enzyme mASAT, which is unlikely to bind tryptophan ana-

logues. TbcASAT is still expressed in PCF T. brucei parasites, albeit with lower activity,

Fig 7. The effect of supplementary tryptophan (μM ±SD) added to media on the EC50 values (μM ±SD) of substituted tryptophan

methyl esters 10, 13 and 14 against T. brucei BSF (grey) and T. brucei PCF (red) parasites. SD determined from n = 3 replicates.

https://doi.org/10.1371/journal.pntd.0008928.g007
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meaning it is possible that 7-substituted compounds 10, 13 and 14 are similarly converted to

their corresponding indolepyruvate derivatives within this parasite form. This could implicate

halogenated indolepyruvate derivatives (i.e. 22 in the context of treatment with 13) or other

downstream metabolites as the active antiparasitic agents. The significant differences between

the L-tryptophan competition profile of compounds 10, 13 and 14 within BSF and PCF para-

sites suggest differences in the compounds’ mechanism of action. This may, however, be an

observed effect of morphological differences between PCF and BSF parasites, such as the

reduced cASAT activity [26] or differences in amino acid uptake and metabolism [13]. The

metabolite profiles of PCF T. brucei treated with 13 have not been recorded, so it is unclear

whether any downstream metabolites of 13 are produced within PCF parasites, making it chal-

lenging to comment upon a potential shared trypanocidal mode of action.

The failure to identify any brominated tryptophan metabolites in treated media samples,

despite their production in significant quantities within the cells, suggests that brominated

analogues are not exported. The close structural similarity between brominated and natural

analogues may enable the brominated metabolites 6 or 22 to bind and inhibit transporters

responsible for the efflux of natural substrates. Intracellular accumulation of these brominated

metabolites may slow efflux of normal metabolites, leading to the observed toxic accumulation

of natural and unnatural metabolites and cell death. This mechanism of activity could also

explain the compounds’ activity against PCF T. brucei, which retain the capability to transami-

nate 13. with inhibition of efflux causing general shutdown of key cellular processes.

The trypanocidal activity of the treatment compound 13 may result from either one or,

indeed, a combination of both of these mechanisms, with both inhibiting key metabolic pro-

cesses. Furthermore, the unknown brominated metabolite 23 could contribute to the trypano-

cidal activity of the treatment compound 13 through either of the two discussed potential

mechanisms, or through a separate mechanism. Its structure, unfortunately, could not be

assigned by analogy to natural metabolites, and further analysis is required to determine its

importance in the observed metabolic effects. The metabolic evidence presented, showing a

clear reduction in key transamination products, supports the inhibition of TbcASAT in the

trypanocidal mechanism of 13 within BSF T. brucei. It is unclear whether 13 or its downstream

metabolites 6, 22 or 23 are the true trypanocidal agents in this mechanism of action.

Key future experiments could further examine the trypanocidal mechanism of action of the

7-substituted tryptophan derivatives. In vitro examination of these compounds against purified

TbcASAT activity could dissect whether the enzyme’s inhibition is involved in the trypanoci-

dal action. In such experiments, tryptophan derivative 9, methyl ester 13, keto-acid 22 and the

unknown metabolite 23 (following structural determination) should be included to identify

the trypanocidal agent. A second metabolomics study could be conducted to include PCF T.

brucei and targeted to specifically investigate and quantify transamination processes. Addition-

ally, examination of the trypanocidal compound 13 in vivo using animal models could reveal

therapeutic benefits of disrupting transamination processes in T. brucei infection. Examples

proposed in the literature include combatting trypanosomal evasion of the host immune sys-

tem [26], as well as alleviating late-stage symptoms that may be caused by associated products

[21].

Despite the absence of an unequivocally confirmed trypanocidal target, the 7-substituted

esters 10, 13 and 14 display potent trypanocidal activity and a clear disruption of the widely

reported transamination processes within T. brucei. These compounds may be used to aid

future studies into the functional significance of transamination processes within T. brucei in

both in vitro and in vivo systems, and in the future develop new anti-trypanosomal therapies

targeting these important systems.
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