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Abstract

The emergence of mosquito-transmitted viruses poses a global threat to human health.

Combining mechanistic epidemiological models based on temperature-trait relationships

with climatological data is a powerful technique for environmental risk assessment. How-

ever, a limitation of this approach is that the local microclimates experienced by mosquitoes

can differ substantially from macroclimate measurements, particularly in heterogeneous

urban environments. To address this scaling mismatch, we modeled spatial variation in

microclimate temperatures and the thermal potential for dengue transmission by Aedes

albopictus across an urban-to-rural gradient in Athens-Clarke County GA. Microclimate data

were collected across gradients of tree cover and impervious surface cover. We developed

statistical models to predict daily minimum and maximum microclimate temperatures using

coarse-resolution gridded macroclimate data (4000 m) and high-resolution land cover data

(30 m). The resulting high-resolution microclimate maps were integrated with temperature-

dependent mosquito abundance and vectorial capacity models to generate monthly predic-

tions for the summer and early fall of 2018. The highest vectorial capacities were predicted

for patches of trees in urban areas with high cover of impervious surfaces. Vectorial capacity

was most sensitive to tree cover during the summer and became more sensitive to impervi-

ous surfaces in the early fall. Predictions from the same models using temperature data

from a local meteorological station consistently over-predicted vectorial capacity compared

to the microclimate-based estimates. This work demonstrates that it is feasible to model var-

iation in mosquito microenvironments across an urban-to-rural gradient using satellite Earth

observations. Epidemiological models applied to the microclimate maps revealed localized

patterns of temperature suitability for disease transmission that would not be detectable

using macroclimate data. Incorporating microclimate data into disease transmission models
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has the potential to yield more spatially precise and ecologically interpretable metrics of

mosquito-borne disease transmission risk in urban landscapes.

Author summary

Predicting the effects of temperature on mosquito abundance and arbovirus transmission

cycles is essential for mapping hot spots of disease risk and projecting responses to climate

change. In urban landscapes, the built environment and natural features create distinctive

environments. Buildings and roads generate warmer conditions through the urban heat

island effect, while vegetation can have a cooling effect because of shading and evaporative

heat loss. We used land cover data to map microclimate temperature in Athens-Clarke

County, GA and applied a temperature-dependent vectorial capacity model to predict the

effects of microclimate on dengue transmission by Aedes albopictus. The highest vectorial

capacity was predicted in patches of trees located in the urbanized portion of the study

area. These locations had relatively warm nighttime and cool daytime temperature, which

kept temperatures close to the optimum for disease transmission. This work demonstrates

the feasibility of predicting variation in mosquito microenvironments in urban landscapes

using satellite Earth observations. Incorporating microclimate data into disease transmis-

sion models has the potential to yield more spatially precise and ecologically interpretable

metrics of mosquito-borne disease transmission risk.

Introduction

Mosquito-transmitted arboviruses are a human health threat of worldwide significance. Given

highly interconnected global transportation networks combined with rising temperatures

associated with climate change and increasing levels of urbanization, there is concern that

arbovirus outbreaks will happen with greater frequency in cities throughout the world [1–4].

Understanding when and where such outbreaks are most likely to occur will be essential to

support disease prevention and control efforts. Accurate arbovirus risk maps can be used to

target surveillance in locations where environmental conditions are conducive to disease

transmission [5, 6] and to direct mosquito control in response to arbovirus outbreaks [7]. To

be more useful for public health applications in cities, these maps need to capture the neigh-

borhood-level effects of key environmental factors and predict the resulting variation in dis-

ease risk across heterogeneous urban landscapes. The present study addresses this need by

modeling spatial variation in temperature across an urban-to-rural gradient in the southeast-

ern United States and applying an epidemiological model to determine how these environ-

mental patterns influence the potential for dengue transmission by Aedes albopictus (Skuse).

Meteorological factors such as temperature, precipitation, and humidity are known to have

strong influences on mosquito population dynamics and disease transmission cycles [8, 9].

These relationships provide the basis for climate-driven mosquito range and disease risk maps,

which have been developed using rule-based predictions [10], empirical pattern-matching

approaches [11–14], and mechanistic models that capture climate influences on critical biolog-

ical traits [15–18]. Model predictions are typically based on broad-scale macroclimate data

from weather stations or coarse-grained meteorological grids. However, combining individ-

ual-level models of mosquito-environment relationships with macroclimate data leads to scal-

ing errors when predictions are extrapolated across space and time [19, 20]. There is growing
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evidence that temperature measurements from widely-used macroclimate datasets are often

decoupled from the thermal tolerances of species that occupy distinctive habitats with charac-

teristic microclimates [21, 22]. Thermal microclimate refugia influenced by vegetation and

topography can allow species to persist in areas where broader macroclimate conditions

appear to be unsuitable. Progress has been made in identifying and mapping these refugia by

integrating data from networks of inexpensive microclimate sensors with geospatial datasets

characterizing topography and land cover [23–25].

Environmental heterogeneity is particularly high in cities, where variation in physical and

social environments is known to influence the abundance and quality of larval habitats, avail-

ability of zoonotic hosts, and human exposure to mosquitoes [26, 27]. This fine-grained envi-

ronmental variation influences patterns of mosquito abundance and disease transmission at

the level of individual neighborhoods and city blocks [28–30]. The built environment also

exerts strong influences on local microclimates [31], and understanding the effects of urban

temperature variations on mosquito life cycles and transmission processes has been

highlighted as an important research direction [32]. In most studies to date, the effects of habi-

tat on mosquitoes have been modeled using land cover, land use, and socioeconomic indica-

tors as indirect proxies [33–35]. However, recent studies combining direct monitoring of

urban microclimates with field experiments [36] and observations of mosquito abundance

[37] have found that variation in local temperatures account for some of the differences in

mosquito abundance and life history traits across urban, suburban, and rural habitats. These

results highlight the prospects for synthesizing our understanding of the thermal biology of

mosquitoes with knowledge of the physical dynamics of urban climate to determine when and

where microclimate conditions for disease transmission will be highest.

The urban environment influences microclimates through a variety of interactions with

solar radiation, moisture, and wind speed [38]. An important factor is the prevalence of imper-

vious surfaces such as buildings, roads, and parking lots, which absorb heat more rapidly dur-

ing the day and release it more slowly at night compared to vegetated surfaces. As a result, land

surface temperatures [39] and near-surface air temperatures [40] are typically highest in urban

centers dominated by impervious surfaces. This urban heat island effect tends to be more pro-

nounced at night than during the day. In contrast, tree cover reduces near-surface air tempera-

tures as a result of shading and latent heat loss through evapotranspiration [41]. The

interactions between land cover and temperature have been well documented in many cities,

and have been applied to develop predictive models of urban microclimates. The resulting

maps of urban heat islands have been used for public health assessments, mainly focusing on

the risks associated with extreme temperatures [42]. To our knowledge, no studies have

mapped mosquito-relevant microclimates in an urban setting to explore impacts on the spatial

patterns of disease transmission potential.

At present, our ability to understand the climatic determinants of arbovirus transmission

and predict the locations of highest risk within urban settings remains limited due to the gen-

eral misalignment of scales at which meteorological data are collected versus the scales at

which mosquitoes interact with the environment. To address this gap, we developed an empir-

ical model of microclimate and land cover in Athens, GA and linked the results with a temper-

ature-dependent epidemiological model of dengue transmission by the invasive mosquito Ae.
albopictus. This species has been a primary vector of outbreaks of chikungunya and dengue

viruses in tropical regions [43–45] as well as temperate locations in Italy [46], France [47], and

Japan [48]. The goal of our study was to assess the climatic suitability for dengue transmission

by Ae. albopictus in a temperate region of the southeastern United States, with a focus on fine-

scale spatial variation along an urban-to-rural gradient. Our specific objectives were to: (1)

Determine the influences of tree cover and impervious surface on daily minimum and
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maximum temperatures, (2) Develop a predictive spatial model to map daily microclimate at a

fine-grained (30 m) spatial resolution, (3), Use a temperature-dependent model of vectorial

capacity to determine how microclimate temperature influences spatial patterns of dengue

transmission potential by Ae. albopictus and how these patterns change throughout the trans-

mission season, and (4) Determine where high thermal suitability for dengue transmission

occurs in locations with high human population density.

Methods

Study area

Our study area was Athens-Clarke County Georgia, USA, which encompasses 313 km2 with a

total population of 127,330 in 2018 (Fig 1). The urban center of downtown Athens, GA and

the University of Georgia (UGA) campus are located in the middle of the study area, with

high-density development extending along the major highway corridors that connect to neigh-

boring counties. These developed areas are surrounded by residential suburbs, particularly in

the western and southeastern portions of the county. The outskirts of the county are mainly

Fig 1. Maps of the Athens-Clarke County, GA study area. A) False-color Sentinel-2 image from 2017 with the shortwave infrared band displayed as red, the

near infrared band displayed as green, and the green band displayed as blue. With this band combination, tree-covered areas are green and impervious

surfaces are pink and red.; B) Tree cover map from Sentinel-2 imagery with water bodies displayed as gray; C) Impervious surface map from Sentinel-2

imagery with water bodies displayed as gray; D) Block-level population density map from the 2010 U.S. Census. Solid black lines represent county

boundaries. The maps were produced using ArcGIS version 10.6.

https://doi.org/10.1371/journal.pntd.0008614.g001
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rural with a mix of low-density subdivisions, pasture, and forests. Climate is subtropical with

hot, humid summers (average July high 33˚C) and mild winters (average January low 0.6˚C).

The average annual rainfall is 1200 mm.

Scientific workflow

The analytical workflow is presented in Fig 2. Raw data included mosquito abundance and

microclimate data collected by the authors, gridded macroclimate data obtained from online

archives, and a classified land cover dataset generated by the authors. The mosquito and

microclimate data were used to fit a statistical model of mosquito density. The microclimate,

macroclimate, and land cover data were combined to fit an empirical microclimate model and

predict daily microclimate on a 30 m grid. These gridded microclimate data were used as

inputs for the mosquito density model to map mosquito abundance and with published tem-

perature-trait curves to map mosquito life history traits. The mosquito abundance and mos-

quito trait maps were then used as inputs for a vectorial capacity model to generate gridded

estimates of temperature-dependent vectorial capacity. All data processing and modeling steps

were carried out using the R language and environment for statistical computing [49].

Microclimate sampling

We collected microclimate data from 54 locations between June 15-October 10, 2018 using

temperature and relative humidity data loggers (RFID Track-it, Monarch Instruments) with

Fig 2. Analytical workflow for spatial modeling of microclimate temperatures and thermal potential for dengue transmission by Aedes albopictus.
Orange boxes represent input datasets, green boxes represent models, and blue boxes represent model predictions.

https://doi.org/10.1371/journal.pntd.0008614.g002
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radiation shields [50, 51]. These loggers have a typical accuracy of ± 0.5˚C. Data were collected

at nine sites, which were previously selected to cover a rural-to-urban gradient from low to

high impervious surface cover in Athens [36]. At each site, six loggers were distributed within

a 100 m radius plot, with individual logger locations chosen to encompass the range of tree

canopy cover within the plot. The loggers were placed approximately 1 m above the ground in

vegetation considered to provide suitable resting habitat for Ae. albopictus. The loggers were

programmed to collect data at 10-minute intervals.

Data from three of the loggers were not used because of equipment malfunctions, and data

were not available on June 22 and September 15–20. In total, we obtained 790,016 temperature

measurements from 51 loggers over a 118-day period. The available microclimate data were

used to compute daily minimum and maximum temperature for each logger (Fig 3).

Temperature downscaling

We mapped microclimates using statistical downscaling, which is based on empirical relation-

ships with broad-scale meteorological patterns and fine-grained data on features that influence

local climate characteristics [52–54]. Sources of meteorological data include a variety of

gridded datasets, which combine interpolated weather station data with other sources of geos-

patial information to generate meteorological surfaces that vary smoothly over tens to hun-

dreds of kilometers. Finer-grained data relevant to local microclimate include vegetation,

impervious surface, soils, and topography that vary over tens to hundreds of meters.

We modeled microclimate temperature using a linear model of the form

Tid ¼ aþ
Xp

j¼1

bjCidj þ
Xq

k¼1

gkLik ð1Þ

where Tid is the microclimate variable (minimum or maximum temperature) for a 30 m grid

Fig 3. Time series of daily temperature in Athens, GA during 2018. Colored lines represent medians and shaded areas represent

the 5%-95% quantile range of microclimate observations for daily minimum temperature (orange) and daily maximum temperature

(red). Dashed black lines represent data collected at the University of Georgia weather station.

https://doi.org/10.1371/journal.pntd.0008614.g003
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cell at location i on day d, the Cidj are p daily macroclimate variables indexed as j and measured

for location i on day d, Lik are q land cover variables indexed as k and measured for location i,
α is the intercept parameter, βj are the slope parameters for the macroclimate variables, and γk
are the slope parameters for the land cover variables.

We used macroclimate data from the GridMET dataset, which provides daily meteorologi-

cal data for 4 km grid cells [55]. GridMET combines hourly meteorological data from the

North American Land Data Assimilation System Phase 2 [NLDAS-2, 56] with higher resolu-

tion climatological data from the Parameter-Elevation Regression on Independent Slopes

Model [PRISM, 57]. Macroclimate variables included minimum and maximum temperature,

minimum and maximum relative humidity, wind velocity, solar radiation, and precipitation

(Table 1). The macroclimate data were rescaled to a 30 m resolution using bilinear interpola-

tion for overlay with the land cover variables.

Custom 2018 land cover data were mapped for Athens-Clarke County at a 10 m resolution

by classifying Sentinel-1 synthetic aperture radar imagery and Sentinel-2 optical-infrared

imagery. We mapped percent impervious surface cover and percent tree cover because of their

known associations with urban microclimates. Details of the remote sensing methods and

accuracy assessment results are available in the supporting information (S1 File). The 10 m

tree cover pixels were aggregated to 30 m pixels to measure local effects of shading on microcli-

mate. We then calculated mean tree cover within 3 x 3 and 5 x 5 pixel focal windows to capture

potential cumulative effects across broader areas. Impervious surface was similarly aggregated

to 30 m pixels and summarized as a mean for 3 x 3 and 5 x 5 focal windows. We also summa-

rized impervious surface using larger circular windows of 1 km and 2 km. Our goal with these

larger focal windows was to capture urban heat island effects arising from the broader-scale

effects of increased thermal storage and re-radiation of heat in urbanized areas.

We compared multiple models with different combinations of macroclimate and land

cover variables as predictors. Initial models included at least one macroclimate temperature

variable (either minimum or maximum temperature) and two land cover variables (one tree

cover variable and one impervious surface variable). All possible combinations of these vari-

ables were explored to determine the best-fitting model, and interactions between tree cover

and impervious surface were also considered. After determining the initial models, we used a

Table 1. Predictor variables considered in the development of linear models to predict microclimate temperatures based on macroclimate and land cover.

Variable Type Variable Code Description Units

Macroclimate TN Minimum temperature ˚C

TX Maximum temperature ˚C

RHN Minimum relative humidity %

RHX Maximum relative humidity %

WIND Wind speed m/s

SRAD Total solar radiation W/m2

PREC Total precipitation mm

Land Cover TREE Percent tree cover %

TREE3 Percent tree cover (3 x 3 pixel focal mean) %

TREE5 Percent tree cover (5 x 5 pixel focal mean) %

IMPERV Impervious cover %

IMPERV3 Impervious cover (3 x 3 pixel focal mean) %

IMPERV5 Impervious cover (5 x 5 pixel focal mean) %

IMPERV1K Impervious cover (1 km radius focal mean) %

IMPERV2K Impervious cover (2 km radius focal mean) %

https://doi.org/10.1371/journal.pntd.0008614.t001
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forward stepwise approach to identify additional macroclimate and land cover variables that

improved model fit. Model fit was assessed using Akaike’s information criterion (AIC). We

also calculated variance inflations factors (VIFs) and excluded models with combinations of

variables that resulted in high multicollinearity.

The accuracies of the final microclimate models were assessed using cross validation. For

each iteration of the cross-validation algorithm, data from one logger were excluded from the

model fitting data, the model was fitted with data from the remaining loggers, and model pre-

dictions were then compared to observations from the excluded logger. This procedure was

repeated 51 times (once for each logger) to generate a cross-validation dataset in which all

observations were compared with independent predictions.

Vectorial capacity modeling

To infer how fine scale spatial heterogeneity in temperature influences environmental suitabil-

ity and risk for arbovirus transmission, we used a temperature-dependent expression for vec-

torial capacity (VC) for dengue transmission by Ae. albopictus [36] to predict temperature

suitability for transmission at the level of a 30 m grid cell. VC estimates the total number of

infectious bites that would eventually arise from all the mosquitoes biting a single infected

human on a single day [58].

VC Tð Þ ¼
MðTÞaðTÞ2bðTÞcðTÞexp � mðTÞ=EIRðTÞ

� �

mðTÞ
ð2Þ

We used temperature-trait relationships reported previously by Mordecai et al. [17], where

the per capita biting rate (a), the transmission (b) and infection (c) probabilities, the per capita

mortality rate (μ) and the extrinsic incubation rate (EIR) were all modeled as non-linear func-

tions of temperature (T). When combined in the VC(T) equation they provide a mechanistic

estimate of the potential for disease transmission based on the rate at which mosquitoes

become infectious and transmit the disease (represented in the numerator) and the lifespan of

the mosquito (represented by the mortality rate in the denominator). Sensitivity analysis of

these traits in a model of dengue transmission by Ae. albopictus found that across all tempera-

tures, transmission was highly sensitive to EIR, which measures the rate at which infected mos-

quitoes become infectious [17]. At higher temperatures, transmission was most sensitive to μ,

which measures the mortality rate of the mosquitoes.

Mosquito abundance (M) is also sensitive to T because of temperature effects on mosquito

fecundity, growth, and survival. Mordecai et al. [17, 59] proposed the following mechanistic

equation for M(T),

M Tð Þ ¼
EFDðTÞpEAðTÞMDRðTÞ

mðTÞ2
ð3Þ

where eggs produced per female per day (EFD), egg-to-adult survival (pEA), and mosquito

development rate (MDR) are all non-linear functions of T.

This mechanistic approach for modeling M(T) has been applied to generate continental-

scale predictions of mosquito-borne disease transmission across broad climate gradients [17,

18, 59, 60]. To obtain locally calibrated estimates of the relationship of mosquito abundance

with temperature for predicting neighborhood-level patterns in Athens-Clarke County, we

used field data on Ae. albopictus abundance and microclimate temperatures to develop an

empirical model of mosquito abundance. Mosquito data were collected using BG-Sentinel 2

traps that were deployed at the same nine sites used for microclimate monitoring. Adult mos-

quito samples were collected 26 times between May 2016 to December 2017 [37]. Traps were
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run continuously for 48 hours and were baited with an octenol (1-octen-3-ol) lure. At the

same locations and over the same time period, microclimate temperature data were collected

at 10-minute intervals using six loggers at each site. A negative binomial generalized additive

model was used to predict mosquito abundance as a smoothed function of mean minimum

and maximum daily temperatures averaged over the week preceding the collection date.

MðTmin;TmaxÞ ¼ bþ sðTminÞ þ sðTmaxÞ ð4Þ

where mean daily minimum microclimate temperature (Tmin) and mean daily maximum

microclimate temperature (Tmin) were summarized over the week preceding the day of the

mosquito collection. The s(Tmin) and s(Tmax) terms were smoothed functions based on thin-

plate splines. The model was fit in R using the gam function from the mgcv package with

default settings [49, 61]. Model predictions were cross-validated across the nine sites using the

approach previously described for the microclimate models. Background information on the

mosquito data and meteorological associations of mosquito abundance can be found in Evans

et al. [37].

The expression for temperature-dependent VC(T) assumes a constant temperature to calcu-

late the per-generation rate of increase of a pathogen in a fully susceptible population. How-

ever, environmental temperature in the field is variable, which affects the calculation and

interpretation of VC [62]. To calculate VC(T), we first used the predicted daily mean and max-

imum temperature values for each pixel to estimate hourly temperature using equations from

[63]. The hourly temperatures were used to generate hourly estimates of the key rate parame-

ters in Eqs 1 and 2 using the equations from Mordecai et al. [17] The hourly rates were then

used to compute monthly means for each pixel. We summarized the data for four monthly

periods: June/July (June 15-July 15), July/August (July 16-August 15), August/September

(August 16-September 15), and September/October (September 16-October 10). The mean

rates were then used to calculate VC(T) for each monthly period.

Because the vectorial capacity estimates are based only on temperature, they should be

interpreted as a relative metric of thermal suitability for disease transmission rather than a pre-

cise estimate of the number of infectious bites. Therefore, we transformed VC(T) into stan-

dardized index with a [1,0] range using the following equation

VCðTÞs ¼
VCðTÞ � VCðTÞmin

VCðTÞmax � VCðTÞmin
ð5Þ

where VC(T)min was the minimum value of VC(T), and VC(T)max was the maximum value.

We used these standardized values to map of VC(T) for each of the four monthly periods. We

also compared the distribution of VC(T) values for each period with an estimate of VC(T) cal-

culated using temperature data from the UGA weather station.

To identify where high thermal suitability for dengue transmission occurred in locations

with high human population density, we used a simple vulnerability index. The variables used

in this index included the mean of VC(T) calculated across all four months and log-trans-

formed block-level population from the 2010 U.S. Census. Both variables were standardized to

a [0, 1] range using the method shown in Eq 5. A geometric mean with equal weights applied

to each variable was used to calculate the vulnerability index as

VI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VCðTÞs � LOGPOPs

q

ð6Þ

Where VC(T)s was the standardized temperature-dependent vectorial capacity and LOG-
POPs was the standardized logarithm of population. This index is quantitatively similar to pre-

vious approaches for mapping vulnerability to dengue transmission [64, 65], and is
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conceptually similar to the vector-to-host ratio proposed by Vanwambeke [66] in that it

assumes vulnerability will be highest in locations where there are high levels of vectorial capac-

ity combined with high densities of human hosts.

Results

Microclimate

The best microclimate model for minimum temperature included the macroclimate variables

minimum temperature and maximum humidity along with the tree cover summarized within

a 5 x 5 grid cell (150 x 150 m) window and impervious surface summarized in a circular win-

dow with a 1 km radius (Table 2). The best microclimate model for maximum temperature

included the macroclimate variables maximum temperature, minimum humidity, and solar

radiation along with tree cover summarized for a 30 m grid cell. The minimum temperature

model had a cross-validated R2 of 0.61 and mean absolute error of 0.76˚C. The maximum tem-

perature model had a cross-validated R2 of 0.75 and mean absolute error of 1.72˚C.

The minimum temperature microclimate model predicted higher temperatures near the

center of Athens, reflecting broad-scale effects of impervious surfaces through heat storage

during the day and re-radiation at night (Fig 4A, Fig A in S2 File). In contrast, the maximum

temperature microclimate model predicted finer-scale spatial variation due to strong local

effects of tree shading during the day (Fig 4B, Fig B in S2 File). The microclimate data captured

more fine-grained spatial variability than was detectable with the 4 km GridMET data (Fig 3C

and 3D), highlighting the localized effects of land cover on microclimate.

Mosquito Abundance

The empirical model of M(Tmin, Tmax) predicted a positive, monotonic relationship between

mosquito abundance and Tmin and a unimodal relationship between abundance and Tmax with

a peak at approximately 30˚C (Fig 5). The model explained 46% percent of the deviance in

mosquito abundance. The AIC of this model (1012.0) was lower than simpler models that

included only minimum temperature (1028.4), only maximum temperature (1065.0), and only

mean temperature (1037.9), as well as a more complex model that incorporated interactions

between minimum and maximum temperature via a tensor product (1015.8). The cross-vali-

dated predictions had a mean error of 0.07, a mean absolute error of 2.3, and a median

Table 2. Linear regression models used to predict minimum and maximum daily temperatures as a function of macroclimate and land cover variables. Variable

codes are defined in Table 1.

Microclimate Model Variablea Parameter SE 95% CI

Tmin intercept -1.5539 0.4185 -2.3745, -0.7335

TN 0.7801 0.0090 0.7624, 0.7978

RHX 0.0449 0.0031 0.0388, 0.0510

IMPERV1K 0.0281 0.0015 0.0188, 0.0247

TREE5 -0.0030 0.0009 -0.0049, -0.0012

Tmax intercept 4.7898 1.0713 2.6895, 6.8901

TX 0.9397 0.0255 0.8897, 0.9896

RHN -0.0507 0.0067 -0.0639, -0.0375

SRAD 0.0027 0.0005 0.0017, 0.0038

TREE -0.0184 0.0013 -0.0209, -0.0160

aVariable codes are defined in Table 1.

https://doi.org/10.1371/journal.pntd.0008614.t002
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absolute error of 1.0. The Spearman rank correlation between predicted and observed values

was 0.52.

When predicted monthly abundances were compared, the temperature associations of the

empirical M(Tmin, Tmax) model (Fig C in S2 File) were different from those of the mechanistic

M(T) model (Fig D in S2 File), with the empirical model predicting peak mosquito abundance

at warmer minimum and maximum temperatures than the mechanistic model. The VC(T)
predictions based on the empirical mosquito abundance model (Fig E in S2 File) also peaked

at higher minimum temperatures than the VC(T) predictions based on the mechanistic model

(Fig F in S2 File). The different temperature associations translated into differences in the spa-

tial patterns of mosquito abundance (Figs H, I in S2 File) and vectorial capacity (Figs J, K in S2

File), with predictions based on the empirical mosquito abundance model tending to be lower

in the outlying rural areas where temperatures were cooler.

Because the mechanistic model is a simple equilibrium model based on temperature-

trait relationships determined in controlled laboratory environments, it provides general-

ized predictions of temperature suitability for Ae. albopictus populations. In contrast, the

empirical model was directly calibrated using field and microclimate measurements, and

the resulting temperature niche reflects the local influences of habitat, host availability,

competition, and genetic adaptation. We expected the empirical model to provide more

precise estimates of mosquito abundance within the study area, and we used it as the

basis for predicting VC(T) and assessing temperature effects on dengue transmission

potential.

Fig 4. Example maps of downscaled microclimate and GridMet temperatures for July 14th, 2018. A) Minimum microclimate temperature. B) Maximum

microclimate temperature. C) Minimum temperature from GridMET data. D) Maximum temperature from GridMET data. The maps were produced using R

version 3.6.1.

https://doi.org/10.1371/journal.pntd.0008614.g004
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Vectorial Capacity

Predictions of vectorial capacity varied widely during the summer of 2018, with 99% of values

falling between 4.0 and 14.2. Thus, thermal suitability for dengue transmission by Ae. albopic-
tus was more than three times as high in the most favorable microclimates than in the least

favorable microclimates. The relative VC(T) index increased slightly from June-July to July-

Aug and then decreased in Aug-Sept and Sept-Oct (Fig 6). During all months, the VC(T) esti-

mates calculated using meteorological data from the UGA weather station were higher than

the distributions of VC(T) based on microclimate temperatures. The difference between

microclimate and weather station VC(T) was lowest in June-July and greatest in Sept-Oct,

when the weather station temperature predicted a VC(T) that was more than twice as high as

the microclimate predictions.

Fig 5. Predicted counts of Ae. albopictus abundance as a smoothed function of minimum and maximum daily

temperatures summarized over the preceding week. Black dots represent observed mosquito abundance with the size

of the dot proportional to the number of mosquitoes.

https://doi.org/10.1371/journal.pntd.0008614.g005
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The spatial patterns of relative VC(T) in Athens-Clarke County shifted throughout the 2018

transmission season. In June-July, there were several small patches of high VC(T) near the cen-

ter of the study area with other areas of intermediate and low VC(T) distributed throughout

the entire county Fig 7A). Beginning in July-Aug, a larger concentration of high and interme-

diate VC(T) appeared in the middle of the study area, centered on the downtown core of Ath-

ens (Fig 7B), and this cluster of high VC(T) remained in Aug-Sept and Sept-Oct (Fig 7C and

7D). Patterns of VC(T) in Sept-Oct displayed a particularly strong urban-to-rural gradient,

with areas of high VC(T) concentrated around downtown Athens and low VC(T) in most of

the outlying rural areas.

Fig 6. Histograms of temperature-dependent vectorial capacity (VC(T)) for Athens, GA during four monthly

periods in 2018. Bars represent the distribution of VC(T) throughout the entire study area based on a sample of one

million grid cells. Black lines represent point estimates of VC(T) based on data from the UGA weather station.

https://doi.org/10.1371/journal.pntd.0008614.g006
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These shifting spatial patterns reflected the changing influences of tree cover and impervi-

ous surfaces on environmental suitability for dengue transmission throughout the season (Fig

8). In June-July, both tree cover (measured in a 30 m grid cell) and impervious surface cover

(measured in a 1 km radius circular window surrounding the grid cell) were positively associ-

ated with VC(T), with the highest predicted VC(T) in patches of high tree cover that were

embedded in broader landscapes dominated by impervious surfaces (Fig 8A). There was also

an interaction between the two variables, such that VC(T) increased more rapidly with increas-

ing tree cover in urban landscapes with higher impervious surface cover than in more rural

landscapes with low impervious surface cover. As the season progressed, the relative influence

of tree cover gradually decreased while the relative influence of impervious surface cover

increased. By Sept-Oct, impervious surface cover had the strongest influence on VC(T), and

the effects of tree cover were weaker (Fig 8D).

Although dengue is not currently transmitted locally in Athens, the vulnerability index

highlighted where concentrations of people live in neighborhoods with high thermal suitability

for dengue transmission (Fig 9). The areas with highest vulnerability were in older neighbor-

hoods close to downtown Athens and in residential portions of the UGA campus, which were

surrounded by high densities of impervious surfaces but also had high tree cover and had

dense human populations living in closely-spaced houses, apartment buildings, and dormito-

ries. Other areas with high vulnerability indices included dense suburban neighborhoods and

clusters of apartments with high tree cover located in the southeastern portion of the study

area and along the Atlanta highway in the western part of the study area.

Fig 7. Maps of temperature-dependent vectorial capacity (VC(T)) for Athens-Clarke County, GA during four monthly periods in 2018. A) June-July. B)

July-August. C) August-September. D) September-October. Note that a different range of VC(T) is represented in each map. Gray patches represent water bodies.

The maps were produced using R version 3.6.1.

https://doi.org/10.1371/journal.pntd.0008614.g007
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Discussion

The importance of temperature as an environmental determinant of mosquito life history and

arbovirus transmission is well established [67]. To date, temperature-driven spatial models of

arbovirus transmission have mostly been applied over relatively large geographic areas, rang-

ing from individual countries to the entire globe, using gridded climate data. These climate

datasets are derived by interpolating point data from isolated weather stations [68–70] and

incorporating additional data from Earth-observing satellites [71, 72]. The resulting maps thus

capture spatial variation in macroclimate at relatively coarse spatial resolutions ranging from

1–100 km per grid cell. To ensure consistency of measurements, meteorological stations are

typically established at sites with relatively flat terrain and with no shading from buildings or

trees [73]. In contrast, individual Ae. albopictus complete their life cycles within much smaller

Fig 8. Contour plots of temperature-dependent vectorial capacity (VC(T)) in relation to percent tree cover (summarized locally in a 30 m grid cell)

and percent impervious surface (summarized within a 1-km circular window). The response surface was generated using LOESS (localed estimated

scatterplot smoothing) regression. A) June-July. B) July-August. C) August-September. D) September-October. Each blue contour line represents a one-

unit change of VC(T).

https://doi.org/10.1371/journal.pntd.0008614.g008
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areas, typically covering distances of a few hundred meters or less [74]. Further, Ae. albopictus
often occupies breeding and resting habitats that are shaded by vegetation canopies and near

buildings. Previous research by Murdock et al. [36] has confirmed that these microclimates

have distinctive temperature and humidity compared to measurements taken at meteorologi-

cal stations. The present study builds on these results by showing that impervious surfaces and

tree cover influence microclimate conditions, and that spatial patterns of microclimate affect

both vectorial capacity and vulnerability to arbovirus transmission within the city of Athens.

An important implication of these results is that assumptions of homogeneous climate

across large expanses of urban area, which are implicit in the extrapolation of data from meteo-

rological stations and coarse-scaled macroclimate grids, can result in biased estimates of mos-

quito-borne disease transmission potential. In Athens, GA, predictions of VC(T) based on

meteorological station data consistently overestimated the potential for dengue transmission

compared to predictions based on microclimate data. Because of the high spatial variability of

microclimate temperature regimes, locations with the highest temperature-dependent vecto-

rial capacity occupied a relatively small portion of the county, primarily in patches of high tree

cover embedded in urbanized landscapes with high impervious surface cover. Many of the

locations with high vectorial capacity were located in areas with higher human population

densities, giving them a disproportionate influence on human dengue risk. High spatial resolu-

tion microclimate mapping combined with spatial modeling of vectorial capacity can aid in

the identification of these environmental hotspots, which can then be combined with addi-

tional information on breeding sites and human vulnerability to target surveillance and mos-

quito control activities.

Fig 9. Map of a vulnerability index for dengue transmission in Athens-Clarke County, GA. The index was based on the standardized VC(T) for June-October

2018 and standardized, log-transformed human population density data from the U.S. Census. Gray patches represent water bodies. The map was produced using

R version 3.6.1.

https://doi.org/10.1371/journal.pntd.0008614.g009
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Our spatial model of microclimate temperatures was relatively simple, but explained a sub-

stantial portion of the variation in minimum and maximum temperatures across the rural-to-

urban gradient in Athens-Clarke County. We found that minimum microclimate tempera-

tures had a strong positive association with impervious surfaces summarized within a 1-km

circular window surrounding each logger, whereas maximum microclimate temperatures

were negatively associated with tree cover within the 30 m pixel containing each logger. These

land cover effects are consistent with the results of research in other cities and general princi-

ples of urban micrometeorology. A study of urban heat islands in Chicago (USA) found that

nighttime temperatures measured within city blocks increased with impervious surface and

decreased with tree cover [40]. In contrast, daytime temperatures were not related to impervi-

ous surface and had a weaker, negative relationship with tree cover. In Madison, Wisconsin

(USA), spatial patterns of daytime air temperature were negatively associated with tree cover

summarized at spatial scales of 60–90 m [75]. A study of the urban heat island in Beijing,

China found that the positive association between land surface temperature and impervious

surfaces became stronger as these variables were summarized in larger spatial windows from

30 m up to 960 m [76], and an analysis of urban heat islands in three cities in Southeast Asia

found a similar result [77]. Buildings, pavement, and other impervious surfaces absorb large

amounts of solar energy during the daytime and release this energy at night, resulting in a

broad-scale urban heat island effect on minimum temperatures. In contrast, tree cover has

more localized effects on maximum temperature as a result of shading and evapotranspiration

during the daytime.

In addition to their microclimate effects, land use and land cover influence mosquito popu-

lation dynamics and disease transmission through a variety of other pathways. Spatial variation

of vegetation, topography, and the built environment provides diverse breeding and resting

habitats for mosquitoes, which in turn influence mosquito abundance and potential exposure

of human and zoonotic hosts to questing mosquitoes. For container-breeding mosquitoes the

abundance and quality of artificial habitats is particularly important and has been found to

vary considerably across urban landscapes [37, 78–80]. Neighborhood-level variation in socio-

economic factors, such as housing conditions, sanitation, and accessibility of public health

resources, also influence the types and abundances of artificial breeding habitats as well as

human exposure to mosquitoes and the overall risk of disease transmission [26, 27].

This study considered only thermal effects on vectorial capacity and was not intended to

provide a comprehensive assessment of dengue transmission risk. However, our modeling

results demonstrated that different thermal regimes are an important proximal effect of land

use and land cover on mosquito habitat and mosquito-borne disease transmission cycles. In

Athens-Clarke County GA, variation in microclimate temperatures was sufficient to result in a

doubling of vectorial capacity along a rural-to-urban gradient. We expect these effects to be

even greater in larger metropolitan areas such as Atlanta, where urban heat island effects are

stronger than in smaller cities. Therefore, we recommend that efforts at mapping the risk of

mosquito-borne disease transmission in heterogeneous urban landscapes should consider the

effects of microclimate variation as a potential driver of disease transmission in addition to

other factors influencing habitat and exposure to mosquito bites.

Spatio-temporal models of mosquito abundance and mosquito-borne disease transmission

typically treat land cover as having a fixed, constant effect [33, 34]. However, our results

showed that land cover effects on thermal suitability for mosquito-borne disease transmission

exhibit seasonal change. These changes arise because of the non-linear mechanistic relation-

ships between vectorial capacity and temperature. In early- to mid-summer, maximum tem-

peratures regularly exceeded the optimum level for mosquito survival, reducing mosquito

abundance and vectorial capacity. During this part of the season, increasing tree cover reduced
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maximum temperature to more optimal levels and therefore had a strong positive association

with vectorial capacity. In late summer and autumn, minimum temperatures decreased below

the optimum level for mosquito abundance and for critical traits affecting disease transmission

such as the extrinsic incubation rate, but remained higher in locations where high cover of

impervious surfaces produced an urban heat island effect. As a result, the influence of percent

impervious surface cover on vectorial capacity increased relative to the effects of tree cover in

late summer and early fall. More generally, we expect that in situations where land cover has a

strong influence on microclimate, the resulting influences of land cover on temperature-

dependent vectorial capacity will vary seasonally depending on the climatic setting and the

thermal sensitivities of the mosquito and pathogen.

The health benefits of urban greenspace are widely recognized and include reductions in

some atmospheric pollutants [81], cooling effects that can ameliorate the health impacts of

heat waves [82], provision of opportunities for outdoor physical activity [83], and a variety of

positive psychological benefits [84]. However, our findings demonstrate that areas of green-

space also have the potential to serve as foci for infectious disease transmission. A study of Ae.
albopictus abundance in Rome, Italy similarly found that the highest abundances was associ-

ated with “green islands” of vegetation located in heavily urbanized areas [85]. Forest edges in

urban and suburban areas have been identified as important locations for tick-borne disease

spillover into the human population [86]. In the Atlanta metropolitan area, forested areas with

streams affected by combined sewer overflow were associated with high rates of human West

Nile virus infection [87]. In these examples, urban forests provide favorable habitat for vectors

and zoonotic hosts combined with opportunities for human exposure. Our results indicate

that urban greenspace can also facilitate mosquito-borne disease transmission by providing

microclimate refugia that enhance vectorial capacity. To optimize public health in urban envi-

ronments, it will be essential to maximize the potential health benefits of urban greenspace

while mitigating its potential negative impacts on vector-borne disease transmission.

Additional research and development of analytical tools and data products will be necessary

to facilitate broader use of microclimate information to support mosquito-borne disease sur-

veillance and control efforts in cities. The availability of inexpensive temperature loggers and

free access to many sources of satellite remote sensing and climate data can facilitate the imple-

mentation of similar microclimate modeling studies in other locations. Depending on the geo-

graphic setting and the amount of data available, future studies should explore the sensitivity

of microclimate to other important features such as water bodies, terrain, and soil characteris-

tics. For more comprehensive risk assessments, predictions of thermal suitability for disease

transmission will need to be combined with data on breeding habitat availability, human expo-

sure, and other important ecological and epidemiological factors. Ultimately, it will be neces-

sary to develop and validate generalizable models of urban mosquito microclimates and

mosquito abundance that can be applied across multiple cities within a region to highlight

where climate conditions are currently suitable for disease transmission and assess potential

sensitivities to climate change.
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