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Abstract

Background

Mitochondrial genomes provide useful genetic markers for systematic and population

genetic studies of parasitic helminths. Although many such genome sequences have been

published and deposited in public databases, there is evidence that some of them are

incomplete relating to an inability of conventional techniques to reliably sequence non-cod-

ing (repetitive) regions. In the present study, we characterise the complete mitochondrial

genome—including the long, non-coding region—of the carcinogenic Chinese liver fluke,

Clonorchis sinensis, using long-read sequencing.

Methods

The mitochondrial genome was sequenced from total high molecular-weight genomic DNA

isolated from a pool of 100 adult worms of C. sinensis using the MinION sequencing plat-

form (Oxford Nanopore Technologies), and assembled and annotated using an informatic

approach.

Results

From > 93,500 long-reads, we assembled a 18,304 bp-mitochondrial genome for C. sinen-

sis. Within this genome we identified a novel non-coding region of 4,549 bp containing six

tandem-repetitive units of 719–809 bp each. Given that genomic DNA from pooled worms

was used for sequencing, some variability in length/sequence in this tandem-repetitive

region was detectable, reflecting population variation.

Conclusions

For C. sinensis, we report the complete mitochondrial genome, which includes a long (> 4.5

kb) tandem-repetitive region. The discovery of this non-coding region using a nanopore-
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sequencing/informatic approach now paves the way to investigating the nature and extent

of length/sequence variation in this region within and among individual worms, both within

and among C. sinensis populations, and to exploring whether this region has a functional

role in the regulation of replication and transcription, akin to the mitochondrial control region

in mammals. Although applied to C. sinensis, the technological approach established here

should be broadly applicable to characterise complex tandem-repetitive or homo-polymeric

regions in the mitochondrial genomes of a wide range of taxa.

Author summary

In the present study, we characterised the complete mitochondrial genome of Clonorchis
sinensis—a carcinogenic liver fluke. To do this, we sequenced from total genomic DNA

from multiple adult worms using a new method (Oxford Nanopore technology) to obtain

data for long stretches of DNA, and then assembled these data to construct a mitochon-

drial genome of 18,304 bp, containing a> 4.5 kb-long tandem-repetitive region—not pre-

viously detected in this species. The results demonstrate that this method is effective at

sequencing long and complex non-coding elements—not achievable using conventional

techniques. The discovery of this long tandem-repetitive region in C. sinensis provides an

opportunity to now explore its origin(s) and length/sequence diversity in populations of

this species, and also to characterise its function(s). The technological approach employed

here should have broad applicability to characterise previously-elusive non-coding mito-

chondrial genomic regions in a wide range of taxa.

Introduction

Substantial progress in nuclear and mitochondrial genomics has been made over the last two

decades through the use of DNA sequencing methods [1]. This progress is starting to have a

major positive impact in many areas of parasitology, both fundamental and applied. For

instance, exploring the mitochondrial genomes has enabled systematic (taxonomic and phylo-

genetic) and population genetic investigations of helminths (flatworms and roundworms) [2–

6]. Such genomes provide a rich source of markers for such investigations and are particularly

applicable to systematic investigations of species of flatworms (platyhelminths) [7], because

the mitochondrial genes are usually considerably less variable in sequence than for many

roundworm (nematode) species [8–11]. Thus, there have been numerous studies of members

of the classes Trematoda and Cestoda [7, 12–15].

Seminal work on mitochondrial genomes was conducted using PCR-based cloning com-

bined with conventional (Sanger) sequencing (e.g., [7, 16]). Subsequently, high throughput

sequencing (e.g., 454 and Illumina) became the approach of choice, allowing sequencing from

small amounts of genomic DNA at reduced cost and time [1]. With the advent of ‘short-read’

sequencing (e.g., Illumina) came the confidence that sequencing at high coverage in a high

throughput manner would readily allow the sequencing and assembly of complete mitochon-

drial genomes, because of their relatively small size (~ 14 kb ± 1 kb in flatworms; [14]). How-

ever, there have been challenges with sequencing through tandem-repetitive elements and

regions with a biased nucleotide composition using Sanger and short-read technologies [16–

18], and little attention has been paid to the impact of these issues.
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Indeed, recently, when we explored mitochondrial genomes of parasitic flatworms of the

genus Echinococcus, we noticed a gap of> 1 kb between the 30-end of the nad5 gene and the

50-end of the cox3 gene in E. granulosus genotype G1 [19]. Despite our efforts using a PCR-

based sequencing strategy, we were not able to sequence this gap. However, employing a single

molecule, real-time (SMRT) sequencing technology, we obtained long sequence reads that

bridged the entire gap, allowing us to characterise a 4,417 bp-long tandem-repetitive region

consisting of ten near-identical repeat units (441–445 bp), each harbouring a 184 bp non-cod-

ing region and flanking regions [17]. Although three mitochondrial genomes for E. granulosus
genotype G1 had been published and/or deposited in public gene databases (including Gen-

Bank), closing this gap allowed us to define (what we considered to be) the first complete mt

genome (17,675 bp) for this genotype, being > 4 kb larger than any previously reported

genome for this taxon.

This work stimulated us to scrutinise published mitochondrial genomic data sets of other

flatworms, including the carcinogenic liver flukes Clonorchis sinensis (Chinese liver fluke),

Opisthorchis viverrini (Southeast Asian liver fluke) and Opisthorchis felineus (cat liver fluke)

[20–22]. There were indications of sequence complexity in mitochondrial non-coding regions

and the potential for gaps in the published genomes. In the present study, our goal was to criti-

cally investigate the completeness of the mitochondrial genome of C. sinensis using Oxford

Nanopore long-read sequencing technology (https://nanoporetech.com). We show the effec-

tiveness of this technology to rapidly sequence the compete mitochondrial genome, irrespec-

tive of its length, nature or the structure of intergenic spacer region(s), and to enable the

characterisation of large tandem-repeat regions within the mitochondrial genome of C.

sinensis.

Methods

Parasite material

Adult worms of C. sinensis (n = 100) were collected in 2009 from Syrian golden hamsters

(Mesocricetus auratus) experimentally infected with metacercariae isolated from naturally

infected cyprinid fish (Pseudorasbora parva) originating from Jinju-si, Gyeongsangnam-do,

the Republic of Korea, as described previously [23]. This work was conducted by one of the

authors (W.-M.S.), in accordance with protocols approved by the animal ethics committee at

Gyeongsang National University.

Isolation of high molecular weight genomic DNA, library construction and

sequencing

High quality DNA was isolated from the pool of 100 adults of C. sinensis using the Circulomics

Tissue Kit (Circulomics, Baltimore, MD, USA). Subsequently, low molecular weight DNA was

removed using the 5 kb- or 20 kb-Short Read Eliminator (SRE) kit (Circulomics, Baltimore,

MD, USA). High molecular weight C. sinensis genomic DNA was used to construct rapid-

sequencing (SQK-RAD004; Oxford Nanopore Technologies; 5 kb SRE) and ligation-sequenc-

ing genomic DNA libraries (SQK-LSK109; Oxford Nanopore Technologies; 5 and 20 kb SRE),

according to the manufacturer’s instructions. The SQK-RAD004 (5 kb SRE) and SQK-LSK109

(5 kb SRE) libraries were sequenced using separate flow cells (R9.4.1; Oxford Nanopore Tech-

nologies). The flow cell used to sequence the SQK-LSK109 (5 kb SRE) library was washed

using a Flow Cell Wash Kit (EXP-WSH003; Oxford Nanopore Technologies) and re-used to

sequence the SQK-LSK109 (20 kb SRE) library. All genomic DNA libraries were sequenced

(48 h) on the MinION sequencer (Oxford Nanopore Technologies). Following sequencing,
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bases were ‘called’ from raw FAST5 reads using the program Guppy v.3.1.5 (Oxford Nanopore

Technologies) and stored in the FASTQ format [24].

Assembly of the mitochondrial genome

The reads were mapped to the reference mitochondrial genome of a Korean isolate of C. sinen-
sis (GenBank accession no. KY564177; [22]) using Minimap2 v.2.17-r941 [25]; mapped reads

and their alignment positions were stored in the BAM format [26]. The mapped reads were

extracted from the BAM file using SAMtools v.1.9 [26] and initially assembled using the pro-

gram Canu v.2.0 [27]. Repeat sequences in the assembled mitochondrial genome were identi-

fied using the program repeat-match in the MUMmer package v.3.23 [28]. A library of

identified repeat sequences and published mitochondrial protein genes of C. sinensis (Gen-

Bank accession no. KY564177; [22]) was used to assess the number of repeat units and com-

pleteness of the repeat region using the program RepeatMasker v.4.0.5 (http://www.

repeatmasker.org). The final representative mitochondrial genome was assembled using reads

that spanned the entire repetitive region encoding the commonest tandem-repeat unit fre-

quency (± 1 repeat unit) and the program Canu. The non-repetitive region of the assembled

genome was then polished with Pilon v.1.23 [29] using available Illumina short-read data [22].

Finally, all long-read data produced were mapped to the assembled mitochondrial genome

using Minimap2, and coverage of the genome was determined using mpileup in the SAMtools

package [26].

Annotation of the mitochondrial genome and characterisation of the

repeat region

The new assembly was compared with those of published mitochondrial genomes of C. sinensis
(GenBank accession nos. KY564177, JF729304, JF729303 and FJ381664; [20–22]); subse-

quently, tRNA, rRNA and protein-encoding gene annotations were transferred to the assem-

bled genome. The open reading frame (ORF) of each protein gene was verified using the

program Geneious v.11.1.5 [30], employing the mitochondrial genetic code for echinoderms

and flatworms ([7]; https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi#SG9). Sec-

ondary structures were predicted using the Vienna RNA Websuite ([31]; http://rna.tbi.univie.

ac.at) and drawn using the tool Forna [32]. The complete mitochondrial genome sequence was

deposited in the GenBank database under the accession no. MT607652; raw data are also avail-

able in the Sequence Read Archive (SRA) under the accession no. PRJNA386618.

Results and discussion

The mitochondrial genome of C. sinensis contains a tandem-repetitive

region of > 4.5 kb

From a total of 93,729 long-reads (equating to 310 Mb), we de novo-assembled a 18,304 bp

mitochondrial genome for C. sinensis at high coverage (average: 2,381; median: 1,615; Fig 1),

including a tandem-repetitive region (Fig 2). The initial assembly indicated variation in the

number of repeats spanning this region, which likely related to sequence-length variation

among individual worms used for the preparation of genomic DNA. In the first instance, we

selected six repeats to represent this region. However, it was somewhat challenging to unequiv-

ocally assemble all sequences across this tandem-repeat region and to define its precise length.

In order to establish the nature and extent of variation in the number and length of repeat

sequences, we mapped all long-read data to the mitochondrial genome containing six tandem-

repeats and showed a substantial increase in coverage (mean of 1,530 to 5,018; peak at 7,627)
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across this region (positions 6,640 to 11,188; Fig 1). Although mapping results identified reads

containing more (n> 1,200) or less (n> 18,900) than six tandem-repeats, scrutinity of the

data revealed 40 sequences (with 3 to 41 repeat units) that bridged the entirety of the tandem-

repeat region and were flanked at each terminus by sequences that matched perfectly the

expected genes (tRNA-Glu and nad5 at the 50-end, and tRNA-Gly and cox3 at the 30-end). Irre-

spective of this variation, reads with six tandem-repeats predominated. Hence, this number of

repeats was selected to represent the mitochondrial genome of C. sinensis without considering

the variation that exists among (or within) individual worms. In this representative mitochon-

drial genome, repeat units R1 to R6 (Fig 2) were 719–809 bp in length and had 91% identity

upon pairwise comparison. Most differences related to length variation in TA- (69 to 138 bp)

and GA-rich (26 to 35 bp) sequence tracts, although a 58 bp deletion occurred in a non-repeti-

tive DNA segment (Fig 2). Parts of the repeat units were predicted to fold into secondary struc-

tures; some of these predicted structures were complex, with internal loops (� 10 bp) and

multiple hairpins (stems:� 39 bp; Fig 2).

Fig 1. Coverage of long-reads (produced by Oxford Nanopore sequencing) across the mitochondrial genome (18,304 bp) of

Clonorchis sinensis. The graph shows the depth of nucleotides at each position (grey dots) and the smoothed average of depth across the

genome (solid black line). Dashed lines demarcate the start (position 6,640) and the end (11,188) of the long tandem-repeat region of

4,549 bp (Fig 2).

https://doi.org/10.1371/journal.pntd.0008552.g001
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Fig 2. Complete, annotated mitochondrial genome of Clonorchis sinensis. (A) Schematic representation of the mitochondrial

genome, including the newly-identified tandem-repeat region (4,549 bp); the 12 protein-encoding genes, 2 rRNAs and 22 tRNAs

(designated by their one-letter amino acid abbreviations) are in accord with a published reference mitochondrial genome available

in GenBank (accession no. KY564177; [22]). The short non-coding region is between tRNA-Gly (G) and cox3. (B) A schematic

alignment of the tandem-repeat units (R1 to R6; bottom), showing nucleotide identities (light grey) or differences (dark grey) and

regions predicted to assume structures (boxed in black). Secondary structures predicted for individual repeat units are indicated

above the alignment; mis-matches in stems are indicated (boxed). Positions 598 to 819 include a variable TA-rich region and was

predicted to fold into three distinct structures (4a to 4c).

https://doi.org/10.1371/journal.pntd.0008552.g002
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Variation in the tandem-repetitive region

Evidence of variation in the number of repeats spanning this long non-coding region raised a

question about possible technical artefacts. However, because long, intact single-molecule

DNA strands were sequenced here using Nanopore technology, such artefacts can be excluded

(cf. [33]). Using this technology, we obtained long sequence reads for the entire long tandem-

repetitive region, without the need for any read assembly. The use of direct library construc-

tion methods excludes artefacts, such as chimeric sequences, resulting from amplification [34–

36]. Thus, reads that bridged the entire repeat region and had termini that matched respective

flanking regions in the reference mitochondrial genome represented the tandem-repetitive

region in C. sinensis.
Given that sequence/length variation in mitochondrial non-coding (e.g., control or inter-

genic) regions is commonly recorded among individuals of an animal species [37], we

expected to find such variation in the tandem-repetitive region of C. sinensis, because we used

a pool of C. sinensis adults to prepare genomic DNA for sequencing. Indeed, the mapping

results revealed marked variation in sequence, length and repeat numbers as well as sequence

coverage. This variation could be among individual worms, because DNA was isolated from

100 worms, but intraindividual or tissue-specific variability (i.e. heteroplasmy) cannot be

excluded. Length variation in mitochondrial repeat regions, established using PacBio long-

read sequence data, have been reported recently in other trematodes, such as Paragonimus
westermani and Schistosoma bovis [18, 38], but the frequencies and patterns of occurrence

within worm populations are unexplored. We believe that further sequencing is warranted to

obtain complete (long) read data from individual worms of C. sinensis (preferably from dispa-

rate geographical areas) to gain an appreciation of the diversity in number and sequence of

repeat elements within this non-coding region in C. sinensis. Although the origin(s) of such

variation in flatworms is presently unknown, it might be the result of double-strand break

repair or slipped-strand mispairing during replication [39, 40].

The identification in the sequence data set of long-reads containing > 6 repeat units that

did not span the non-coding region (4.5 kb) suggested partial degradation of mitochondrial

DNA in the total DNA sample—extracted from C. sinensis worms collected in 2009—used for

nanopore-sequencing. Some degradation or nicking of repetitive DNA would be expected to

occur in a sample stored frozen for such an extended period (11 years). However, it is also pos-

sible that secondary structural arrangements in repetitive elements (Fig 2) might have led to

some nicking during sequencing, resulting in a proportion of incomplete sequences, which is

plausible for long DNA strands.

Overcoming the challenges of sequencing the tandem-repetitive region

The mitochondrial genomes of a range of flatworms (cestodes and trematodes) are known to

harbour non-coding regions containing repetitive elements [2, 7]. Short and long non-coding

regions appear to be characteristic of trematodes, although often partially sequenced using

Sanger- or short-read sequencing methods [3, 7, 21]. The comparison of the present mito-

chondrial genome assembly with published mitochondrial genomes of C. sinensis revealed that

the newly-characterised tandem-repeat region occurs between tRNA-Glu and tRNA-Gly, for-

merly estimated at 153–154 bp in size [20–22]. A short non-coding region between tRNA-Gly

and cox3 equated to 67 bp, as reported previously (67 or 68 bp). All 12 protein-encoding

genes, 22 tRNAs and two rRNAs had high sequence similarities (> 99.2%) to those in pub-

lished mitochondrial genomes and occurred in the same order. However, there is clear evi-

dence [17, 18, 38] that conventional sequencing methods are not suited to the sequencing of

long non-coding regions in mitochondrial genomes. This obstacle has been overcome through
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the use of nanopore-sequencing, which bodes well for future mitochondrial genome

investigations.

Speculating about the role(s) of non-coding elements in the mitochondrial

genome

Although the functions of long non-coding elements in the mitochondrial genome of parasitic

flatworms are unexplored, they are hypothesised to be ‘control’ regions, which initiate replica-

tion and transcription [7, 41–44]. In bilaterian animals, the control region is typically ~ 1 kb in

size [45–49] and often contains short repeat elements, predicted to fold into secondary struc-

tures [37]. Although significant deviations from a ‘typical’ animal mitochondrial genome exist

[50] and duplications of control regions are known to occur [51–55], expansive repetitive non-

coding regions with substantial size variation within a species seem to be unusual. For parasitic

flatworms, we propose that each tandemly-repeated unit represents a distinct control region

possibly enhancing replication and transcription efficiency [17]. Multiple control regions

within the mitochondrial genome might provide an advantage in terms of being able to adapt

cellular energy production and metabolism during particular life-cycle phases while under

strong selective pressure in different environments, both outside of or within a host animal

(e.g., O2, pH, salinity, temperature, light, osmotic pressure and/or nutrient accessibility).

Efficient replication might also limit the detrimental effect of extreme environments on

mitochondrial DNA integrity. A plethora of internal and external agents (e.g., reactive oxygen

species, metabolites, radiation, environmental chemicals and toxins) are known to cause DNA

damage such as mutations and lesions, of which double-strand breaks (DSBs) are particularly

harmful [56–58]. Although animal DNA is constantly exposed to such stressors, it could be

proposed that many organisms, such as parasitic helminths, inhabit particularly inhospitable

environments that cause chronic damage to mitochondrial DNA and that unique strategies

might have evolved to achieve efficient genome maintenance and ensure cellular viability.

Conditions potentially disrupting the mitochondrial DNA integrity of C. sinensis could include

exposure to toxic bile salts and acids and/or desiccation, which have been shown to cause

DNA anomalies such as DSBs in some microbe and metazoan species [59–66]. In response to

this stress, replication of the mitochondrial genome might need to be highly efficient, in order

to have a high number of genomes in the cell at any one time. This might avoid harmful muta-

tions in the mitochondrial genome by increasing the number of template molecules in each

cell, required to repair DNA in the least error-prone way [58, 67, 68]. A large number of

genomes might act also as a ‘buffer’ in the cell—even if some get damaged, many functionally

intact genomes will be present, ensuring that replication and transcription of mitochondrial

genes are not disrupted within the cell. Whether selection acts upon the size of the repeat

region in the mitochondrial genome of C. sinensis, or whether repeat expansions and contrac-

tions represent stochastic events, such as errors during DNA repair (e.g., [40]), warrants inves-

tigation. Future work might explore whether the repetitive region might function as an ‘origin

of replication’ using a combination of two-dimensional neutral agarose gel electrophoresis and

electron microscopy techniques [69].

Concluding remarks

The first characterisation of a novel tandem-repetitive region (> 4.5 kb) in C. sinensis and vari-

ation in the sequence and number of repeat elements within this region raise questions about

(i) the functional role(s) of this region within cells and mitochondria; (ii) the origin of such

variation and whether it occurs within cells or tissues within individual worms, or among

worms; and (iii) what impact such variation has on mitochondrial, nuclear and/or cellular
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functions. In our opinion, these research questions would be interesting to pursue in the near

future.
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