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Abstract

Plasmodium vivax is the most widespread and difficult to treat cause of human malaria. The

development of vaccines against the blood stages of P. vivax remains a key objective for the

control and elimination of vivax malaria. Erythrocyte binding-like (EBL) protein family mem-

bers such as Duffy binding protein (PvDBP) are of critical importance to erythrocyte invasion

and have been the major target for vivax malaria vaccine development. In this study, we

focus on another member of EBL protein family, P. vivax erythrocyte binding protein

(PvEBP). PvEBP was first identified in Cambodian (C127) field isolates and has subse-

quently been showed its preferences for binding reticulocytes which is directly inhibited by

antibodies. We analysed PvEBP sequence from 316 vivax clinical isolates from eight coun-

tries including China (n = 4), Ethiopia (n = 24), Malaysia (n = 53), Myanmar (n = 10), Papua

New Guinea (n = 16), Republic of Korea (n = 10), Thailand (n = 174), and Vietnam (n = 25).

PvEBP gene exhibited four different phenotypic clusters based on the insertion/deletion

(indels) variation. PvEBP-RII (179–479 aa.) showed highest polymorphism similar to other
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EBL family proteins in various Plasmodium species. Whereas even though PvEBP-RIII-V

(480–690 aa.) was the most conserved domain, that showed strong neutral selection

pressure for gene purifying with significant population expansion. Antigenicity of both of

PvEBP-RII (16.1%) and PvEBP-RIII-V (21.5%) domains were comparatively lower than

other P. vivax antigen which expected antigens associated with merozoite invasion. Total

IgG recognition level of PvEBP-RII was stronger than PvEBP-RIII-V domain, whereas total

IgG inducing level was stronger in PvEBP-RIII-V domain. These results suggest that

PvEBP-RII is mainly recognized by natural IgG for innate protection, whereas PvEBP-RIII-V

stimulates IgG production activity by B-cell for acquired immunity. Overall, the low antigenic-

ity of both regions in patients with vivax malaria likely reflects genetic polymorphism for

strong positive selection in PvEBP-RII and purifying selection in PvEBP-RIII-V domain.

These observations pose challenging questions to the selection of EBP and point out the

importance of immune pressure and polymorphism required for inclusion of PvEBP as a

vaccine candidate.

Author summary

When developing a malaria vaccine, it is essential to consider natural polymorphisms of

the candidate antigen to ensure high efficacy. As a novel member of EBL protein family in

P. vivax, PvEBP showed preference for reticulocyte binding, with its specific antibody

exhibiting binding inhibition activity. This study presents PvEBP as a suitable target for

an asexual erythrocytic stage vaccine. Here, we discuss genetic polymorphisms and neu-

tral selection of PvEBP gene in eight different P. vivax-endemic countries, and how these

affect the prevalence of naturally-acquired anti-PvEBP antibodies from vivax patients.

This study highlights a number of challenges associated with the PvEBP base vaccine

development strategy.

Introduction

In 2017 Plasmodium vivax caused between 7.5–14.3 million cases of malaria, mainly in the

South-East Asia region (56%) [1, 2]. Although P. vivax is generally not lethal to their host, P.

vivax causes high morbidity among the five human invasive Plasmodium species (P. falcipa-
rum, P. vivax, P. knowlesi, P.malariae and P. ovale) due to recurrent parasitaemia from reacti-

vation of the dormant hypnozoites [1, 3–5]. Despite its importance as the most widespread

Plasmodium species, absence of reliable in vitro long-term culture system has impeded

research into optimal interventions against the parasite [5, 6]. Current malaria vaccine devel-

opment strategies focus on identifying a specific, immunogenic antigen which will stimulate

protective humoral immune response and to produce sufficient amount of the specific, func-

tional antibody to provide sterile immunity against malaria infection. Finding such functional

antibodies from individuals living in endemic settings may answer for natural infections

against malaria. Anti-malarial humoral immune responses provide various function including

phagocytosis and/or direct killing by complement mediation [7] which results in a reduction

in merozoite invasion, growth and rosetting formation [7–9].

Erythrocyte invasion of Plasmodium species occurs by sequential multiple molecule inter-

actions, with each step mediated by antigens belonging to different protein families [10]. The
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erythrocyte binding-like (EBL) protein family which contained EBL (or RII) domain was iden-

tified in various Plasmodium species with conserved function as host cell binding via glycopro-

tein receptor for invasion before tight junction formation [11, 12]. These proteins are highly

expressed in mature schizont stage and localized in the microneme [12]. The best-known

member of EBL family is P. vivaxDuffy binding protein (PvDBP) which binds to Duffy anti-

gen receptor for chemokine (DARC/Fy glycoprotein) and mediate invasion into erythrocytes

by the majority of P. vivax isolates [13]. This specific ligand-receptor interaction and parasite

invasion process can be a target for invasion blocking antibodies against EBL domain

(PvDBP-RII) [14, 15]. Given its unique importance, the EBL domain has been the main candi-

date for vaccine development. However, recent Phase 1a PvDBP-RII vaccine clinical trial

showed low efficacy [16] and strain-specific immune response is limited by a high level of

genetic polymorphism in the EBL domain [17]. To overcome this important issue, identifying

conserved epitopes and evaluating their recognition by neutralising antibodies is essential to

achieve sterile immunity [18, 19]. Further investigations of novel antigens for vaccine candi-

dates are required to understand downstream immune response of target antigen, evaluation

of current immunity to conserved epitopes, and determination of regions undergoing neutral

selection.

Here, we have focused on another member of EBL family, i.e. P. vivax erythrocyte binding

protein (PvEBP), which was first identified from a Cambodian field isolate (C127) [20]. PvEBP

preferentially binds CD71+ and CD234+ reticulocytes but not CD234- reticulocyte through its

EBL domain, PvEBP-RII [21]. Antibodies against PvEBP-RII but not PvDBP is inhibited bind-

ing of reticulocytes to PvEBP expressing COS cells indicating that despite sequence similarity

the binding regions of these two EBL proteins are different [21]. An increasing number of

studies have reported P. vivax invasion in Duffy-negative populations in Africa regions

highlighting potential of PvDBP independent invasion pathways [22–24]. Given its similarity,

it is hypothesised that, PvEBP may have a role in facilitating this newly discovered DARC-

independent invasion pathway [21]. In addition to the analysis of PvEBP for its functional con-

tribution to parasitic invasion, there is also a need to evaluate immune responses and natural

polymorphisms of EBP in field isolates to further determine the likelihood of EBP as a possible

vaccine candidate.

We analysed clinical isolates from eight countries to quantify genetic diversity of PvEBP

and total serum concentrations of IgG against two domains of PvEBP (RII and RIII-V). Our

analysis evaluates the correlation of vivax patient antigenicity with genetic polymorphism and

natural selection to explore the prevalence of PvEBP specific IgG and how this might impact

vaccine development.

Methods

Ethics statement

Whole blood was collected from symptomatic P. vivax patients after examining blood smears

using light microscopy at local health centre in five countries for genomic DNA extraction fol-

lowing pvebp amplification: Papua New Guinea (PNG, n = 16), South region of demilitarized

zone in Republic of Korea (ROK, n = 10), Shwegyin in Myanmar (n = 10), North-western

Thailand (n = 72), and Vietnam (n = 25). Patients sera were collected from three countries:

ROK (n = 50), Myanmar (n = 50), and Thailand (n = 37). All clinical samples were collected

under the following ethical guidelines and approved protocols: Kangwon National University

Hospital Ethical Committee, Republic of Korea (IRB No. 2014-08-008-002), Department of

Medical Research, Republic of the Union of Myanmar (Approval No-52/Ethics, 2012), and

OXTREC 027–025 (University of Oxford, Centre for Clinical Vaccinology and Tropical
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Medicine, UK) and MUTM 2008–215 from the Ethics Committee of Faculty of Tropical Medi-

cine, Mahidol University, Thailand. All adult subjects provided informed written consent, and

a parent or guardian of any child participant provided informed written consent on their

behalf.

Genomic DNA extraction, sequencing, and sequence data collection

Genomic DNA was extracted from 200 μl whole blood samples using QIAamp DNA Blood Mini

Kit (QIAGEN, Hilden, Germany) following the manufacturer’s protocol. Total 133 samples from

PNG, ROK, Myanmar, Thailand, and Vietnam were amplified. The primer sets were designed

using C127 isolate pvebp sequence as a reference (NCBI accession number, KC987954): PvEBP

forward (5’-GACTTCCTGACTGGCGTGATTTAC-3’) position in 5’ UTR region and PvEBP

reverse (5’-AGGTATTATCCTCCTAAACAGTTTGTTC-3’) position in second intron. The

amplicons contained extracellular domain (ecto) and were sequenced using four internal sequenc-

ing primer set: fragment 1–2 reverse (5’-AATTTCCATGCGCCACGATGT-3’), fragment 3 for-

ward (5’-ATTCAATAAATGGAAGAAGCATAATAGC-3’), fragment 4 forward (5’-GATCATA

CTAAAGAAGGAGCAATGG-3’), and fragment 5 forward (5’-CCTACTAATGAGGGTGATA

GCGTC-3’) using an ABI 3700 Genetic Analyzer (Genotech, Daejeon, ROK). The detailed gene

sequences of pvebp-ecto are available at GenBank (accession numbers: MN853168—MN853300).

Pvebp sequence from China (n = 4), Ethiopia (n = 24), Malaysia (Sabah, n = 53), and Thai-

land (North-western, n = 102) obtained from whole genome sequencing data which described

at previously [25–27]. Total 316 sequences were aligned with PNG (PVP01_0102300), Mauri-

tania I (NCBI, bioproject accession: PRJNA67237), and India VII (PRJNA65119) pvebp genes

as a reference sequence.

Nucleotide diversity and neutral selection

Pvebp nucleotide diversity (π) is defined as the average number of nucleotide differences per

site between two sequences within the sequences. The number of polymorphic sites, number of

haplotypes and haplotype diversity (Hd) were calculated by DnaSP software [28]. Test of neutral

selection was evaluated using multiple calculation method including Tajima’s D, Fu and Li’s D�,

and Fu and Li’s F� with excluding the sequence gap [29, 30]. Under neutrality, Tajima’s D is

expected to be 0. Significant positive values of Tajima’s D indicate population bottlenecks and

balancing selection, whereas negative values suggest population expansion or negative selection

[29]. Significant positive value of Fu and Li’s D� and Fu and Li’s F� represent population con-

traction due to selection. On the other hand, negative values represent population expansion

and excess of singletons [30]. Natural selection was determined by calculating the rates of syn-

onymous substitutions per synonymous site (dS) and non-synonymous substitutions per non-

synonymous site (dN) at the intra-species level. The calculation was performed by computed

Nei and Gojobori’s method and robustness was estimated by the bootstrap method with 1000

pseudo replicates as implemented in the MEGA 5 software. A dN/dS ratio less than 1 indicates a

purifying selection and dN/dS ratio greater than 1, indicates a positive selection. The test of

pvebp natural selection at the inter-species level was performed using the robust McDonald and

Kreitman (MK) test with P. cynomolgiDBP2 (PcyM_0102400) gene as an out-group using

DnaSP software. PvEBP haplotype was evaluated by DnaSP software and graphical presentation

for distance in relationship was generated by median-joining method in Network 5.0 software.

Recombinant protein expression

Recombinant PvEBP-RII (188–421 aa.) and PvEBP-RIII-V (480–676 aa.) fragments were

selected using PVP01_0102300 sequence for antigenicity prevalence screening using protein
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array. Briefly, PvEBP-RII was cloned into wheat germ cell-free expression vector pEU-E01-

His-TEV-MCS (Cell-Free Sciences, Matsuyama, Japan) using In-Fusion HD Cloning kit

(Clontech, Mountain View, CA, USA). The domain was amplified using RII specific primer

(forward: 5’-gggcggatatctcgagTGTAACGCCAAGAGGGAACGTG-3’ and reverse: 5’-gcggta

cccgggatccctaGGTATCCCATTGCTCCTTCTTTAG-3’). Lower case letter indicates vector

site and underline indicates restriction enzyme site for XhoI and BamHI. Recombinant PvEB-

P-RII was expressed using wheat germ cell-free system (Cell-Free Sciences) following the man-

ufacturer’s protocol. RIII-V was cloned into pET28a+ vector for Escherichia coli expression

using In-Fusion system. RIII-V specific primer (forward: 5’-aatgggtcgcggatccCACAAAGGT

GTAAAAATTGCGG-3’ and reverse: 5’-ggtggtggtgctcgagTTGCGCATTACTATACCCGTC

G-3’) amplified region containing BamHI and XhoI enzyme sites. The plasmid DNA was

transformed to BL21 (DE3) (Millipore, Billerica, MA, USA) and expression induced by 0.1 M

Isopropyl β-D-1-thiogalactopyranoside (IPTG). The crude proteins were purified by Ni-NTA

column (QIAGEN) with 500 mM and 100 mM imidazole, respectively. Each recombinant pro-

tein (1 μg/lane) was prepared in 2x reducing buffer and separated by 12% SDS-PAGE. The

recombinant protein was visualized with Coomassie brilliant blue staining.

Antigenicity evaluation

Protein microarray was performed to evaluate total IgG reactivity. 3 aminopropyl-coated slides

were prepared as described previously [31]. The slides were printed to each spot with recombi-

nant protein (RII, 200 ng/μl and RIII-V, 12.5 ng/μl) as a saturated concentration and incubated

for 2 hours at 37˚C. The recombinant protein coated slide was blocked with blocking buffer

(5% BSA in PBS-T) for 1 hour at 37˚C. Vivax patient and healthy individual sera were diluted

in PBS-T to 1:25 and probed on the chip for 1 hour at 37˚C. The arrays were visualized with

10 ng/μl of Alexa Fluor 546 goat anti-human IgG (Invitrogen, Carlsbad, CA, USA) in PBS-T

for 1 h at 37˚C and scanned with ScanArray Gx laser confocal scanner (PerkinElmer, Norwalk,

CT, USA). The positive cut-off values calculated by negative control mean fluorescence inten-

sity (MFI) plus two standard deviations.

Statistical analysis

The data were analyzed using GraphPad Prism (GraphPad Software, San Diego, CA, USA),

SigmaPlot (Systat Software Inc., San Jose, CA, USA), and Microsoft Excel 2013 (Microsoft,

Redmond, WA, USA). For the protein array, Student’s t-test was used to compare the experi-

mentally measured values of each group. The correlation of clinical information with antige-

nicity was calculated by Pearson correlation test. Differences of p< 0.05 were considered

significant. The total IgG reactivity index was calculated by each MFI divided by average nega-

tive MFI of RII and RIII-V, respectively, for normalization and reactivity comparison between

RII and RIII-V.

Results

Sequence alignment of pvebp
The complete pvebp (PVP01_0102300) sequence encodes 2,942 bp with three introns on chro-

mosome 1 in the hypervariable sub-telomeric region [32]. The four exon sequence encodes

2,538 bp nucleotide with 95.1 kDa predicted molecular weights. PvEBP regions are divided

based on PvDBP region division strategy in primary structure and they are defined as region I

(RI, 1–534 bp), RII (535–1,437 bp), RIII-V (1,438–2,070 bp), and RVI (2,071–2,307 bp) in the

first large exon [33]. The RII (EBL domain) and RVI (EBA-175 homologue, or C-terminal
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cysteine rich domain) were highly conserved in multiple cysteine residue with pvdbp. Addi-

tionally, PvEBP contained putative signal peptide (1–60 bp) in RI domain and transmembrane

domain (2,326–2,394 bp) in RVII (Fig 1A, PvEBP Cluster 1).

Four ROK isolates (K01, K02, K04, and K05) showed different lengths of pvebp-ecto ampli-

con size (S1 Fig). The sequencing result confirmed 6 nucleotides (GGCAAA) deletion coding

2 amino acids (Gly-Lys/GK) in RII (position in 1,003–1,008 bp), followed by a large insertion

in RIII-V (1,564–1,800 bp) comprising of 79 amino acids (Fig 1A and 1B, Cluster 4). From this

result, the expanded blast analysis was performed using large insertion sequence for clustering

by indels (insertion/deletion) variation type of pvebp. Two vivax reference sequences found

identical large insertion sequence in Mauritania I (Fig 1A and 1B, Cluster 3) and India VII

(Fig 1A and 1B, Cluster 4). Finally, four different pvebp cluster identified based on gene pheno-

typic variation. Almost isolates were classified cluster 1 (304/316, 96.2%) which contained GK

without large insertion such as PVP01_0102300 pattern (Fig 1A and 1B, Cluster 1). The cluster

2 (1/316, 0.3%) has GK deletion in RII domain and cluster 3 (7/316, 2.2%) gene phenotype was

same with Mauritania I sequence which found in only Ethiopia isolates (Fig 1A and 1B, Cluster

2 and 3). The cluster 4 (4/316, 1.3%) followed India VII sequence as a reference, which found

in only ROK isolates (Fig 1A and 1B, Cluster 4). The large identical insertion sequence con-

tained rich Gly (20.3%), Ser (17.7%), and Arg (12.7%) within 79 aa. lengths (Fig 1B). Further

analysis using P. knowlesi individual Sequence Read Archive (SRA) database on the blast of

Pk1 A+, PkNA1, Pk Nuri, PkA1H1 and Pk H (AW) did not yield similar sequences of ebp
gene. The blast searching with P. cynomolgi gave 91% hit identity toMulligan strain Duffy

Binding Protein 2 (PcyM DBP2) (Fig 1A, PcyDBP2 M strain). Sequence alignment to PcyM

DBP2 identified similar gene phenotypic pattern with PvEBP cluster 4 (Fig 1B). However,

PcyM DBP2 presented additional insertion sequence for four amino acid (DERS) upstream of

the large insertion, followed by a 20 amino acids expanded insertions

(DRSSDGSSGGSSGGSSGGSS) in downstream of large insertion (Fig 1B).

Genetic diversity and neutral selection of pvebp-ecto

Pvebp-ecto nucleotide diversity (π) of 316 isolates from eight countries shown 53 polymorphic

sites which included 8 synonymous and 45 non-synonymous sites. Nucleotide diversity based

on geographical, China (π ± S.D., 0.00179 ± 0.00046) shown highest nucleotide diversity and

followed by Ethiopia (0.00172 ± 0.00011), ROK (0.00169 ± 0.00016), Myanmar (0.00150 ±
0.00025), PNG (0.00108 ± 0.00024), Thailand (0.00084 ± 0.00006), Vietnam (0.00061 ±
0.00010), and most conserved in Malaysia (0.00045 ± 0.00011). Overall, nucleotide diversity

was calculated 0.00097 ± 0.00005 (π ± S.D.) (Table 1). Neutrality selection test within intra-

species by Tajima’s D (-2.10845), Fu and Li’s D� (-5.95822), and Fu and Li’s F� (-5.05392)

showed a significant negative value and the ratio of dN/dS (4.52) greater than one. All of calcu-

lation parameters strongly indicated a positive selection and population expansion of PvEBP-

ecto (Table 1 and Table 2). The inter-species level was calculated by the robust MK test with

P. cynomolgiDBP2 gene as an out-group species. The PvEBP-ecto analysis showed a neutrality

index as 2.274 (p = 0.051) indicating positive selection however this did not reach statistical

significance (Table 2). The PvEBP-RII domain showed a significantly strong positive selection

pressure and PvEBP-RIII-V domain showed negative/purifying selection that did not reach

statistical significance (Table 2).

Pvebp sequences identified 67 haplotypes with four distinct clusters. The cluster 1 contained

61 haplotypes with geographically sharing for eight countries (Fig 2). The result indicates that

the pvebp cluster 1 polymorphism occur widely without specific geographical pattern. The far

distance from core haplotypes population were revealed specific geographical pattern from
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Ethiopia for cluster 2 (H51), cluster 3 (H46, H50, and H51), and ROK isolates for cluster 4

(H01 and H02) (Fig 2).

Pvebp-domain base nucleotide diversity analysis showed in RII (0.00172 ± 0.00009) fol-

lowed by RI (0.00080 ± 0.00010), RVI (0.00062 ± 0.00010), and most conserved in RIII-V

(0.00018 ± 0.00009) (Fig 3, S1 Table).

Fig 1. Pvebp primary structure and phenotypic clustering. (A) Disc shape shows pvebp exon and solid line

represents intron part. Region separation was followed by PvDBP region divided strategy on cluster 1. The line in the

box represents indels variation sites (GK or DERS). Cluster 3, 4, and PcyDBP2 (M strain) sequences have large

insertions (oblique line box) in RIII-V domain. (B) Amino acid sequence alignment with PvEBP cluster shows in

yellow background for Gly-Lys (GK), and gray background shows large indels variation.

https://doi.org/10.1371/journal.pntd.0008202.g001

Table 1. Estimates of nucleotide diversity, haplotype diversity and neutrality indices of pvebp-ecto domain based on the geographical location. (�p<0.05, ��p<0.02,
���p<0.01).

Location No. of SNPs No. of Diversity ± S.D. Tajima’s D Fu and Li’s

samples haplotype Haplotype (Hd) Nucleotide (π) X 103 D� F�

China 4 8 4 1.000 ± 0.177 1.79 ± 0.46 -0.44637 -0.44637 -0.43935

Ethiopia 24 16 14 0.938 ± 0.030 1.72 ± 0.11 -0.24556 0.16286 0.04577

Malaysia 53 8 6 0.368 ± 0.083 0.45 ± 0.11 -1.08130 -0.14673 -0.52964

Myanmar 10 9 6 0.889 ± 0.075 1.50 ± 0.25 0.42326 1.02910 0.98872

PNG 16 12 7 0.833 ± 0.072 1.08 ± 0.24 -1.17924 -0.81090 -1.05049

ROK 10 9 5 0.844 ± 0.080 1.69 ± 0.16‘ 1.00440 0.62312 0.80625

Thailand 174 33 37 0.845 ± 0.024 0.84 ± 0.06 -1.92027� -3.62687�� -3.50982��

Vietnam 25 7 8 0.773 ± 0.070 0.61 ± 0.10 -0.74586 -0.71112 -0.83830

Overall 316 53 67 0.823 ± 0.021 0.97 ± 0.05 -2.10845� -5.95822�� -5.05392��

https://doi.org/10.1371/journal.pntd.0008202.t001
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Antigenicity screening

PvEBP-RII (30.1 kDa) and PvEBP-RIII-V (25.8 kDa) recombinant proteins were used for anti-

genicity evaluation (Fig 4A). Total IgG reactivity in vivax patient showed significantly higher

in RII (MFI ± S.D., 16,048 ± 8,547) than RIII-V (7,386 ± 3,211). Additionally, RII IgG reactiv-

ity in healthy individual also showed significantly higher in RII (11,175 ± 5,010) than RIII-V

(5,462 ± 1,762) (Table 3). However, PvEBP specific IgG inducing level after P. vivax infection

Table 2. McDonald-Kreitman (MK) tests on PvEBP with PcyDBP2 as out-group species and dN/dS ratio.

PvEBP

domain

Polymorphic changes within

P. vivax
Fixed differences between

P. vivax and P. cynomolgi
Neutrality index

(p value)a
dN/dS

Syn Non-Syn Syn Non-Syn

PvEBP-ecto 8 45 57 141 2.274 (0.051) 4.52

PvEBP-RI 3 8 16 40 1.067 (1.000) 0.67

PvEBP-RII 1 25 23 37 15.541 (0.001) 27.61

PvEBP-RIII-V 17 33 15 43 0.677 (0.402) 0.75

PvEBP-VI 0 2 5 17 - -

a Fisher’s exact test p-value.

https://doi.org/10.1371/journal.pntd.0008202.t002

Fig 2. Median-joining networks of PvEBP-ecto haplotype. The geographical haplotype network shows the

relationships among 67 haplotypes present in 316 isolates sequence. Distances between nodes are generated by

NetWork 5.0 software. The orange cutting line connected to cluster 2 and cluster 3, the blue cutting line connected to

cluster 4. The cluster 3 and cluster 4 contained large insertion sequence in RIII-V domain and cluster 4 connected to

PcyM DBP2.

https://doi.org/10.1371/journal.pntd.0008202.g002
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in RIII-V (21.5%) was higher than RII (16.1%) (Table 3). This result indicated that RII antigen

mainly recognized by natural IgG for innate protection, whereas specific IgG inducing level by

B-cell was lower than RIII-V domain. On the other hand, RIII-V had lower level of natural

IgG reactivity caused by neutral selection for immune evasion, whereas PvEBP specific IgG

production level was higher than RII after infection (Fig 4B and Table 3). Antigenicity correla-

tion analysis between RII and RIII-V in individual vivax patient showed significant correlation

from ROK (r = 0.710), Thailand (r = 0.534), and Myanmar (r = 0.305) (Fig 4C). Combination

of all countries correlation between RII and RIII-V showed low level of significant positive cor-

relation (r = 0.417) (Fig 4). The correlation analysis of RII and RIII-V with age and parasitae-

mia showed positively correlation only in RIII-V with patient age (Fig 5A–5D).

Discussion

This study describes the genetic diversity of the extracellular domain (ecto) of P. vivax erythro-

cyte binding protein (pvebp) genes from eight countries and correlated these polymorphisms

with vivax patient antigenicity from different endemic areas. The genetic phenotypes of pvebp-
ecto were classified into four clusters, based on the insertion/deletion (indels) variation. Gen-

erally, the gene indels variation of pathogen directly affects host antibody recognition. Cluster

1 is a major genetic phenotype of pvebp which widely shares its geographical haplotype. How-

ever, three minor clusters (cluster 2, 3, and 4) which provide geographically distinct patterns.

Interestingly, the large insertion sequence in PvEBP-RIII-V domain of cluster 3 and 4 was

conserved in all of the tested field isolates regardless of geographical location. This indels varia-

tion is interesting to note that PvEBP cluster 4 phenotype is closely related with P. cynomolgi
Mulligan strain DBP2 (PcyM DBP2) which has a Gly-Lys (GK) amino acid deletion in EBP-RII

domain following the large insert in EBP-RIII-V domain. Thus, PcyM DBP2 gene is clearly an

orthologue of PvEBP. Recently, P. cynomolgi, has been used as a model to study the invasion

biology of P. vivax [34, 35]. The EBL family in P. vivax has two genes named PvDBP and

PvEBP, whereas P. cynomolgi has three genes named PcyDBP1, PcyDBP2, and PcyEBP (PcyM

DBP2) [36]. The additional Gly- and Ser-rich sequence insertion in both P. vivax and P. cyno-
molgi EBP genes may have a function as a linker that possibly affect flexibility for inducing an

action radius of ecto domain and hamper host antibodies recognition [37, 38]. However, the

function of this insertion on PvEBP and PcyEBP (PcyM DBP2) needs to be determined.

The importance of EBL family proteins RIII-V domain as a vaccine candidate was suggested

in the previous study of antibodies against P. falciparum erythrocyte binding antigen 175

(PfEBA-175) RIII-V domain which was associated with protection against symptomatic case

Fig 3. Pvebp domains nucleotide diversity (π) based on the geographical areas. PvEBP region divided for region I

(RI, 1–534 bp), RII (535–1,437 bp), RIII-V (1,438–2,070 bp), and RVI (2,071–2,307 bp) based on the PvDBP

homologue region.

https://doi.org/10.1371/journal.pntd.0008202.g003
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Fig 4. Humoral immune response of PvEBP-RII and PvEBP-RIII-V. (A) Purity confirmation by SDS-PAGE of

recombinant PvEBP-RII (30.1 kDa) and PvEBP-RIII-V (25.8 kDa) expression. (B) Total IgG prevalence of each

domain with the vivax patient (red dot) and healthy individual (blue dot) sera. The bar indicates the mean fluorescence

intensity (MFI) ± 95% CI. The p values were calculated by Student’s t-test. Significant differences are shown as triple

asterisks p<0.001. (C) IgG prevalence visualized for comparison between RII and RIII-V with each patient sera by

normalized reactivity index. Significant differences are shown as single asterisks p<0.05 and triple asterisks p<0.001.

(D) Correlation between RII and RIII-V total IgG reactive indices using Pearson correlation test (r). Blue dot and dash

line represent patient sera reactive index from ROK and its regression line. Black and yellow dot and dash line

represent reactivity indices and its regression lines from Myanmar and Thailand patient sera, respectively. Red line

indicates total regression.

https://doi.org/10.1371/journal.pntd.0008202.g004

Table 3. Humoral immune responses of PvEBP-RII and -RIII-V domains.

Antigen/location No. of patient samples 95% CIb MFIc No. of healthy samples 95% CI MFI p valuee

Positive Negative Total (%)a Positive Negative Total (%)d

RII 22 115 137 (16.1) 10.8–23.1 16048.0 2 48 50 (96.0) 86.5–98.9 11175.3 0.0002

ROK 5 45 50 (10.0) 4.4–21.4 14092.0

Myanmar 12 38 50 (24.0) 14.3–37.4 19315.7

Thailand 5 32 37 (13.5) 5.9–28.0 14275.5

RIII-V 29 106 135 (21.5) 15.4–29.2 7386.3 2 48 50 (96.0) 86.5–98.9 5462.2 < 0.0001

ROK 14 36 50 (28.0) 17.5–41.7 7384.6

Myanmar 3 45 48 (6.3) 2.6–16.8 6460.0

Thailand 12 25 37 (32.4) 19.6–48.5 8590.5

aSensitivity: percentage of positive in patient samples.
bCI: confidence interval.
cMFI: mean fluorescence intensity.
dSpecificity: percentage of negative in healthy samples.
eDifferences in the total IgG prevalence for each antigen between vivax patients and healthy individuals were calculated with Mann-Whitney U-test. A p value of < 0.05

is considered statistically significant.

https://doi.org/10.1371/journal.pntd.0008202.t003
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of malaria [39]. PfEBAs (PfEBA-175, PfEBA-140, and PfEBA-181) RIII-V domain was domi-

nantly eliciting IgG1 and IgG3 by patient age-dependent manner [39]. The function of IgG

subtype in immune strategy of malaria infection is well documented, in the opsonisation

capacity of IgG1 and IgG3 [8]. Similarly, an earlier study demonstrated that an IgG1 response

against PvEBP domain (161–641 aa.) was dominant in an age-dependent manner in vivax

patients [40]. Our study confirmed that only the IgG response against PvEBP-RIII-V (480–676

aa.) domain was positively correlated with patient age. Thus even though PvEBP-RIII-V

domain has large sequence insertion and shows low frequency in the tested isolates, the RIII-V

domain needs to determine its function and considered for vaccine design in the future.

The EBL (RII) domain in Plasmodium species is the key domain for host cell binding and

invasion by interacting with host cell glycoprotein receptor [11]. Therefore, this functional

domain of PvEBP-RII is the most logical target for a parasite-erythrocyte invasion blocking

vaccine [41]. Antibodies against PvEBP-RII were shown to prevent the binding of a recombi-

nant protein encoding this domain to reticulocytes [21]. Additionally, antibodies against

PvEBP-RII were useful for serological marker of recent malaria exposure, with a half-life esti-

mated at 734 days [42]. Anti-PvEBP-RII antibodies were predominant IgG1 and IgG3 which is

similar to other PfEBAs-RII to mediate opsonic phagocytosis [39, 40]. However, PvEBP-RII

showed highest genetic polymorphism within pvebp-ecto domains. This high polymorphic

pattern is consistent with other EBL members in P. vivax and P. falciparum [11, 41] and its

function as binding domains has been conserved in the other members of the EBL family [43].

As high polymorphisms, PvDBP-RII domain presented difficulty in developing an efficacious

vaccine [44, 45]. It would be important to consider the genetic polymorphisms of PvEBP-RII

when developing a vaccines targeting this domain [17].

Fig 5. The correlation of parasitaemia and age with PvEBP domains. (A and B) PvEBP-RII and (C and D)

PvEBP-RIII-V total IgG indices obtained from mean fluorescence intensity (MFI) were evaluated correlation with

patient age (years) and parasitaemia (%) using Pearson correlation test (r), respectively. The horizontal dash line

indicates MFI+2S.D. value as positive reactivity and vertical dash line in parasitaemia (>0.2) considered high

parasitaemia.

https://doi.org/10.1371/journal.pntd.0008202.g005

PLOS NEGLECTED TROPICAL DISEASES Genetic polymorphism and antigenicity of Plasmodium vivax erythrocyte binding protein

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008202 July 9, 2020 11 / 16

https://doi.org/10.1371/journal.pntd.0008202.g005
https://doi.org/10.1371/journal.pntd.0008202


Study of PvEBP copy number variation (CNV) revealed higher multiple copy ratios in Mad-

agascar (56%) than in Cambodian (19%) isolates, possibly correlating with the Duffy depen-

dence phenotype [46]. Geographically, PvEBP gene CNV pattern was similar to PvDBP which

detected higher CNV in Africa region such as Ethiopia (79%) and Madagascar (46%) than

South-East Asia such as Thailand (30%), Cambodia (28%), Indonesia (6%), and Malaysia (4%)

[26, 46]. In this study, Ethiopia isolates covered three different clusters (clusters 1, 2, and 3)

which indicate high level of genetic and phenotypic diversity in the African region where the

population is largely Duffy-negative [47]. The Duffy negativity may have affected both pvebp
and pvdbp gene-phenotype to change according to host cell preference or/and immune eva-

sion mechanism [23]. The neutrality test of pvebp-ecto showed that rare alleles were present at

high frequencies. Especially, PvEBP-RIII-V which showed evidence of population expansion

and a negative/purifying selection effect. This was in contrast to the PvEBP-RII domain which

showed positive selection pressure. Previous reports of PvEBP-RII neutral selection revealed

positive/diversifying selection similar to other EBL domains in human and non-human pri-

mate malaria [46, 48, 49]. All of these results support that adaptation to the host environment

lead both PvEBP-RII and PvEBP-RIII-V domains to be highly variable.

The antigenicity screening result also reflects the influence of a high level of a PvEBP gene vari-

ant. Although both PvEBP-RII (16.1%) and PvEBP-RIII-V (21.5%) domains significantly induced

antibody responses in vivax infected patients, these responses were comparatively lower than

other P. vivax antigens [50–52]. Previous studies on vivax malaria patients, (using the same anti-

genicity screening method used in this study) conveyed the antibody responses to be PvDBP-RII

(56.9%), PvRBP1a-34 (33.7%), PvRBP1b-32 (39.4%), and PvGAMA-ecto (72.0%) which were

localized at apical organelle and important for host cell interaction [51, 52]. Relatively low antige-

nicity of PvEBP could be a result of high polymorphism with positive selection and population

expansion in the PvEBP-RII domain, and purifying selection in PvEBP-RIII-V domain. Interest-

ingly, total IgG production and recognition of PvEBP-RII and PvEBP-RIII-V showed clearly dis-

tinct properties. The total IgG response against PvEBP-RII was higher than PvEBP-RIII-V,

however, acquired antibody response was less than PvEBP-RIII-V. In contrast, PvEBP-RIII-V

elicited higher IgG responses in vivax patients, yet, basal IgG recognition level was poor.

PvEBP is a prominent novel vaccine candidate for blood-stage P. vivaxmalaria with its poten-

tial to target both Duffy-dependent and independent P. vivax parasites. However, low antigenic-

ity due to high genetic polymorphism in the PvEBP-RII, and antigen phenotype and selection

pressure in the PvEBP-RIII-V will need to be considered for future vaccine development.
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S1 Fig. PvEBP-ecto gene amplification from ROK isolates. PvEBP-ecto gene in ROK sam-
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(TIF)
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