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Abstract

The infectious disease melioidosis is caused by the bacterium Burkholderia pseudomallei.

Melioidosis is characterised by high mortality and morbidity and can involve the central ner-

vous system (CNS). We have previously discovered that B. pseudomallei can infect the

CNS via the olfactory and trigeminal nerves in mice. We have shown that the nerve path is

dependent on mouse strain, with outbred mice showing resistance to olfactory nerve infec-

tion. Damage to the nasal epithelium by environmental factors is common, and we hypothe-

sised that injury to the olfactory epithelium may increase the vulnerability of the olfactory

nerve to microbial insult. We therefore investigated this, using outbred mice that were intra-

nasally inoculated with B. pseudomallei, with or without methimazole-induced injury to the

olfactory neuroepithelium. Methimazole-mediated injury resulted in increased B. pseudo-

mallei invasion of the olfactory epithelium, and only in pre-injured animals were bacteria

found in the olfactory nerve and bulb. In vitro assays demonstrated that B. pseudomallei

readily infected glial cells isolated from the olfactory and trigeminal nerves (olfactory

ensheathing cells and trigeminal Schwann cells, respectively). Bacteria were degraded by

some cells but persisted in other cells, which led to the formation of multinucleated giant

cells (MNGCs), with olfactory ensheathing cells less likely to form MNGCs than Schwann

cells. Double Cap mutant bacteria, lacking the protein BimA, did not form MNGCs. These

data suggest that injuries to the olfactory epithelium expose the primary olfactory nervous

system to bacterial invasion, which can then result in CNS infection with potential patho-

genic consequences for the glial cells.
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Author summary

Infections of the central nervous system (CNS), though uncommon, are associated with

severe morbidity and mortality. Burkholderia pseudomallei, the causative agent of melioi-

dosis, can infect the CNS. We have shown that B. pseudomallei can enter the CNS via

peripheral nerves extending between the nasal cavity and the brain (bypassing the blood-

brain/blood-cerebrospinal fluid barriers). In the current study, we show that prior injury

to the olfactory epithelium can increase B. pseudomallei invasion of the olfactory nerve

and bulb, highlighting a novel risk factor for CNS infections. We also demonstrate the

ability of peripheral nerve glia to internalise B. pseudomallei, resulting in the formation of

multinucleated giant cells (MNGCs), dependent on the bacterial protein BimA. These

findings provide important new insights into the pathogenesis of B. pseudomallei.

Introduction

Burkholderia pseudomallei, a facultative gram-negative bacillus commonly found in soil and

stagnant water throughout southeast Asia and northern Australia, causes the multisystem dis-

ease melioidosis. Infection is considered to occur by percutaneous inoculation or by inhala-

tion, particularly during the rainy season [1]. Symptoms range from skin and nasal infections

to systemic presentations with pneumonia and septic shock [2]. Melioidosis causes ~90,000

deaths annually [3]. The fulminating septicaemia form of melioidosis has a mortality rate of

~90% [4]. Melioidosis is considered severely under-reported and B. pseudomallei could be

endemic to half the countries in the world [3]. B. pseudomallei is predicted to increase in inci-

dence and spread with climate change [5], and has been considered a potential bioweapon [6].

Diabetes mellitus is a major predisposing factor for melioidosis [7] and contracting the disease

is a serious threat to immunocompromised people [8]. B. pseudomallei can cause CNS infec-

tions (neurological melioidosis), which are ~five times more common in Australia than south-

east Asia (constituting ~5% of Australian melioidosis cases), and are associated with a high

mortality rate and serious sequelae ([9–11], reviewed in [12]).

We have previously shown that in mice, the nerves extending between the nasal cavity and

the brain constitute paths by which B. pseudomallei can invade the CNS. These nerves are the

olfactory nerve, which extends between the nasal epithelium and olfactory bulb, and the tri-

geminal nerve, which connects the nasal cavity and the brainstem. Thus, these nerves provide

direct conduits between the nasal cavity and the CNS. [13]We have previously shown that B.

pseudomallei rapidly (within 24 h of intranasal inoculation) reached the olfactory bulb via the

olfactory nerve, or the brainstem and spinal cord via the trigeminal nerve in mice [14–18].

One study identified thickening of the trigeminal nerve in three out of seven human neurolog-

ical melioidosis patients, indicative of nerve invasion to the CNS, bypassing the blood-brain

barrier. The same three patients were also exhibiting signs of sinusitis [13]. We have also

shown that the bacterial protein Burkholderia intracellular motility A (BimA), which mimics a

eukaryotic actin polymerase to mobilise a tail of host cell actin leading to bacterial motility,

cell-cell dissemination and cell-cell fusion, is important for CNS invasion [18]. We have also

found that the nerve path to the CNS was dependent on mouse strain. In inbred Balb/C mice,

B. pseudomallei infected both the olfactory and trigeminal nerves [14–17]. In contrast, in our

S100β-DsRed mouse line (outbred Quackenbush Swiss strain), only the trigeminal nerve

became infected [18], highlighting the difference in immunological responses between mouse

strains; such differences have previously been shown between Balb/C mice and other strains

[19, 20].
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The olfactory nerve (cranial nerve I) is the shortest cranial nerve, extending between the

olfactory neuroepithelium and the olfactory bulb in the forebrain. The cell bodies of primary

olfactory neurons are found in the neuroepithelium; their dendrites extend into the nasal cav-

ity and their axons together constitute the olfactory nerve, which is unique in that its neurons

continuously regenerate [21–23]. Pathogen- or chemical-induced damage to the olfactory epi-

thelium is common and can result in death of olfactory neurons and anosmia. If the injury

does not involve damage to the CNS, the anosmia is temporary due to the regenerative capac-

ity of the system [24–29]. However, injury to the olfactory epithelium can lead to removal of

the protective mucosal barrier and death of olfactory neurons, resulting in open channels from

the olfactory epithelium to the bulb [30, 31]. Thus, to date, it is currently unknown whether it

is possible for epithelial injury to result in a transient increased risk of pathogens gaining

access to the olfactory nerve and then the CNS. We have found that in Balb/C mice, where B.

pseudomallei can invade the olfactory nerve and bulb, the infection itself caused local direct

structural damage to the olfactory epithelium [17]. This resulted in death of primary olfactory

neurons immediately underneath the damaged epithelium, leaving empty conduits sur-

rounded by glial cells. It was precisely at these sites of damage that the bacteria were able to

penetrate the epithelium and enter the underlying nerve [17]. We therefore hypothesised that

injury to the olfactory neuroepithelium increases the risk of B. pseudomallei invasion of the

olfactory nerve and bulb. To test this hypothesis, we investigated whether experimental injury

to the olfactory epithelium would allow B. pseudomallei to penetrate the olfactory neuroepithe-

lium, olfactory nerve and olfactory bulb in our mouse model normally resistant to primary

olfactory nervous system invasion (S100β-DsRed Quackenbush Swiss mice). In these mice,

intranasal inoculation of B. pseudomallei resulted in bacterial penetration of the trigeminal

nerve, but not the olfactory nerve [18].

We have extensively used the methimazole injury model to investigate mechanisms of

olfactory nerve regeneration and glial responses to olfactory nerve injury. Methimazole, a drug

used to treat hyperthyroidism, causes tissue-specific death of olfactory neurons secondary to

degeneration of the olfactory epithelium in rodents [32]. We have found that methimazole

induces patchy epithelial damage interspersed with intact epithelium, which constitutes a

more realistic model of olfactory nerve injury than that caused by other neurotoxins or chemi-

cal irrigation [33–36]. We therefore used the methimazole model to determine whether epithe-

lial injury increases the risk of B. pseudomallei invasion of the olfactory nervous system.

The cellular mechanisms in B. pseudomallei infection of peripheral nerves remain unknown.

In the current study, we also investigated how the glial cells populating the olfactory and trigem-

inal nerves, olfactory ensheathing cells (OECs) and trigeminal Schwann cells (TgSCs),

responded to B. pseudomallei, and a B. pseudomallei mutant lacking the BimA protein, in vitro.

Materials and methods

Bacterial strains

The B. pseudomallei strain MSHR520 is a clinical isolate from a human case of melioidosis,

donated by Bart Currie (Menzies School of Health Research, Darwin, Australia). The genome

sequence of this strain is available at www.ncbi.nlm.nih.gov/assembly/GCF_000583835.1/.

The current study used an allele replacement mutant of MSHR520 lacking capsule

(MSHR520ΔCap). For the in vitro experiment assessing the importance of BimA in MNGC for-

mation, a mutant lacking both capsule and BimA (MSHR520ΔCapΔBimA) was used; this double

mutant strain was derived from MSHR520ΔCap. Both MSHR520ΔCap and MSHR520ΔCapΔBimA

have been previously described [16, 37] and used in our studies on B. pseudomallei invasion of

the CNS via cranial nerves [14–18].
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Animals

We have previously generated the S100ß-DsRed transgenic reporter mice in which the human

S100ß promoter drives expression of the DsRed fluorescent protein such that cells that express

the S100ß promoter express DsRed in the cytoplasm [38]. In these mice, glial cells including

olfactory ensheathing cells (OECs) of the olfactory nerve, and Schwann cells of other periph-

eral nerves express DsRed protein. Macrophages and chrondrocytes also express DsRed pro-

tein, but their distinct morphology and anatomical locations enables easy identification and

separation from the glial cells.

Methimazole treatment and intranasal inoculation

5–10 weeks old S100β-DsRed mice were injected with methimazole (Sigma-Aldrich, 50 mg/kg,

10 mg/ml in phosphate buffered saline, PBS) or vehicle (PBS) using intraperitoneal injection

according to our published protocol [33–36]. Three days later, animals were intranasally inoc-

ulated with MSHR520ΔCap or vehicle as described previously [17]. A small amount of frozen

stock (-80˚C in 20% glycerol; 10–50 μl) was streaked onto LB agar containing streptomycin

(100 μg/ml), incubated at 30˚C for several days, and a single colony used to inoculate liquid

RB broth and grown with shaking for 16 h to stationary phase at 37˚C. A portion was used for

viable count (CFU) determination on LB agar to ensure that the inoculum used was, consis-

tently, a total of 3x105 cells which were resuspend in PBS and delivered as a 5 μl droplet/nostril.

N = 3 mice for the control group (PBS injection + PBS inoculation), 3 for the methimazole

alone group (methimazole injection + PBS inoculation), 3 for the B. pseudomallei alone group

(PBS injection + B. pseudomallei inoculation) and 4 for the methimazole + B. pseudomallei
group (methimazole injection + B. pseudomallei inoculation).

Animals were housed in individually ventilated hepa-filtered cages (IsoCage N–Biocontain-

ment, Tecniplast) with Aspen wood chip bedding. Animals were provided ad lib food pellets

(Standard Rat and Mouse Feed, Speciality Feeds) and water. Environmental conditions within

the cages were maintained at a constant temperature (19–23˚C) and humidity (40–60%) with

a 12-hour light and a 12-hour dark cycle. Following exposure to bacteria, mice were monitored

twice daily. No clinical signs indicative of neurological complications was observed in any of

the animals during the monitoring period.

Tissue preparation

Mice were sacrificed 7 days post intransasal inoculation by lethal intraperitoneal injection of

sodium pentobarbitone (Lethabarb). Heads were fixed in 4% paraformaldehyde (PFA) in PBS

overnight at 4˚C, followed by decalcification in 20% ethylenediaminetetraacetic acid (EDTA)

for four weeks. Heads were embedded in optimal cutting temperature (OCT) medium (ProS-

ciTech) and frozen. Coronal sections (50 μm) were cut using a cryostat (Leica CM1860).

Immunohistochemistry

Immunohistochemistry was performed as previously described [33, 36]. Rabbit anti-B. pseudo-
mallei (1:2,000) was used to label B. pseudomallei. This antibody was made in-house and raised

against the sarkosyl-insoluble fraction enriched for outer membrane proteins (RRID:

AB_2736920) [39]. We have previously used this antibody to label B. pseudomallei bacteria

and degradation products in tissue sections [18] and cells [37]. The secondary antibody was

donkey anti-rabbit Alexa Fluor 488 (Abcam ab150073; 1:300). Class III Beta tubulin was

detected with rabbit anti-beta III Tubulin (Abcam ab18207; 1:200); the secondary antibody

was donkey anti-rabbit Alexa Fluor 647 (Thermofisher A31573; 1:400). Antibodies were
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diluted in 2% bovine serum albumin (BSA) with 0.3% Triton X-100 (TX) in PBS. Cryostat sec-

tions were first incubated with 2% BSA/TX/PBS for 60 min at room temperature, followed by

overnight incubation with primary antibodies at 4˚C. Sections were washed and incubated

with secondary antibodies for 1 h. Cell nuclei were stained with 4’6-diamidino-2-phenylindole

(DAPI).

Image capture and analysis

Images were captured using a Nikon Eclipse Ti2 epifluorescence microscope and an Olympus

FV3000 laser scanning confocal microscope. For comparison between different groups, the

same image capture settings, laser intensity and focal depths were used. Images were colour

balanced uniformly across the field of view using Adobe Photoshop Creative Cloud 2018

(19.1.4) and compiled into panels using Adobe Illustrator Creative Cloud 2018 (22.1). Three-

dimensional (3D) reconstructions were made using Imaris x64 (7.4.2). For detection of

whether bacteria were present in the olfactory epithelium, olfactory nerve and olfactory bulb, a

minimum of three tissues sections of these areas were analysed per mouse.

For quantification of the number of B. pseudomallei rods in the olfactory epithelium, rods

were defined as anti-B. pseudomallei immunoreactive rod shapes 1.5–2.5 μm in length. The

number of rods was counted in six regions of interest (ROIs; two within the lower epithelium,

two within the middle epithelium and two in the upper epithelium) in three tissue sections per

mouse (n = 3-4/group). Each ROI area was 440 μm x 440 μm of 50 μm thick tissue sections.

Epithelial thickness was measured in three uniform ROIs, in three tissue sections for each

mouse (n = 3/group). Statistical analysis was performed using GraphPad Prism 7. Statistical

significance between groups assessed using a one-way analysis of variance (ANOVA) with p-

values of<0.05 considered to represent statistically significant group differences.

Glial cell culture

OECs and TgSCs were prepared from postnatal day 7 S100ß-DsRed transgenic mice as

described previously [15, 40, 41]. Briefly, the olfactory mucosa overlying the nasal septum or

the outer layer of olfactory bulb was dissected out for preparations of lamina propria/bulbar

OECs, and the trigeminal nerve on the basal surface of the cranial cavity was dissected out for

TgSCs. The explants were separately plated in Matrigel (BD Bioscience, 1:10) coated wells in a

plastic 24-well plate and maintained in glial medium containing Dulbecco’s Modified Eagle

Medium with 10% foetal bovine serum (FBS), G5 supplement (Gibco), gentamycin (Gibco, 50

mg/mL) and l-glutamine (200 μM) at 37˚C with 5% CO2 for 5 days. Cells were replated into

plastic 24-well plates and allowed to proliferate to ~80% confluency.

Cell debris preparation

Fluorescent axon-derived cell debris was generated as described previously [34, 42]. Briefly,

the nerve fibre layer of the olfactory bulb of an OMP-ZsGreen mouse [43] was dissected out

and partially digested using TrypLE express (Life Technologies) and collagenase (0.1 mg/ml,

Life Technologies) for 30 min. After centrifugation to pellet debris, the debris was weighed

and resuspended in DMEM to a concentration of 1 mg/ml, triturated using a syringe with a

27-gauge needle and stored at -80˚C.

In vitro cell assays

Dilutions of B. pseudomallei bacteria were prepared in Dulbecco’s phosphate buffered saline

(DPBS). OECs and TgSCs were seeded at 5000 cells/well in 8-well chambers (Sarstedt), in glial

B. pseudomallei infects olfactory bulb after injury
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medium. After 12 h, bacteria (MOI 75:1) and/or cell debris (final concentration: 33 μg/ml)

were added and incubated with cells for 24 h. Cells were then rinsed in 1x HBSS and were

fixed for 20 min in 4% paraformaldehyde (PFA) in DPBS. Cells were washed and incubated in

blocking buffer for 1 h before immunolabelling for B. pseudomallei as described above. Nuclei

were stained with DAPI. Images of the cells were taken with a confocal microscope (Olympus

FV1000); the number of MNGCs were counted (n = 5 fields of view with 50–70 cells in each).

For the assay which investigated cellular responses to B. pseudomallei lacking the BimA pro-

tein, OECs and TgSCs were incubated with MSHR520ΔCapΔBimA (MOI 75:1) for 48 h.

Ethics statement

All procedures were approved by Griffith University and the University Animal Ethics Com-

mittee (ESK/02/15/AEC) under the guidelines of the National Health and Medical Research

Council of Australia and in accordance with the Australian Code for the Care and Use of Ani-
mals for Scientific Purposes (8th Edition, 2013); and in accordance with the Australian Com-

monwealth Office of the Gene Technology Regulator.

Results

We have previously shown that intranasal B. pseudomallei inoculation of S100β-DsRed mice

resulted in bacterial penetration of the trigeminal nerve, but not the olfactory nerve, suggesting

that the S100β-DsRed mice were normally resistant to B. pseudomallei invasion of the olfactory

nerve [18]. We therefore hypothesised that disruption of the olfactory neuroepithelium may

facilitate bacterial invasion and penetration of the olfactory nerve.

Methimazole treatment, but not B. pseudomallei infection alone, causes

degradation of the olfactory epithelium and olfactory nerve fascicles in

S100β-DsRed mice

To determine whether injury to the olfactory nerve altered the ability for B. pseudomallei to

infect the olfactory nerve and bulb in S100β-DsRed mice, we treated mice with methimazole

[33, 34], which causes death of primary olfactory neurons [32], and three days later inoculated

the mice intranasally with B. pseudomallei. At this time, death of olfactory neurons is at its

peak [33, 34] and methimazole has been cleared, limiting potential side-effects of methimazole

[44]. To restrict infection to nerves and not via the haematogenous route, we used a capsule-

deficient B. pseudomallei mutant which cannot survive in the blood (ΔCap) [16]. We sacrificed

the animals 7 days post infection and analysed tissue sections from the olfactory nervous sys-

tem for the presence of B. pseudomallei using immunohistochemistry.

Methimazole treatment caused a drastic change in the appearance of nasal mucous exudate.

Mice treated with methimazole alone had small patches of clustered exudate (Fig 1A), whilst

mice inoculated with B. pseudomallei alone typically had stringy exudate (Fig 1B). In contrast,

mice pre-treated with methimazole followed by B. pseudomallei inoculation typically had large

clusters of exudate (Fig 1C). We examined the integrity of peripheral nerves fascicles and olfac-

tory epithelium of mice treated with B. pseudomallei alone, or methimazole followed by B.

pseudomallei. Mice inoculated with B. pseudomallei alone did not exhibit visible degradation

of peripheral nerve fascicles within the olfactory epithelium (Fig 1D). In contrast, patches of

peripheral nerve degradation were seen in mice pre-treated with methimazole; however, not

all peripheral nerve fascicles were degraded (Fig 1E). We determined the thickness of the olfac-

tory epithelium in the different groups and found that the epithelium was significantly thinner

in mice treated with methimazole (alone or followed by B. pseudomallei inoculation) than in
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mice not treated with methimazole (treated with either vehicle or B. pseudomallei alone) (Fig

1F). The data confirms that methimazole causes destruction of the olfactory epithelium and

induces death of olfactory neurons and shows that B. pseudomallei infection alone does not

destroy olfactory nerve fascicles in these mice. We further confirmed that methimazole, but

not B. pseudomallei alone, caused epithelial degradation by closely examining the olfactory epi-

thelium (Fig 2). Degradation of the olfactory epithelium was clearly seen in mice pre-treated

with methimazole (Fig 2D, 2G and 2J) while no obvious degradation was detected in mice

inoculated with B. pseudomallei only (Fig 2E, 2H and 2K). Mice pre-treated with methimazole

and then inoculated with B. pseudomallei had areas of epithelial degradation, large clusters of

mucous exudate containing B. pseudomallei bacteria (Fig 2F and 2L) and patches where the

olfactory epithelium was crenelated (Fig 2I).

Fig 1. Effect on olfactory epithelium of methimazole pre-treatment and B. pseudomallei intranasal inoculation. (A-C) Low power images of the

nasal cavity (NC) and olfactory epithelium (OE) from mice treated with either methimazole only (Meth only), B. pseudomallei (Bp only) or

methimazole followed by B. pseudomallei (Bp+Meth). Images show both bright-field (grey) and DAPI (blue, nuclear stain) channels. (A) Arrow

points to an area of clustered exudate close to the OE. (B) Arrows are pointing to a large collection of stringy exudate within the NC between areas of

OE. (C) Arrow points to an area of clumped exudate close to the OE. (D-E) Panels show sections from S100β-DsRed mice in which OECs express

DsRed (red), and immunolabelled for beta-tubulin III (white) with nuclei stained with DAPI (blue). Low power images showing a coronal view of the

nasal cavity (NC) in mice treated either with B. pseudomallei only (D) or methimazole followed by B. pseudomallei (E). (D) Mice inoculated with B.

pseudomallei only showed very little degradation of the OE with negligible degradation to olfactory nerve fascicles (arrows). (E) Mice pre-treated with

methimazole then inoculated with B. pseudomallei showed OE degradation, exudate (ex) and damaged peripheral nerve fascicles (arrow with tails).

There were also areas of degraded OE where no peripheral nerve fascicles were visible (�). OE degradation, while extensive, was not uniform with

some peripheral nerve fascicles remaining intact (arrow without tails). (F) Pre-treatment with methimazole (Meth only and Bp+Meth) causes

degradation of the olfactory epithelium. Mice treated with vehicle only (PBS) or B. pseudomallei only did not show extensive olfactory epithelium

degradation. 27 data points from three ROIs were measured per mouse (n = 3/group). Graph shows each measured point as a dot with error bar

showing the mean plus the standard error of the mean. ��� = p<0.001. Scale bars in μm.

https://doi.org/10.1371/journal.pntd.0008017.g001
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Fig 2. Methimazole pre-treatment causes olfactory epithelium degradation and increased exudate production in mice inoculated

with B. pseudomallei. Panels show sections from S100β-DsRed mice; (OECs and chrondrocytes are red), immunolabelled for B.

pseudomallei (green) with nuclei stained with DAPI (blue). (A-C) Low power images showing a coronal view of the nasal cavity (NC)

and septum (Spt) in mice treated either with methimazole only (A), B. pseudomallei only (B), or both methimazole and B. pseudomallei
(C). (C) Large patches of exudate were present within the nasal cavity (arrows) of mice treated with methimazole prior to intranasal
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Pre-treatment with methimazole exacerbates B. pseudomallei infection of

the olfactory epithelium

Closer examination of the olfactory epithelium further showed clear differences between mice

that were only inoculated with B. pseudomallei and those that were pre-treated with methima-

zole before inoculation with B. pseudomallei (Fig 3). Areas containing degraded B. pseudomal-
lei-derived material (which is also detected by the anti-B. pseudomallei antibody [17]) were

seen in the olfactory epithelium of mice inoculated with B. pseudomallei only (Fig 3E). Higher

magnification imaging showed that the degraded bacteria in mice treated with B. pseudomallei
alone appeared to be localised within DsRed-expressing glia of the olfactory nerve (Fig 3H and

3K). We did not find any intact B. pseudomallei rods in the epithelium of any of the mice

which had not also been treated with methimazole. In contrast, distinct whole B. pseudomallei
rods were frequently found in the epithelium of all mice that had been pre-treated with methi-

mazole before intranasal inoculation with B. pseudomallei (Fig 3F). These rods were often sur-

rounded by immunoreactive particles which may be B. pseudomallei degradation products

(Fig 3I and 3L) [18]. To gain further insight into how B. pseudomallei gains access to olfactory

nerve fascicles, we also determined which epithelial area was most susceptible to B. pseudomal-
lei infection after methimazole treatment, we quantified the number of whole B. pseudomallei
rods in representative epithelial areas (lower, middle and upper epithelium). We found that

there were significantly more bacteria in the lower epithelium than in the middle or upper epi-

thelium (Fig 3J).

B. pseudomallei invades the olfactory nerve and bulb only after

methimazole pre-treatment

We next determined whether methimazole pre-treatment allowed B. pseudomallei to invade

the olfactory nerve and bulb, which has not previously been described in this mouse strain [17,

18]. Olfactory nerve axons extend from the olfactory epithelium through the lamina propria,

where they fasciculate and project via the cribriform plate to the olfactory bulb, where the

axons synapse with their targets (Fig 4A–4C, Fig 5). We only found evidence of B. pseudomallei
bacteria in the pre-treated methimazole group, suggesting the importance of mechanical injury

to nerve invasion. In this group, bacteria were found in the olfactory nerve of 75% of mice (Fig

4D, 4E, 4J and 4K). In contrast, no B. pseudomallei bacteria were found in the olfactory nerve

of any of the mice inoculated with B. pseudomallei alone (Fig 4G and 4H). In mice pre-treated

with methimazole, B. pseudomallei had also invaded the olfactory bulb (also in 75% of the

mice; the same mice which showed olfactory nerve infection; Fig 4F and 4L). However, in the

olfactory bulb, we detected primarily B. pseudomallei immunoreactive particles (likely degra-

dation products) (Fig 4J, 4K and 4L). We found no evidence of B. pseudomallei bacteria or deg-

radation products in the olfactory bulb of mice not pre-treated with methimazole prior to

inoculation (Fig 4I). Overall, our findings suggest that injury to the nasal epithelium facilitates

invasion of the olfactory nerve and bulb by B. pseudomallei (summarizing schematic shown in

Fig 5).

inoculation with B. pseudomallei. (D-L) Higher magnification showing coronal views of the NC and OE. (D, G, J) Mice treated with

methimazole (Meth only) showed patches of OE degradation (arrows with tails). (E, H, K) Mice intranasally inoculated with B.

pseudomallei (Bp only) had intact OE with negligible degradation and exudate present. (F, I, L) Mice first treated with methimazole then

intranasally inoculated with B. pseudomallei (Bp+Meth) showed regions of OE crenellation (arrows with tails) and exudate (ex)

containing B. pseudomallei (green, arrows). Scale bars in μm.

https://doi.org/10.1371/journal.pntd.0008017.g002
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B. pseudomallei can infect olfactory ensheathing cells and trigeminal

Schwann cells, leading to formation of multinucleated giant cells

The glial cells of the olfactory and trigeminal nerves are olfactory ensheathing cells (OECs)

and trigeminal Schwann cells (TgSCs), respectively. We have shown that these glia are highly

phagocytic and can rapidly internalise bacteria [40]. B. pseudomallei can be internalised into

and survive within different types of phagocytes [45–47], which can result in multinucleated

giant cell (MNGC) formation as shown in macrophage-like cell lines [37, 48]. To investigate

whether B. pseudomallei could infect peripheral nerve glia and cause the formation of

MNGCs, in vitro preparations of OECs and TgSCs were cultured with B. pseudomallei. We

found that OECs isolated from olfactory nerve fascicles in the lamina propria and TgSCs from

the trigeminal nerve were infected with B. pseudomallei (Figs 6 and 7), resulting in the forma-

tion of MNGCs (Figs 6G–6I, 6K, 7C and 7D, 7G and 7H). In some cells, bacteria were rounded

and perhaps degraded; such cells did not form MNGCs (Fig 6A, 6B and 6J). OECs are not only

found in the olfactory nerve, but also in the nerve fibre layer of the olfactory bulb, where the

olfactory nerve terminates. We also exposed bulbar OECs to B. pseudomallei; these were also

infected, resulting in MNGC formation (Fig 6C–6F). The glia sometimes had membrane pro-

trusions (filopodia) attached to extracellular bacteria (see examples in Figs 6E, 6F, 7L).

B. pseudomallei alone, but not axonal debris alone, causes the formation of

multinucleated giant cells in olfactory ensheathing cells and Schwann cells

Macrophages can form MNGCs in response to both infection and to injury/presence of cell

debris [49–51]. We next investigated whether OECs and TgSCs formed MNGCs in response

to cell debris, and/or whether the presence of debris exacerbated the MNGC formation

induced by B. pseudomallei. To mimic a peripheral nerve injury in vitro, we challenged OECs

(olfactory nerve-derived) and TgSCs with cell debris derived from the olfactory nerve of

OMP-ZsGreen mice, in which the olfactory marker protein promoter (OMP) selectively drives

expression of ZsGreen in primary olfactory neurons [43]. OECs and TgSCs were exposed to

either B. pseudomallei alone, axonal debris alone or a combination of both B. pseudomallei and

axonal debris (Fig 7). Neither OECs nor TgSCs formed MNGCs after internalising axonal

debris in the absence of bacteria (Fig 7B and 7F). In contrast, B. pseudomallei alone and com-

bined with axonal debris induced the formation of MNGCs in both glial types (Fig 6K, Fig 7C

and 7D; 7G and 7H). To compare the extent of MNGC formation between TgSCs and OECs,

as well as between the B. pseudomallei alone and the B. pseudomallei + debris treatment, per-

centages of multinucleated cells were calculated for all treatment conditions (Fig 7I). The

Fig 3. Methimazole treatment exacerbates B. pseudomallei infection of the olfactory epithelium. Panels show images of coronal sections of the

olfactory mucosa. (A-C) Low power images of the nasal cavity (NC) from S100β-DsRed mice, showing OECs (red) and immunolabellingfor B.

pseudomallei (green) with nuclei stained with DAPI (blue). (D) A higher magnification of square in panel A showing the NC and olfactory epithelium

(OE) with no immunolabelling seen for B. pseudomallei. (E) Magnified area of square in panel B. B. pseudomallei immunolabelling (green) is seen

within the OE (arrow), shown at higher magnification below. (F) A higher magnification of boxed region in panel C. Extensive immunoreactivity for

B. pseudomallei (green) is seen in the NC within exudate (ex) and the OE. Arrows show B. pseudomallei rods within areas of associated particles

immunoreactive for anti-B. pseudomallei antibodies. (G) A very high magnification of the OE showing no immunoreactivity for B. pseudomallei in

mice treated with methimazole alone. (H) A very high magnification and three-dimensional (3D) reconstruction of the B. pseudomallei
immunoreactivity seen in panel E (arrow). (I) A very high magnification of B. pseudomallei rods (arrows) within the olfactory epithelium (OE) seen

in panel F. Associated particles immunoreactive for anti-B. pseudomallei antibodies can also be seen within the OE. (J) Graph showing the numbers

of B. pseudomallei (Bp) rods within the lower, middle and upper olfactory epithelium of mice pre-treated with methimazole prior to B. pseudomallei
infection (n = 4) with error bars showing the mean plus the standard error of the mean. Within sections of the olfactory epithelium, six ROIs (440 μm

by 440 μm in size with 50 μm depth) were defined (two ROIs each for the lower, middle and upper epithelium). For each mouse, three sections

containing these ROIs were analysed. There were significantly more B. pseudomallei rods within the lower epithelium than in the middle epithelium

(�� = p� 0.01). (K) A rotation of the 3D reconstruction seen in panel H. B. pseudomallei reactivity (green) appears to be localised within an S100β-

DsRed positive cell. (L) A very high magnification and 3D reconstruction of the B. pseudomallei rod (green) shown in panel I. Scale bars in μm.

https://doi.org/10.1371/journal.pntd.0008017.g003
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Fig 4. Methimazole pre-treatment causes B. pseudomallei infection of the olfactory bulb via the olfactory nerve. (A-C) Schematic drawings of a

coronally sectioned mouse head showing the nasal cavity (NC), nasal septum (Spt) and turbinates (Tb). Red dots represent peripheral nerve fascicles
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percentage of MNGCs was significantly higher for TgSCs when compared to OECs for both

the B. pseudomallei alone and the B. pseudomallei with axonal debris treatment. For TgSCs

only, the addition of axonal debris significantly increased the percentage of MNGCs formed

compared to inoculation with B. pseudomallei alone.

To verify that B. pseudomallei induced MNGC formation due to the action of the BimA

protein, as shown for other cell types [37, 52], we then exposed TgSCs and OECs to a mutant

B. pseudomallei strain lacking BimA (Fig 7J–7M). After 48 h incubation, OECs and TgSCs did

not form MNGCs (Fig 7K and 7M) and maintained similar morphology to uninfected cells

(Fig 7J and 7L), demonstrating that BimA is required for MNGC formation in OECs and

TgSCs (Fig 7K and 7M).

Discussion

Bacterial infections of the brain via the peripheral nerve route are considered rare. The nasal

epithelium exhibits a powerful immune defence against pathogens: the nasopharynx-associ-

ated lymphoid tissue (NALT). The NALT, which contains lymphocytes and B-/T-cell enriched

zones, as well as follicle-associated epithelium with M-cells [53], constitutes the first defence

(olfactory and trigeminal nerves fascicles); the olfactory bulbs are also shown in red (OB). (D-L) All panels show coronal sections from S100β-DsRed

mice; D-F were treated with methimazole followed by B. pseudomallei inoculation (Bp+Meth), while G-I were inoculated B. pseudomallei only (no

methimazole). Sections show OECs (red), immunolabelling for B. pseudomallei (green), with nuclei stained with DAPI (blue). (D) Location of panel

D is shown by the white box in panel A. This is a low power view of the NC showing the olfactory epithelium (OE), exudate (ex), lamina propria (LP)

and olfactory nerve (within white box in panel D). (E) Location of panel E is shown by the white box in panel B. Dorsal region of the NC showing the

olfactory nerve (ON) passing through the cribriform plate (CP) connecting the OE and the olfactory bulb (OB). (F) Location of panel F is shown by

the white box in panel C. This is a low power coronal view of the OB. (G) Location of panel G represented by the white box in panel A. Zoomed

image of the ON from a mouse inoculated with B. pseudomallei only. No B. pseudomallei was detected within the ON. (H) Location of panel H

represented by the white box in panel B. Magnified view of the ON and CP from a mouse inoculated with B. pseudomallei only. No B. pseudomallei
was detected within the ON. (I) Location of panel I represented by the white box in panel C. Magnified view of the OB from a mouse inoculated with

B. pseudomallei only. No B. pseudomallei was found within the OB. (J) A zoomed image of the ON shown within the white box in panel D. Arrows

point to B. pseudomallei bacteria (green) present within the ON. (K) A zoomed image of the ON shown within the white box of panel E with an

arrow pointing to a B. pseudomallei (green) rod. (L) A zoomed image of the white box in panel F showing the outer layer of the OB. The arrow

indicates B. pseudomallei (green) present within the OB. (J-L) Smaller images within each panel show a very high magnification of B. pseudomallei
with the scale bar representing 2.5 μm. Scale bars in μm.

https://doi.org/10.1371/journal.pntd.0008017.g004

Fig 5. Schematic drawings summarising B. pseudomallei invasion of the olfactory bulb in mice pre-treated with methimazole. (A-B) A schematic

drawing of a sagittal mouse head section showing the nasal cavity (NC), olfactory epithelium (OE), cribriform plate (CP), olfactory bulb (OB) and the

olfactory nerve (red). (A) Low power view showing the NC and location of the olfactory nerve (red). The olfactory nerve projects from the OB into the OE.

(B) A magnified view of the boxed region in panel A. B. pseudomallei rods (green) are shown within the nasal cavity (NC) close to degraded olfactory

epithelium (OE; degradation depicted as segmented lines). The olfactory nerve (red) projects from the olfactory bulb (OB) into the olfactory epithelium

(OE) via the cribriform plate (CP). B. pseudomallei (green) is shown to invade the degraded olfactory nerve (red; degradation depicted as segmented lines)

and penetrate the olfactory bulb (OB). (C) A schematic drawing of a coronal mouse head showing the nasal cavity (NC) and nasal septum (Spt). Red dots

represent peripheral nerve fascicles (olfactory and trigeminal nerves fascicles). Blue squares indicate representative anatomical locations for the regions of

interest (ROIs) used for B. pseudomallei rod quantification; lower epithelium (L), middle epithelium (M) and upper epithelium (U).

https://doi.org/10.1371/journal.pntd.0008017.g005
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against airborne pathogens [54–56]. Within the underlying olfactory nerve, glial cells (OECs)

are efficient phagocytes, capable of engulfing both axonal debris resulting from olfactory nerve

turnover and bacteria [34, 40, 42]. Here, we showed that injury to the olfactory epithelium

increases B. pseudomallei infection, allowing bacteria to penetrate the olfactory nerve and bulb

in a mouse strain not normally susceptible to B. pseudomallei infection of the primary olfactory

nervous system. These findings may also suggest that outbred mice are more resistant to olfac-

tory nerve infection than inbred mice. Outbred mice are well known to exhibit stronger resis-

tance to infections, to be more “immunocompetent” and to better reflect immune responses in

humans than inbred mice [57–65]. Differences in the response to B. pseudomallei infection has

also been demonstrated between different inbred mouse strains. Two studies have shown that

after intravenous inoculation, C75Bl/6 mice are significantly more resistant to B. pseudomallei
infection than Balb/C mice [19, 20]. The infection appeared to mimic acute human melioidosis

in Balb/C mice, and chronic human melioidosis in C75Bl/6 mice [20]. The difference was

attributed to distinct non-specific cellular bactericidal mechanisms [20] as well as different

innate and adaptive immune responses [19].

We have previously shown that in inbred Balb/C mice, B. pseudomallei infection causes sig-

nificant damage to the otherwise unperturbed olfactory neuroepithelium, allowing invasion of

the olfactory nerve and bulb [14–17]. In our outbred S100β-DsRed Quackenbush Swiss mice,

B. pseudomallei epithelial infection and associated damage is minimal, and the olfactory nerve

does not become infected [18 and the current study]. We therefore suggest that epithelial dam-

age is central to the ability of B. pseudomallei to enter the olfactory nerve/bulb. We also showed

that there were more bacteria in the lower than in the middle epithelium after methimazole

treatment followed by infection, suggesting that the lower epithelium may be particularly sen-

sitive to combined injury/infection. However, the difference was relatively small, and we did

not find a significant difference in the number of bacteria between the lower and upper

epithelium.

Therefore, is it then possible that injury to the olfactory epithelium can allow other patho-

gens, including those that do not usually invade the CNS, to infect the brain. One previous

study has shown that injury to the nasal epithelium resulted in olfactory nerve and bulb inva-

sion by Staphylococcus aureus, which does not invade the unperturbed primary olfactory ner-

vous system [66]. Another study shows that lesions of the olfactory epithelium can accelerate

prion invasion of the CNS via the olfactory nerve [67]. These findings open the possibility that

epithelial injuries can transiently allow pathogens to enter the CNS via the olfactory nerve

route. However, cells within the olfactory bulb may provide a distinct defence against micro-

bial invasion. We have previously shown that in Balb/C mice, where B. pseudomallei infection

leads to patchy epithelial damage and infection of the primary olfactory nervous system, the

Fig 6. B. pseudomallei can infect OECs and TgSCs, causing the formation of multinucleated cells. Panels A-B show OECs (red) isolated from

olfactory nerve fascicles within the lamina propria (LP), panels C-F show OECs (red) isolated from the olfactory bulb (OB) and panels G-L show

TgSCs (red) infected by B. pseudomallei (MOI 75:1). Cells were infected for 24 h. Nuclei are stained with DAPI (blue) and B. pseudomallei
immunolabelling is shown in green. (A) LP-OECs (red) infected by B. pseudomallei (green). Whole B. pseudomallei rods (green; arrow) and degraded

bacteria (green; arrow with tails) can be seen. (B) The same image as shown in panel A without the red fluorescence. (C) Multinucleation of

OB-OECs (red) after infection with B. pseudomallei (green). (D) OB-OECs (red) infected by B. pseudomallei (green); bacteria can also be seen

attached to filopodia (zoomed images shown in panels E-F). (E-F) Magnified images of panel D showing OB-OECs (red) with filpodia (double-

headed arrows) attached to B. pseudomallei bacteria (green). (G) Multinucleation of TgSCs (red) after infection with B. pseudomallei (green). (H)

Magnified view of the TgSC shown in panel G infected with B. pseudomallei (green). In this image, only blue (DAPI; cell nuclei) and green (B.

pseudomallei) fluorescence is shown. The cell has three nuclei. (I) The same image as in panel H, here showing staining of nuclei only (DAPI; grey;

arrows). In addition to staining the nuclei of TgSCs, DAPI labels DNA within B. pseudomallei (arrows). (J) The TgSCs shown (red) appears to have

degraded some of the B. pseudomallei bacteria (green). Whole B. pseudomallei rods (green; arrow) and degraded bacteria (green; arrow with tails) can

be seen within cells. (K) Another example image showing multinucleation of TgSCs (red) after B. pseudomallei (green) infection. The cell has three

nuclei. (L) Magnified image of panel K showing a membrane protrusion (double-headed arrow) of the TgSC (red) attached to B. pseudomallei
(green). Scale bars in μm. Shown are representative images from two biological and three technical repeats.

https://doi.org/10.1371/journal.pntd.0008017.g006
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Fig 7. B. pseudomallei-induced multinucleation of OECs and TgSCs in the absence and presence of axon-derived debris, and example images of glia

cultured with B. pseudomallei lacking BimA. Cells were cultured in the absence/ presence of axonal debris/B. pseudomallei for 24 h. Panels A-D show lamina

propria-derived OECs (red), panels E-H show TgSCs (SCs; red); nuclei are stained with DAPI (blue). (A) OECs (red) without debris/bacteria (control). (B) OECs

cultured with debris derived from ZsGreen-expressing axons (green); the debris was phagocytosed by the cells. (C) OECs cultured with B. pseudomallei (MOI

75:1) (green). (D) OECs cultured with a combination of B. pseudomallei and cell debris (both bacteria and debris are green). (E) TgSCs in the absence of debris/

bacteria (control). (F) TgSCs with axonal debris. (G) TgSCs with B. pseudomallei. (H) TgSCs with a combination of B. pseudomallei and cell debris. Scale bar in A

is 15 μm for A-H. (I) Bar graphs show the percentages of multinucleated giant cells in the different conditions (control, debris, B. pseudomallei (Bp) and Bp

+ debris) for OECs (black bars) and TgSCs (grey bars). ���significantly different from the control group and from the debris group, p� 0.001. ���significantly

different from each other, p� 0.001. N = five fields of view each comprising 50–70 cells (derived from three S100β-DsRed mice); p values are adjusted p values

from one-way ANOVA with Tukey’s multiple comparison post-hoc test. (J) OECs (red) cultured without debris/bacteria (control). (K) OECs (red) cultured with

B. pseudomallei ΔBimA (green) for 48 h. (L) TgSCs (red) in the absence of bacteria/debris. (M) TgSCs (red) cultured with B. pseudomallei ΔBimA (green). Scale

bar in J is 15 μm for J-M.

https://doi.org/10.1371/journal.pntd.0008017.g007
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bacteria are able to bypass the “second defence” barrier of OECs in the olfactory nerve and

reach the olfactory bulb (the first defence being the mucosal barrier and NALT) [17]. In the

olfactory bulb, however, astrocytes, which form the glia limitans layer, constitute a separate

“third defence” barrier and are at least partially capable of degrading the bacteria when they

enter the bulb [15]. In the current study, we confirmed that B. pseudomallei bacteria manage

to traverse the olfactory epithelium and can bypass the “second defence” OEC barrier in the

olfactory nerve. Within the olfactory bulb, we observed mainly bacterial degradation products

and few intact rods (compare Fig 4J and 4K and Fig 4L), suggesting that once B. pseudomallei
infection reaches the bulb, the bacteria become degraded, presumably by the third defence bar-

rier (astrocytes), as we have previously shown in Balb/C mice [15].

Damage to the olfactory epithelium is common, resulting from viruses, bacteria, toxins,

traumatic injuries, chemicals and allergies, including smoking [24–29, 68]. Such injuries are

typically only noticed if the damage is substantial enough to result in anosmia. Usually, the

olfactory epithelium and nerve regenerates relatively rapidly [24–29, 68]. Thus, peripheral

injury to the olfactory epithelium and the primary olfactory nervous system is regarded as

harmless. The drug used to induce olfactory injury in the current study, methimazole, causes

sloughing of sustentacular cells and death of olfactory receptor neurons of the olfactory epithe-

lium in rodents [32, 69, 70] and loss of smell in humans [71–73]. The current study suggests

that clinical methimazole treatment [77,78] makes the primary olfactory nervous system vul-

nerable to bacterial insult. As methimazole is a anti-hyperthroidism drug, it likely has systemic

effects which may potentially alter cellular responses within the brain. Thus it may complicate

the interpretation of long-term consequences of bacterial invasion on the brain. Alternative

nasal epithelial injury models such as mechanical trauma followed by intranasal bacterial inoc-

ulation may be more suitable to determine the long-term consequence of bacterial invasion in

the brain. It is unknown whether the incidence of CNS infections is higher in patients on

methimazole; however, subclinical and latent infections may go unnoticed for long periods of

time, as is sometimes is the case for melioidosis [74, 75]. Interestingly, a study from Singapore

found that four out of five human patients with neurological melioidosis were also exhibiting

signs of sinusitis [76].

Diminished sense of smell, including anosmia, has been identified as a symptom of several

neurodegenerative diseases, in particular Parkinson’s disease (PD) and Alzheimer’s disease

(AD) [77–84]. The olfactory bulb is the first CNS region to show degeneration in humans with

AD and mouse models of familial AD [85–89]; reviewed in [90]. PD is also characterised by

abnormalities of the olfactory bulb [91–93]. Studies in mice have shown that a classical hall-

mark of AD, deposition of amyloid β, occurs first in the peripheral olfactory nervous system

before progressing to the olfactory bulb and other CNS areas [94]. One recent study demon-

strated that deficits in the olfactory bulb in humans with PD are localised to the ventral bulb,

where the olfactory nerve enters [94]. Another study showed that lipopolysaccharide-induced

persistent rhinitis led to olfactory bulb damage [95]. Together, these findings support the

“olfactory vector hypothesis”–that external agents entering the nasal cavity and damaging the

primary olfactory nervous system and olfactory bulb constitute a basis for neurodegeneration

[96, 97]. A growing body of work has correlated pathogens with the development of neurode-

generative diseases including AD and PD [98–108]. One known case of post-melioidosis Par-

kinsonism has been described [109]. The fact that certain pathogens can enter the CNS via the

olfactory nerve and bulb [110] suggests that the olfactory vector hypothesis is viable. The cur-

rent study shows that epithelial injury increases the risk of pathogens invading the CNS via the

olfactory nerve, potentially also increasing the risk of pathogen-induced neurodegeneration.

Peripheral glia are thought to play an integral role in the protection of the CNS from bacte-

rial invasion [15, 111]. Thus, it is important to understand the interaction between peripheral
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glia, such as OECs and TgSCs, and potential pathogens of the CNS. Previous studies have also

shown that OECs exhibit a more pronounced response against pathogens than SCs [111]. Our

current study showed that OECs and TgSCs can internalise (and become infected by) B. pseu-
domallei, with only some cells appearing to degrade the bacteria, suggesting that perhaps there

are intrinsic subtypes within the glial populations, exhibiting distinct responses to pathogens.

Our images also showed B. pseudomallei bacteria attached to glial filopodia (Fig 6E, 6F and

6L). It is possible that the cells recognize and attach to the bacteria via these filopodia, similarly

to how macrophages detect pathogens [112]. It is also possible that rather than being in the

process of being detected by filopodia, the bacteria, via the action of BimA, have mobilised

actin tails in the host cell and are in the process of escaping the cell. Indeed, bacterial rods

appear attached to the membrane protrusions at the pole (see Fig 6E and 6F), where BimA has

previously been shown to be localised [52, 113, 114].

The induction of multinucleated giant cell (MNGC) formation by B. pseudomallei has pre-

viously been described for several phagocytic cell lines [37, 52, 114], although this ability is not

correlated with the extent of intracellular replication [37]. Multinucleation occurs via BimA-

dependent cell-cell fusion [113]. Surprisingly MNGC formation is not apparent in infected pri-

mary monocyte-derived macrophages, or neutrophils [115]. We demonstrate here, for the first

time to our knowledge that MNGC formation occurs in phagocytic glial cells. TgSCs were sig-

nificantly more prone to form MNGCs than OECs. It is possible that this difference suggest

that OECs exhibit better or different capacity for phagocytosis of pathogens than TgSCs. OECs

constantly phagocytose axonal debris and are naturally exposed to more microorganisms. In

contrast, Schwann cells, including TgSCs, only become phagocytic after insult and then also

recruit macrophages [reviewed in 116]. The roles of MNGC formation in the pathogenesis of

B. pseudomallei infections are largely unknown but may facilitate localized dissemination and

escape from extracellular immune defence [52, 113]. Mycobacterium leprae, which survives

intracellularly in peripheral nerve Schwann cells, reprograms the host cells towards a de-differ-

entiated phenotype, promoting cell migration and cell-cell dissemination [117]. Because we

could not clearly define cell borders in tissue sections, we could not verify that MNGC forma-

tion occurred in infected animals. However, if also occurring in vivo, MNGC formation may

be of significance in the aetiology of neurological melioidosis, considering the role of the tri-

geminal nerve as a possible route for translocation of B. pseudomallei to the brainstem [18].

In summary, injury to the nasal epithelium results in increased invasion of the olfactory

nerve by B. pseudomallei. While peripheral glial cells can internalise some of the bacteria, they

are susceptible to becoming multinucleated giant cells through a mechanism dependent on the

bacterial protein BimA. The ability of B. pseudomallei to penetrate nerves of the nasal cavity

varies with the strain of mice, suggesting that more extensive studies examining genetic vari-

ability may identify the mechanisms by which the bacteria initiate invasion and the associated

risk factors. As these results highlight a novel risk factor for CNS infections, future studies

should consider the long-term consequences on the low-level presence of bacteria within the

brain.
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