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Abstract

Background

Symbiotic bacteria are pervasive in mosquitoes and their presence can influence many host

phenotypes that affect vectoral capacity. While it is evident that environmental and host

genetic factors contribute in shaping the microbiome of mosquitoes, we have a poor under-

standing regarding how bacterial genetics affects colonization of the mosquito gut. The

CRISPR/Cas9 gene editing system is a powerful tool to alter bacterial genomes facilitating

investigations into host-microbe interactions but has yet to be applied to insect symbionts.

Methodology/Principal findings

To investigate the role of bacterial genetic factors in mosquito biology and in colonization of

mosquitoes we used CRISPR/Cas9 gene editing system to mutate the outer membrane pro-

tein A (ompA) gene of a Cedecea neteri symbiont isolated from Aedes mosquitoes. The

ompA mutant had an impaired ability to form biofilms and poorly infected Ae. aegypti when

reared in a mono-association under gnotobiotic conditions. In adult mosquitoes, the mutant

had a significantly reduced infection prevalence compared to the wild type or complement

strains, while no differences in prevalence were seen in larvae, suggesting genetic factors

are particularly important for adult gut colonization. We also used the CRISPR/Cas9 system

to integrate genes (antibiotic resistance and fluorescent markers) into the symbionts

genome and demonstrated that these genes were functional in vitro and in vivo.

Conclusions/Significance

Our results shed insights into the role of ompA gene in host-microbe interactions in Ae.

aegypti and confirm that CRISPR/Cas9 gene editing can be employed for genetic manipula-

tion of non-model gut microbes. The ability to use this technology for site-specific integration

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007883 December 2, 2019 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hegde S, Nilyanimit P, Kozlova E,

Anderson ER, Narra HP, Sahni SK, et al. (2019)

CRISPR/Cas9-mediated gene deletion of the ompA

gene in symbiotic Cedecea neteri impairs biofilm

formation and reduces gut colonization of Aedes

aegypti mosquitoes. PLoS Negl Trop Dis 13(12):

e0007883. https://doi.org/10.1371/journal.

pntd.0007883

Editor: Mariangela Bonizzoni, Universita degli Studi

di Pavia, ITALY

Received: January 31, 2019

Accepted: October 26, 2019

Published: December 2, 2019

Copyright: © 2019 Hegde et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: GLH was supported by NIH grants

(R21AI138074, R21AI124452 and R21AI129507),

a Royal Society Wolfson Fellowship, the Western

Gulf Center of Excellence for Vector-borne

Diseases (CDC grant CK17-005), the Robert J. and

Helen Kleberg Foundation and the Gulf Coast

http://orcid.org/0000-0003-4413-3756
http://orcid.org/0000-0002-7567-7185
https://doi.org/10.1371/journal.pntd.0007883
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007883&domain=pdf&date_stamp=2019-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007883&domain=pdf&date_stamp=2019-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007883&domain=pdf&date_stamp=2019-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007883&domain=pdf&date_stamp=2019-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007883&domain=pdf&date_stamp=2019-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007883&domain=pdf&date_stamp=2019-12-12
https://doi.org/10.1371/journal.pntd.0007883
https://doi.org/10.1371/journal.pntd.0007883
http://creativecommons.org/licenses/by/4.0/


of genes into the symbiont will facilitate the development of paratransgenic control strate-

gies to interfere with arboviral pathogens such Chikungunya, dengue, Zika and Yellow fever

viruses transmitted by Aedes mosquitoes.

Author summary

Microbiota profoundly affect their host but few studies have investigated the role of bacte-

rial genetics in host-microbe interactions in mosquitoes. Here we applied the CRISPR/

Cas9 gene editing system to knockout a membrane protein in Cedecea neteri, which is a

dominant member of the mosquito microbiome. The mutant strain had an impaired

capacity to form biofilms, infected larvae and adults at lower titers, and had a reduced

prevalence in adults. The lower prevalence in adults, but not larvae, likely reflects the dif-

ference in the modes of bacterial acquisition from the larval water of these two life stages.

Importantly from an applied perspective, we also demonstrated that this editing technol-

ogy can be harnessed for site-specific integration of genes into the bacterial chromosome.

In proof-of-principle studies we integrated either a fluorescent protein or gene conferring

antibiotic resistance into the bacterial genome and showed these transgenes were func-

tional in mosquitoes. The specificity, flexibility, and simplicity of this editing approach in

non-model bacteria will be useful for developing novel symbiotic control strategies to mit-

igate the burden of arthropod-borne disease.

Introduction

Mosquitoes harbor a community of microbes within their guts. In general, the gut-associated

microbiome of mosquitoes tends to have low species richness but can differ greatly between

individuals and habitats [1–8]. Importantly, these microbes can modulate many host pheno-

types, several of which can influence vectorial capacity [9–11]. As such, it is imperative that we

understand how the microbiome is acquired and maintained within mosquito vectors. While

environmental factors unquestionably influence the mosquito microbiome composition and

abundance [2–4, 8], studies are elucidating the role of microbial interactions [5, 7, 12, 13] and

host genetic factors [14–18] in shaping the microbiome. However, we have a poor understand-

ing of bacterial factors that influence colonization of the mosquito gut and this is likely an

underappreciated force influencing host-microbe interactions in mosquitoes.

In other invertebrates, several bacterial genes have been implicated in gut colonization. For

example, a genome wide screen exploiting transposon-sequencing found a suite of genes from

the bacterium Snodgrasselia alvi involved in colonization of the honey bee gut [19]. These bac-

terial genes were classified into the broad categories of extracellular interactions, metabolism,

and stress response [19]. Knockout of a purine biosynthesis gene in Burkholderia impaired

biofilm formation and reduced bacterial colonization rates in a bean bug [20]. Biofilm forma-

tion was also shown to play a role in virulence of pathogenic Pseudomonas in artificial infec-

tions of Drosophila, with strains that lacked the capacity to form biofilms being more virulence

to the host, although a hyperbiofilm strain was less virulent than the wild type (WT) strain

[21]. In other blood feeding invertebrates, bacterial genetics also appears critical for host colo-

nization. Knockout of the type II secretion system in Aeromonas veronii reduced infection in

Hirudo verbena leeches [22]. In tsetse flies, the outer-membrane protein A (ompA) gene of

Sodalis glossinidius is essential for symbiotic interactions [23]. Sodalis mutants lacking the
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ompA gene poorly colonized the fly gut compared to the WT symbionts [23], likely due to the

mutant strains reduced capacity to form biofilms [24]. Heterologous expression of the ompA
gene from pathogenic Escherichia coli in Sodalis mutants induced mortality in the fly implicat-

ing this gene as a virulence factor in pathogenic bacteria [23]. Taken together, these studies

suggest that bacterial genetic factors are critical for host colonization of invertebrates and that

biofilm formation facilitates symbiotic associations in insects.

In mosquitoes, few studies have investigated how bacterial genetics affect gut colonization.

However, evidence from experimental evolution studies suggests bacterial genetics plays a crit-

ical role. In two separate studies, Enterobacter was selected for increased persistence in the gut

of Anopheles gambiae mosquitoes, the major malaria vector in sub-Saharan Africa, by repeat-

edly infecting mosquitoes with strains that persisted in the gut for longer periods of time [25,

26]. Transcriptomics comparisons of effective and ineffective colonizers in liquid media iden-

tified 41 genes that were differentially expressed between these two strains [26], further impli-

cating the importance of bacterial genetics in mosquito infection, however the role of these

genes in colonization of the mosquito gut has not been resolved. In a separate study, in vitro
screening of a transposon mutant library of Enterobacter identified a waaL gene mutant that

was insensitive to oxidative stress [27]. The waaL gene encodes an O antigen ligase which is

needed for attachment of the O antigen to lipopolysaccharide. The mutant was found to have

lower rates of colonization of the midguts of Anopheles mosquitoes [27].

Gene knockouts approaches in bacteria provide compelling evidence of the role of bacterial

genes in host-microbe interactions [22–24, 27–29]. In general, most studies use transposon

mutagenesis for gene knockout, which requires screening of the mutant library. A targeted

gene knockout approach is highly desirable to investigate the functionality of bacterial genes in

host-microbe interactions. In the past few years, the CRISPR/Cas9 gene editing system has

been employed to modify bacterial genomes [30–32]. While much of the work has been done

in model bacterial species [31–37], editing approaches have expanded into non-model bacte-

rial systems [38–43]. Despite this expansion, the approach has been used less frequently for

host-associated microbes [39, 44], and rarely for arthropod symbionts. In the vector biology

field, gene knockout approaches can be used to interrogate the role of bacterial genes responsi-

ble for host-microbe interactions, whilst the ability to integrate genes into the bacterial symbi-

ont genome has great potential for applied paratransgenic control strategies [10, 45–47]. To

date, manipulation of non-model symbionts that associate with insect vectors has been accom-

plished by plasmid transformation [48–55] or stable transformation of the genome using

transposons or integrative plasmids [56–63], but the use of CRISPR/Cas9 gene editing in insect

gut symbionts has yet to be accomplished. For paratransgenic strategies, stable site-specific

integration of transgenes into the symbiont genome is critical. Therefore, the application of

CRISPR/Cas9 gene editing technology to non-model bacteria that associate with insect vectors

will stimulate research in this field.

We therefore undertook studies to develop CRISPR/Cas9 genome editing approaches in

Cedecea neteri isolated from Aedes mosquitoes. We used the Scarless Cas9 Assisted Recombi-

neering (no-SCAR) method to disrupt the ompA gene of the non-model C. neteri [35]. After

characterization of the mutant in vitro, we examined the role of the ompA gene in host-

microbe interactions by re-infecting bacteria into mosquitoes in a mono-association. To dem-

onstrate that the CRISPR/Cas9 gene-editing system could be useful for applied symbiotic con-

trol approaches we inserted genes conferring antibiotic resistance or a fluorescent protein into

the bacterial genome and re-infected the altered strains back into mosquitoes. Our result sheds

insights into the role of the ompA gene in host-microbe interactions in Ae. aegypti and confirm

that CRISPR/Cas9 gene editing can be a powerful tool for genetic manipulation of native gut-

associated microbes of mosquitoes.

CRISPR/Cas9 engineering of a gut bacterium
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Results

C. neteri biofilm formation in Ae. aegypti guts

Over the course of conducting mono-axenic infections in Ae. aegypti mosquitoes with a Cede-
cea symbiont, we repeatedly observed a conglomeration of bacterial cells in the anterior and

posterior midgut (Fig 1, S1 Fig) that had a similar appearance to biofilms observed in the guts

of other insects [21, 24]. We also infected mosquitoes with the E. coli BL21(DE3) lab strain as a

control, but we did not see any evidence of infection (Fig 1, S1D–S1F Fig) although infection

with this bacterium enabled mosquito development [64]. The E. coli BL21(DE3) lab strain

does not have the capacity to form biofilms [65], possibly explaining its inability to infect mos-

quitoes. We therefore set out to examine the role of bacterial genetics in biofilm formation and

host colonization of gut-associated bacteria of Aedes mosquitoes. We used multilocus sequence

typing (MLST) to confirm the species of our isolate, which indicated the bacterium was C.

neteri (S2 Fig). Several genes have been implicated in biofilm formation [21, 24], but we chose

to knockout the ompA gene of C. neteri given that this gene has been demonstrated to influ-

ence biofilm formation and gut colonization of Sodalis [23, 24], an Enterobacteriaceae symbi-

ont of tsetse flies. We used the CRISRP/Cas9 genome editing system to mutate the symbiont

genome to demonstrate this approach could be employed for non-model symbiotic bacteria

that associate with mosquitoes.

Genome editing in C. neteri bacteria isolated from mosquitoes

To edit the Cedecea isolate that resides within the gut of Aedes mosquitoes, we employed the

no-SCAR gene editing approach that had been developed in E. coli [35]. To optimize the

approach in our hands, we performed initial experiments in E. coli to delete a ~1 kb region of

the ompA gene (Fig 2A). As the no-SCAR approach exploits the λ-Red recombineering system

to repair double stranded breaks, we transformed bacteria with a double stranded DNA tem-

plate that had regions of homology flanking the gRNA site (250 bp for each arm). Using this

approach, we successfully deleted a 1001 bp fragment of the ompA gene. From the colonies we

screened, we saw an editing at a frequency of 6.25% (N = 48) (Fig 2A). For C. neteri, we altered

Fig 1. Midgut infection of C. neteri and E. coli in mono-associations of Aedes mosquitoes. C. neteri forms a biofilm in the gut of 3–4 day old Ae.

aegypti adult mosquitoes (left) while no bacteria were observed in the gut of mosquitoes reared with E. coli under gnotobiotic conditions (right).

Bacteria possessed the pRAM-mCherry plasmid, which expresses the mCherry fluorescent protein and conferred resistance to kanamycin. Blue–host

nuclei stained by DAPI. Green–host actin cytoskeleton stained with phalloidin. The scale bar is 70 μm.

https://doi.org/10.1371/journal.pntd.0007883.g001
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our editing procedure to delete a 598 bp fragment from the ompA gene. This was done to

enhance the efficiency of obtaining mutants [35] and accommodate the PAM site which was at

a different location in the ompA gene in C. neteri. Using a donor template designed for the C.

neteri ompA gene that had flanking homology arms of similar length as the previous experi-

ment done in E. coli, we obtained mutant knockouts at a rate of 32% (N = 50) (Fig 2B). For

both bacterial species, Sanger sequencing across the integration site indicated the deletion

occurred at the expected loci in the bacterial genome (Fig 2C; S1 Appendix).

Characterization of the C. neteri ompA mutant

We quantified the growth rates of the ΔompA mutant in comparison to the WT C. neteri and

the ΔompA/ompA complement in liquid LB media. We saw minimal differences in the growth

between the WT, the ΔompA mutant or the ΔompA/ompA complement (Fig 3A). To examine

the stability of the deletion, we subcultured the ΔompA mutant on LB media for 10 generations

and performed PCR to amplify across the deletion. At alternative generations, PCR analysis

indicated the deletion was present indicating genomic stability at this site (Fig 3B).

Fig 2. CRISPR/Cas9 genome editing in bacteria. A schematic of the editing approach and screening of putative mutants in (A) E. coli and (B) C.

neteri. A ~1kb fragment of E. coli BL21(DE3) was deleted using no-SCAR protocol. The 250 bp of the left arm (LA) and right arm (RA) was assembled

to generate the 500 bp donor DNA. The transformants were screened via colony PCR with primers binding in regions flanking the deletion. Similar to

the strategy employed in E. coli, the knockout of the ompA gene from C. neteri isolated from the mosquito gut was created by deleting the 598 bp

fragment. The grey area indicates the PAM site in the ompA gene and arrow shows the cleavage site in the genome. (C) The sequence of the ompA
mutation in E. coli and C. neteri was confirmed by Sanger sequencing. The sequence above the gene within the dotted line has been deleted. The

chromatogram shows the 10 bp flanking the deletion.

https://doi.org/10.1371/journal.pntd.0007883.g002
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Previously, ompA has been shown to be important in biofilm formation as Sodalis deletion

mutants were unable to form biofilms [24]. Therefore, we characterized in vitro biofilm forma-

tion using the crystal violet (CV) biofilm assay. From visual inspection, it was clear the ΔompA
mutant had distinctly less biofilm deposition compared to either the WT or the ΔompA/ompA
complement (Fig 3C). After quantification and normalization to account for any difference in

growth between the strains, biofilm formation was confirmed to be significantly different

between the ΔompA mutant and the WT or complement (Fig 3D; Tukey’s multiple compari-

sons test, P < 0.0001). There was no significant difference between the WT and the ΔompA/
ompA complement (Tukey’s multiple comparisons test P = 0.2).

The role of ompA gene in mosquito infection

To examine the importance of the ompA gene on bacterial colonization of mosquitoes, we

infected Ae. aegypti mosquitoes in a mono-association under gnotobiotic conditions [64]. This

infection method was used to avoid other gut-associated microbes influencing host coloniza-

tion rates [7] and it also enabled straightforward quantification of introduced bacteria by mea-

suring colony forming units (CFUs). No significant changes were seen in the prevalence of

infection (number of mosquitoes infected) in the larval stage (Fig 4A, Fisher’s exact test; WT

Fig 3. In vitro characterization of the ompA mutation. (A) The C. neteri ΔompA mutant had a similar growth rate compared to both the WT and the

ΔompA/ompA complement in liquid LB media. Five technical replicates were used to create growth curves. (B) The stability of mutant was evaluated in
vitro by continuous subculturing in LB media. Genomic DNA from alternative subcultures was used as template for PCR using primers that amplified

across the deletion. The stability assay was repeated twice. Two separate gel images were merged to create figure 3B (passage 8 was run on a separate gel

to passages 0–6). (C) Biofilm formation was assessed using the CV biofilm assay for the WT, ΔompA mutant and the ΔompA/ompA complement. Two

biological replicates were completed. (D) Quantification of the relative biofilm formation normalized by the number of bacteria per well (N = 3). Error

bars represent standard error. The assay was repeated twice.

https://doi.org/10.1371/journal.pntd.0007883.g003
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compared to ΔompA P = 0.24 and ΔompA compared to ΔompA/ompA P = 0.24) with rates of

infection consistently high (WT 100%, ΔompA 96%, and ΔompA/ompA 100%). In adults, the

prevalence of infection was significantly different (Fig 4B, Fisher’s exact test; WT compared to

ΔompA P< 0.0001 and ΔompA compared to ΔompA/ompA P < 0.0001), with only 45% of

Fig 4. The ΔompA mutant poorly infected mosquitoes. Infection of C. neteri strains (WT, ΔompA mutant and ΔompA/ompA complement; the former

two possessed the pRAM-Cherry plasmid while the latter possessed the pRAM-Cherry-Ent-OmpA plasmid) reared in a mono-association using a

gnotobiotic rearing approach for larvae (A and C) and adults (B and D). L4 larvae and 3–4 days post emergence adults were screened for bacterial load

by plating on selective LB media with kanamycin to quantify the bacteria. The prevalence of infection (number of mosquitoes infected) between the

treatments was calculated comparing the number of infected to uninfected larvae (A) or adults (B). Density of bacteria (CFU/mosquito) in larvae (C)

and adults (D). The assay was repeated twice. Results display pooled data from each independent replicate. Box and whiskers show the median, the 25th

and 75th percentiles and the minimum and maximum values.

https://doi.org/10.1371/journal.pntd.0007883.g004
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adults infected by the ΔompA mutant compared to 95% and 88% by the WT and ΔompA/
ompA complement, respectively. In larvae, we saw a significant reduction in bacterial titer in

the mutant compared to both the WT (Kruskal-Wallis test with Dunn’s test; P< 0.05) and the

ΔompA/ompA complement (Kruskal-Wallis test with Dunn’s test; P< 0.05) (Fig 4C) with

median values of 1.5x105, 2.3x104, and 1.5x105 for the WT, ΔompA, and ΔompA/ompA com-

plement respectively. Similarly, in adults, there was a significant reduction in bacterial infec-

tion in the ΔompA mutant compared to either the WT or ΔompA/ompA complement

(Kruskal-Wallis test with Dunn’s test; P < 0.001) (Fig 4D), with median value of 8.1x102, 0,

and 7.5x102 for the WT, ΔompA, and ΔompA/ompA complement respectively. However, when

considering only the infected mosquitoes for analysis, we saw no significant difference

between the treatments (S3 Fig, Kruskal-Wallis test with Dunn’s test; P> 0.99). For both the

larvae and adult density quantifications, the non-parametric test (Kruskal-Wallis test) was

used due to non-normal distribution of data (Sharpiro-Wilks test; P<0.001). We also moni-

tored the growth rates of mosquitoes administered with the WT, ΔompA mutant and ΔompA/
ompA complement. No significant differences were seen in the time to pupation (Fig 5A) or

percentage of first instar larvae that reached adulthood (Fig 5B) between any of the bacterial

strains.

Integration of genes into the C. neteri chromosome

We undertook experiments to demonstrate the CRISPR/Cas9 gene-editing approaches can be

used to integrate genes into the chromosome of non-model bacteria that associate with mos-

quitoes. We created two independent transgenic strains that had either a gene encoding

mCherry fluorescence or a gene encoding resistance to the antibiotic gentamicin inserted into

the bacterial chromosome. Before undertaking these integration experiments we confirmed

that C. neteri was susceptible to gentamicin. These genes were integrated into the genome

using the same gRNA that was used for deletional mutagenesis (S1 Table), and as such, these

Fig 5. The ΔompA mutant does not affect growth rates or development of mosquitoes. The growth rate (time to pupation) (A) and development

(percentage of L1 larvae to reach adulthood) (B) was observed in mosquitoes infected with C. neteri strains (WT, ΔompA mutant and ΔompA/ompA
complement) reared in a mono-association. The experiment was done twice with a minimum of 15 individuals. Sample size for panel A indicates

number of individuals, while for B indicates the number of replicate flasks. Each flask has 20 mosquitoes.

https://doi.org/10.1371/journal.pntd.0007883.g005
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insertions also disrupted the ompA gene. Sequencing across the integration site indicated the

insertion of these genes occurred within the ompA gene and thereby disrupted its function

(Fig 6A and 6B). Continual subculturing was undertaken for both strains and molecular analy-

sis indicated the stability of these lines for ten generations (Fig 6C and 6D). Expression of

mCherry fluorescence and growth of the ΔompA::gentamicin strain on media containing gen-

tamicin demonstrated the integrated genes were functional in vitro (Fig 6E and 6F).

To examine the functionally of the integrated genes in the mosquito we administered either

WT, ΔompA::mCherry, or ΔompA::gentamicin to conventionally reared 3–4 day old adult

female Ae. aegypti in a sugar meal for 3 days or larvae cleared of their microbiota. For gnotobi-

otic infection we used bacteria expressing mCherry from a plasmid. The dissected gut from

3–4 day old adults showed a higher percentage of WT bacteria compared to either of the

integrated mutants. After screening midgut samples from each treatment, we found that mos-

quitoes infected with WT bacteria had the highest infection prevalence (69%) and that the

mCherry and gentamicin knockin mutants were found only in 4% and 33% of the samples,

respectively (S4 Fig, S4 Table). In addition, biofilms were seen mainly in mosquitoes infected

with WT bacteria (31%) whilst midguts infected with mutants had few or no biofilms (0–2%)

(S4 Fig, S4 Table). In sugar fed adult mosquitoes, ΔompA::mCherry bacteria were observed in

the gut of mosquitoes with a distinct punctate distribution, whereas no signal was seen in auto-

fluorescence controls (WT C. neteri infected mosquitoes) (Fig 6G). The C. neteri ompA::genta-

micin was successfully rescued from mosquitoes reared on gentamicin and stably infected

mosquitoes over time at a density of approximately 1x104 CFUs/mosquito. Consistent with

our previous result (Fig 4B), WT bacteria initially infected mosquitoes at higher titers com-

pared to the mutant (T test; day 0 P< 0.001). However, after 4 days rearing on antibiotic the

total bacterial load in mosquitoes administered WT C. neteri was significantly reduced com-

pared to the ΔompA::gentamicin (T test; day 4 P< 0.05) while the prevalence of mosquitoes

with culturable microbiota was reduced to 80%. After 6 days rearing on antibiotic, the

ΔompA::gentamicin density was significantly elevated compare to the WT (T test; day 6

P< 0.001) only one mosquito was infected, which had a low density infection (10 CFUs/mos-

quito) (Fig 6H).

Discussion

We harnessed the CRISPR/Cas9 gene editing system to create knockout mutants in a C. neteri
gut symbiont of Aedes mosquitoes to examine the role of bacterial genetics in biofilm forma-

tion and gut colonization. A deletion of the ompA gene of C. neteri decreased bacterial coloni-

zation of mosquitoes after infection in a mono-association. Strikingly, we found this effect was

most pronounced in adult mosquitoes with more than half of the mosquitoes not possessing

any culturable mutants, whereas there was no difference in prevalence of infection between

the mutant and WT bacteria in larvae. The reduced prevalence of mutant bacteria in adults

likely reflects differences in microbial colonization of each mosquito life stage. Larvae are con-

tinually subjected to bacteria in the larval water habitat while adults only have a short time

frame to acquire bacteria from the aquatic environment immediately after eclosion. Alterna-

tively, the reduced prevalence in adults could be due an impaired ability of mutant bacteria to

be transstadially transmitted. Several bacterial species have been shown to exploit this process

to transfer between life stages [66–69]. When only analysing adult mosquitoes where bacteria

did colonize the host, we saw no differences in the density of the mutant strain compared

to the WT or complement, suggesting that ompA is acting at the colonization stage but has

minimal effect on post-colonization processes. However, when examining midguts using

fluorescent microscopy, in general, we observed reduced loads of the mutant strains. When

CRISPR/Cas9 engineering of a gut bacterium
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Fig 6. Integration of mCherry and gentamicin into the C. neteri genome. Sanger sequence across the integration site, stability of the inserted gene

and in vitro expression of the inserted gene for the ΔompA::mCherry (A-C) and the ΔompA:: gentamicin (B-D) strains. The chromatogram shows the

sequence spanning the inserted sites. Strains were continually subcultured for 10 passages and PCR was done to examine the stability of the insert (C;

ΔompA::mCherry plus WT, D; ΔompA::gentamicin passaged with (ab+) or without (ab-) gentamicin plus WT). mCherry fluorescence (E) or ability to

grow on selective media containing gentamicin (F) confirmed the expression of the transgene in vitro. Mosquitoes were inoculated with the C. neteri
strains to confirm expression of the transgene in vivo. Dissected midgut infected with ΔompA::mCherry (left) or negative control (right; WT bacteria

without expression plasmid) (G). Midguts were stained with phalloidin (green) and DAPI (blue). The scale bar is 30 μM. The WT and ΔompA::

gentamicin C. neteri strains were fed to adult mosquitoes for 3 days in a sugar meal before gentamicin was administered to mosquitoes in sugar without

bacteria (H). Mosquitoes were collected every second day and CFUs assessed. Pairwise comparisons were conducted at each time point using a T test.

https://doi.org/10.1371/journal.pntd.0007883.g006
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quantifying bacterial load by CFU we used whole mosquitoes. It may be possible that mutant

bacteria were residing in other tissues in the adult but poorly re-infected the midgut. If this

occurred, it would indicate involvement of ompA in transstadial transmission. The greater

variability seen in the prevalence of adults compared to the larval is consistent with other

sequence-based studies that indicate adult stages have greater variability in species composi-

tion of their microbiota, whereas the microbiome of immature stages is similar to the micro-

biota in larval water habitat [2–5, 8, 70].

Mutant bacteria colonized mosquitoes at higher densities when administered to adults as

opposed to larvae. There are several possible explanations for this finding. The first relates to

the method of inoculation with adults being administered bacteria in a sugar meal while larvae

were exposed to bacteria in their aquatic environment. The different inoculation process itself

may influence titer but also when sugar feeding, adults had the opportunity for repeated infec-

tions whereas emerging adults only had a narrow window for inoculation as they did not have

further access to the larval water habitat after eclosion. The second explanation relates to dif-

ferences in the microbiome of these mosquitoes. The mosquitoes inoculated as adult were

reared conventionally, and as such, had an intact microbiome, while larvae reared in the gno-

tobiotic system only possessed the individual Cedecea strains that were administered. For the

latter group there was no opportunity for the native WT bacteria (either of the same or differ-

ent species) to rescue the mutant phenotype. In the Sodalis-tsetse system, mutant bacteria were

capable of infecting flies that had an intact microbiome but were unable to infect Sodalis-free

tsetse flies [23], suggesting WT Sodalis facilitated colonization of the mutant strain. In mono-

axenic infections, the C. neteri mutant strain was able to infect Ae. aegypti, indicating that

ompA is not essential for infection in the mosquito-Cedecea system.

Our results, in conjunction with studies in the Sodalis-tsetse system [23, 24], suggests that

biofilm formation may be a strategy employed by bacteria to colonize the gut of insects. In

pathogenic infections in mammals, biofilms enable bacteria to colonize new niches, promote

infection, and are associated with virulence [71]. Although less is known regarding the impor-

tance of biofilm formation in insects, in an artificial Pseudomonas-Drosophila infection model,

biofilm formation was associated with virulence and host survival [21]. In a natural symbiotic

association between bean bugs and Burkholderia, disruption of a purine biosynthesis gene in

the bacterium reduce biofilm formation and colonization of the insect [20]. In mosquitoes,

gut biofilm formation could also have implications for vector competence. Chromobacterium,

which was isolated from Aedes mosquitoes, produced molecules that inhibited dengue virus

only when grown in vitro as a biofilm but not when grown in a planktonic state [72], however

it is unknown if biofilm formation occurred in vivo in the mosquito. Our data provide evi-

dence that biofilms occur within the gut of mosquitoes and facilitate host colonization.

Although we have shown that the ompA gene of C. neteri is important for host colonization,

we see no evidence that deletion of this gene alters mosquito development or growth rates.

This is in contrast to the Riptortus-Burkholderia symbiosis whereby mutation of the purT gene

in Burkholderia resulted in reduced growth rates and reduction in body weight of the host

compared to insects that were infected with the WT bacterium [20]. The difference in our

study to the findings in the Riptortus-Burkholderia symbiosis could be related to different

requirements of the bean bug compared to the mosquito host as well as the different genes

mutated in the symbionts. Our findings are consistent with a previous study in Ae. aegypti
whereby an ompA mutant of E. coli did not influence growth when reared in a mono-associa-

tion [73]. Using a similar gnotobiotic system that exploits the ability to sterilize mosquito

eggs and rescue development by nutritional supplementation, several recent reports describe

approaches to create bacteria-free mosquitoes [73, 74]. Here, we reared mosquitoes in a

mono-association where they were only subjected to C. neteri. However, more than half the
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adult mosquitoes inoculated with the ΔompA mutant were not infected by bacteria, as evi-

denced by the inability to culture bacteria from these insects. Nevertheless, these mosquitoes

had similar development and growth rates compared to mosquito possessing WT bacteria.

The use of mutant bacteria that rescue development but have an impaired ability to colonize

mosquitoes may provide a simple means to create axenic adult mosquitoes.

CRISPR/Cas9 gene editing has revolutionized genetic approaches in model and non-

model bacteria [31–43]. However, there has been limited use of this technology in symbiotic

microbes of arthropods. Here we demonstrate that editing approaches functional in E. coli
can be easily applied with minimal adaptation to phylogenetically related symbiotic bacteria

that are found within the guts of mosquitoes. The application of CRISPR/Cas9 genome edit-

ing to gut-associated bacteria of mosquitoes has significant applied potential. Paratransgen-

esis strategies are being evaluated in a range of medical and agricultural systems to mitigate

pathogen transmission from insect vectors, however, most approaches engineer symbionts

by plasmid transformation [49–55, 75] and where genome integration has been accom-

plished in symbionts [58–61], it has often been done with technologies that did not allow for

site specific integration. Paratransgenic approaches suitable for use in the field will need to

stably integrate genes into the bacterial genome in a manner that does not compromise bac-

terial fitness. Exploiting the flexibility and specificity of the CRISPR/Cas9 system to integrate

genes in intergenic regions of the bacterial chromosome will undoubtedly be beneficial for

these applied approaches.

In summary, we have demonstrated that the CRISPR/Cas9 gene editing system can be

applied to symbiotic bacteria that associate with eukaryotic hosts to interrogate the role of bac-

terial genes in host-microbe associations. We created knockout and knockin mutants by delet-

ing and disrupting the ompA gene of C. neteri. The knockout mutant displayed a reduced

ability to form biofilms and colonize the gut of Ae. aegypti mosquitoes in a mono-association

demonstrating bacterial genetic factors are important determinants that influence colonization

of mosquito guts. Aedes mosquitoes are becoming powerful systems to investigate the genetics

of host-microbe interactions given the scientific community has simple and efficient

approaches to alter both the microbes (this study) and mosquito host genome [76, 77] at their

disposal, as well as methods to create mono-associated mosquito lines [7, 64]. Finally, rapid,

efficient, and site specific gene editing approaches for gut bacteria that associate with mosqui-

toes will facilitate the development of novel paratransgenic approaches to control arthropod-

borne disease [57].

Material and methods

Bacterial and mosquito strains

E. coli BL21(DE3) (NEB) and Cedecea neteri strain Alb1, previous isolated from a lab-reared

colony of Ae. albopictus (Galveston) mosquitoes [7], were used in this study. To further classify

the gut-associated bacteria we completed multilocus sequence typing [78]. DNA from the sin-

gle colony was used as a template in a PCR to amplify genes for MLST analysis (S3 Table).

Amplicons were resolved on a 1% agarose gel, extracted and purified, and Sanger sequenced.

The atpD, infB, gyrB and rpoB genes were aligned separately, using the species diversity as in

[79] with several Cedecea sp. sequences and then concatenated using seaview [79]. The phylo-

genetic tree was constructed using iqtree [80] under the general time-reversible (GTR) model

with 1000 fast bootstrap replicates, which are shown as percentage branch support values

(S4 Fig). The sequences of our isolate are available under accessions (MN329096 (atpD),

MN329097 (gyrB), MN329098 (infB), MN329099 (rpoB). For gene editing and mosquito infec-

tions, cultures were grown in liquid LB media at 37˚C with the appropriate antibiotic unless
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stated otherwise. Mosquitoes were reared in the UTMB insectary under conventional condi-

tions or in a mono-association (described below).

CRISPR gene editing

Designing protospacer sequence and cloning: The E. coli BL21 ompA gene sequence was

retrieved from NCBI (accession number LR536431). The C. neteri Alb1 ompA gene was PCR

amplified and Sanger sequenced using primers (OmpA-F and OmpA-R, S3 Table), which

were designed based on the Enterobacter cloacae ompA (accession number CP017990). Editing

the ompA gene of E. coli and C. neteri was complete as described in Reisch and Prather [35].

Protospacer sequences for the ompA gene were designed using CHOPCHOP [81, 82]. To

clone the protospacer sequences into pKDsgRNA-ack (S2 Table; Addgene plasmid #62654) we

amplified the entire plasmid with primers that contained the protospacer sequence and this

amplicon was self-ligated. This PCR was done using 0.5μM of each primer (S1 Table), 1x reac-

tion buffer, 200μM dNTPs, 0.5U of Phire Host Start Taq polymerase (Thermo Scientific) and

200 ng of plasmid DNA as template. The cycling condition consisted of an initial denaturation

step 98˚C for 2 minutes, followed by 35 cycles of 98˚C for 2 seconds, 58˚C for 15 seconds, and

72˚C for 2 minutes and 30 seconds, and then a final extension at 72˚C for 10 minutes before

holding at 16˚C. The PCR products had a 15–17 bp overlapping sequence which was used to

ligate the plasmid. The PCR product was digested with DpnI to remove any template plasmid.

PCR products were then ligated by transformation into E. coli harbouring the Red/ET plasmid

following the REPLACR mutagenesis protocol [83], thereby creating plasmids pKDsgRNA-

Ec-ompA-1, pKDsgRNA-Ec-ompA-2, pKDsgRNA-Ent-ompA-1, and pKDsgRNA-Ent-ompA-

2 (S2 Table). Colonies were screened for the protospacer insertion by PCR and confirmed by

Sanger sequencing.

Knockout of ompA
The two protospacers were evaluated by transforming plasmids into either E. coli or C. neteri
containing the pCas9-CR4 plasmid (S2 Table; Addgene plasmid 62655), which expressed Cas9

nuclease. Transformants were selected at 30˚C on LB agar plate containing spectinomycin

(50 μg/mL), chloramphenicol (34 μg/mL), and either with or without anhydrotetracycline

(aTC; 100ng/mL). The escape rate was quantified by comparing colonies in the plates with or

without aTC. The protospacer with a lack of or few escape mutants was used for further experi-

ments. Colonies from the–aTC plate were grown overnight in LB broth with the appropriate

antibiotic at 30˚C. A 1:100 diluted overnight culture was (grown until 0.4 OD600) supple-

mented with 1.2% arabinose to induce the expression of λ-Red recombinase for 20 min. Cells

were then transformed with 1–1.5 μg of double stranded donor DNA for homologous recom-

bination. Donor DNA was created by PCR amplifying the flanking left arm (LA) and right

arm (RA) from E. coli and C. neteri genomic DNA. Each arm had flanking regions of 250 bp

homologous to the target DNA. The resulting fragment was assembled using Gibson assembly

(NEB). The assembled product was amplified to generate full length dsDNA for transforma-

tion. Colonies were screened for mutations by colony PCR with primers flanking the integra-

tion site and positive clones were Sanger sequenced (S3 Table). Positive colonies were grown

in LB broth and genomic DNA was isolated. For further validation, the flanking regions of

deletion or insertions were amplified, and the PCR product Sanger sequenced.

Insertion of mCherry and gentamicin gene into C. neteri genome

The plasmid pKDsgRNA-Ent-ompA was transformed into C. neteri and the gene editing pro-

cedure was repeated as described above. To generated the donor sequence for homologous
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recominbination the mCherry or gentamicin sequence (driven by the AmTr promoter) and

each homology arm were amplified and ligated. The assembled product was amplified to gen-

erate a full length dsDNA fragment for transformation.

Stability of insertion

The stability of the knockout ΔompA mutant and the knockin ompA::gentamicin and ompA::

mCherry strains was assessed in LB media. The ompA::mCherry and knockout ΔompA mutant

cultures were grown for 10 passages in LB broth. At each passage 40 μl of culture was trans-

ferred into 4ml fresh LB media. The ompA::gentamicin strain was grown with or without gen-

tamicin (50 μg/mL). Genomic DNA was isolated from the 0, 2, 4, 6, 8 and 10th subculture and

PCR that amplified across the integration site was performed.

Complementation of ompA mutant

Functional rescue of the ompA mutation was achieved by complementing the mutant with the

WT gene. The WT ompA gene was amplified from C. neteri genomic DNA and cloned into

the pRAM-mCherry vector [7] in front of the ompA promoter, thereby creating pRAM-

mCherry-Ent-OmpA plasmid. The Sanger sequence-verified plasmid was transformed into

the ΔompA mutant, thereby generating the ΔompA/ompA complement strain. Colonies that

acquired the plasmid were selected on LB plates containing kanamycin (50 μg/mL).

In vitro characterization of C. neteri strains

To assess the impact of the gene deletion on bacterial growth the WT, ΔompA mutant and

ΔompA/ompA complement were grown in LB broth and the density of bacteria (OD600) was

quantified by spectrophotometer. A 1:100 dilution of an overnight culture was inoculated into

a 5 ml LB broth in a 50 ml tube and incubated at 37˚C for 24 hrs. At 2, 4, 6, 8, 10, 12 and 24

hours growth was recorded at OD600. The biofilm assay was performed as described previously

[84, 85]. Briefly, biofilm formation by C. neteri strains was quantified on polystyrene microtiter

plates after 72 h of incubation at 37˚C by CV staining. Three independent experiments were

performed, and the data were represented as CV OD570 after normalizing by CFUs.

Mosquito infections

Mono-association in Ae. aegypti mosquitoes were done using gnotobiotic infection procedure

[7, 64], with slight modifications. Briefly, mosquito eggs were sterilized for 5 min in 70% etha-

nol, 3 min in 3% bleach+0.01% Coverage Plus NPD (Steris Corp.), 5 min in 70% ethanol then

rinsed three times in sterile water. Eggs were vacuumed hatched for 30–45 min and left over-

night at room temperature to hatch any remaining eggs. Exactly twenty L1 larvae were trans-

ferred to T175 flask containing 60 ml of sterile water and fed on alternative days with 60 μl

of fish food (1 μg/μl). Larvae were inoculated with 1x107/ml of either the WT C. neteri, the

ΔompA mutant or the ΔompA/ompA complement. The WT and ΔompA strains were trans-

formed with the pRAM-mCherry plasmid [7] that conferred resistance to kanamycin (but did

not possess a functional ompA gene). We also performed gnotobiotic infections with WT C.

neteri, knockin mutants all expressing mCherry from a plasmid. In order to confirm that eggs

were successfully sterilized, a T175 flask containing twenty L1 larvae were reared in identical

fashion to mono-associations, albeit without bacterial supplementation. These larvae did not

develop beyond the L2 stage, indicating our rearing process was free from contamination. To

quantify bacteria, L4 larvae were collected, washed three times with 1X PBS, and then homoge-

nized in 500 μl of 1X PBS and 50 μl of homogenate was plated on LB agar containing 50 μg/mL
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kanamycin. Similarly, adult mosquitoes were collected 3–4 days post emergence and bacterial

infection was quantified in the same manner as larvae. In order to assess the growth of the

mosquitoes, time to pupation and growth rate were observed. Time to pupation was deter-

mined by quantifying the number of pupae each day post hatching, while survival to adulthood

was calculated by quantifying the number of L1 larvae that reached adulthood. The experiment

was repeated three times.

Reinfection of knockin mutants to mosquitoes

Knockin mutants were administered to 3–4 days adult Ae. aegypti in a sugar meal. These mos-

quitoes were reared under normal laboratory condition. Mosquitoes were fed with 1x107 of

WT or the ΔompA::gentamicin strain for three days in 10% sucrose solution. After three days,

mosquitoes were either administered sugar supplemented with gentamicin (50 μg/mL) or

sugar without antibiotic. CFUs were determined at days 0, 2, 4, and 6 dpi by plating homoge-

nized mosquitoes (N = 10) on LB agar. Similarly, the ΔompA::mCherry and WT C. neteri were

fed to mosquitoes and midguts were dissected to assess colonization of bacteria in the tissue.

For visualization of bacteria, midguts were fixed in 1% paraformaldehyde (PFA) in 1X PBS

for 30 minutes and permeabilized with 0.01% Triton X-100 in 1X PBS for 20 min. The tissues

were stained with 1:250 diluted Phalloidin (Sigma) for 20 minutes and samples were washed

twice with 1X PBS for 10 minutes. Finally, midguts were then stained with 1:500 diluted DAPI

(Invitrogen) for 10 min. Samples were transferred to slides and mounted with ProLong™ Gold

Antifade (Invitrogen). The slides were observed using a Revolve FL microscope (ECHOLAB).

Supporting information

S1 Fig. Midgut infection of C. neteri and E. coli in mono-associations of Aedes mosquitoes.

Dissected gut tissue showing the conglomeration of bacterial cells when infected in mono-

association in Aedes mosquitoes with C. neteri (A-C). However, E. coli (D-F) and ΔompA (G-I)

could not be seen in the midgut. Images were captured from the dissected midguts of different

mosquitoes. Bacteria possessed the pRAM-mCherry plasmid which expressed the mCherry

fluorescent protein.
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S2 Fig. Phylogenetic analysis of WT and mutants. Multilocus sequence analysis according to

[78] indicates isolates to be members of the C. neteri species; the MLST genes were amplified

in the wild type isolate and two mutants as shown in the tree (red).
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S3 Fig. Average CFUs of mosquito infection. Average CFU recovered in adult mosquitoes

infected with C. neteri strains (WT, ΔompA mutant and ΔompA/ompA complement) reared in

a mono-association using a gnotobiotic rearing approach. The uninfected mosquitoes were

removed from the analysis. Box and whiskers show the 25th and 75th percentiles and the mini-

mum and maximum values, respectively.
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S4 Fig. Mono-association infection and biofilm assessment. L1 axenic larvae were infected

with WT C. neteri (A), ΔompA::mCherry (B) and ΔompA::gentamicin (C) and adults gut were

analysed for presence of bacterial conglomerations (biofilm formation). For each treatment,

15–18 midguts were screened. Scale bar 130 μm.
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lifespan. Memórias do Instituto Oswaldo Cruz. 2016; 111(9):577–87. https://doi.org/10.1590/0074-

02760160238 PMID: 27580348

CRISPR/Cas9 engineering of a gut bacterium

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007883 December 2, 2019 16 / 21

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007883.s005
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007883.s006
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007883.s007
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007883.s008
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007883.s009
https://doi.org/10.1111/j.1365-294X.2012.05759.x
https://doi.org/10.1111/j.1365-294X.2012.05759.x
http://www.ncbi.nlm.nih.gov/pubmed/22988916
https://doi.org/10.1371/journal.ppat.1002742
http://www.ncbi.nlm.nih.gov/pubmed/22693451
https://doi.org/10.1590/0074-02760160238
https://doi.org/10.1590/0074-02760160238
http://www.ncbi.nlm.nih.gov/pubmed/27580348
https://doi.org/10.1371/journal.pntd.0007883


4. Muturi EJ, Kim C-H, Bara J, Bach EM, Siddappaji MH. Culex pipiens and Culex restuans mosquitoes

harbor distinct microbiota dominated by few bacterial taxa. Parasites & Vectors. 2016; 9(1):18. https://

doi.org/10.1186/s13071-016-1299-6 PMID: 26762514

5. Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y, et al. Native microbiome

impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proceedings of the National

Academy of Sciences of the United States of America. 2014; 111(34):12498–503. https://doi.org/10.

1073/pnas.1408888111 PMID: 25114252

6. Coon KL, Brown MR, Strand MR. Mosquitoes host communities of bacteria that are essential for devel-

opment but vary greatly between local habitats. Molecular Ecology. 2016; 25(22):5806–26. https://doi.

org/10.1111/mec.13877 PMID: 27718295

7. Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldaña MA, et al. Microbiome interaction

networks and community structure from laboratory-reared and field-collected Aedes aegypti, Aedes

albopictus, and Culex quinquefasciatus mosquito vectors. Frontiers in Microbiology. 2018; 9:715.

8. Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the

malaria mosquito Anopheles gambiae in Kenya. PLoS ONE. 2011; 6(9):e24767. https://doi.org/10.

1371/journal.pone.0024767 PMID: 21957459

9. Weiss BL, Aksoy S. Microbiome influences on insect host vector competence. Trends in Parasitology.

2011; 27(11):514–22. https://doi.org/10.1016/j.pt.2011.05.001 PMID: 21697014

10. Saldaña MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. Memórias do Instituto
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