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Pau Bosch-Nicolau3, Marı́a Silvina Lo PrestiID
1, Israel Molina3, Clara Isabel González4,
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Abstract

Host genetic factors have been suggested to play an important role in the susceptibility to

Chagas disease. Given the influence of interleukin 18 (IL-18) in the development of the dis-

ease, in the present study, we analyzed three IL18 genetic variants (rs2043055, rs1946518,

rs360719) regarding the predisposition to Trypanosoma cruzi infection and the development

of chronic Chagas cardiomyopathy (CCC), in different Latin America populations. Genetic

data of 3,608 patients from Colombia, Bolivia, Argentina, and Brazil were meta-analyzed to

validate previous findings with increased statistical power. Seropositive and seronegative

individuals were compared for T. cruzi infection susceptibility. In the Colombian cohort, the

allelic frequencies of the three variants showed a significant association, with adjustment for

sex and age, and also after applying multiple testing adjustments. Among the Colombian

and Argentinean cohorts, rs360719 showed a significant genetic effect in a fixed-effects

meta-analysis after a Bonferroni correction (OR: 0.76, CI: 0.66–0.89, P = 0.001). For CCC,

the rs2043055 showed an association with protection from cardiomyopathy in the Colom-

bian cohort (OR: 0.79, CI: 0.64–0.99, P = 0.037), with adjustment for sex and age, and after

applying multiple testing adjustments. The meta-analysis of the CCC vs. asymptomatic

patients from the four cohorts showed no evidence of association. In conclusion, our results

validated the association found previously in the Colombian cohort suggesting that IL18

rs360719 plays an important role in the susceptibility to T. cruzi infection and no evidence of

association was found between the IL18 genetic variants and CCC in the Latin American

population studied.

Author summary

Chagas disease is a parasitic infection caused by the protozoon Trypanosoma cruzi, is the

third most common parasitic infection worldwide, the most important in Latin America
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and is an emerging disease in non-endemic countries. Actually, millions of people live in

areas of exposure and are at risk of contracting the infection. Most of the infected individ-

uals remain asymptomatic for all of their lives, but around 30% of the chronically infected

individuals develop irreversible cardiac damage and 10% digestive lesions. Host genetic

factors have been suggested to play an important role in the susceptibility or resistance to

Chagas disease. In this work, we investigated variants of the IL18 gene in different Latin

America populations. This gene encoded the interleukin-18, which is involved in the

immune response to intracellular pathogens like T. cruzi. Our results showed that an IL18
gene variant plays an important role in the protection against T. cruzi infection.

Introduction

Chagas disease is an intracellular and hematic disease caused by the parasite Trypanosoma
cruzi. Around 6 to 7 million people are estimated to be infected worldwide, most of them

being in the poorest rural and urban areas of Latin America, where is endemic [1, 2]. Nowa-

days, large-scale migrations to other countries have turned Chagas disease into a global health

problem [1].

Chagas disease clinical course includes an acute and a chronic phase. The acute phase is

characterized by an increase of parasitic load in blood. In this stage, the parasitic load is con-

trolled by the activation of the innate immune response by Th1 pro-inflammatory cytokines

such as tumor necrosis factor α (TNF) and interferon γ (IFN-G) [3]. IFN-G activates phago-

cytic cells to destroy intracellular parasites by inducing TNF and nitric oxide (NO) production

[4]. After 8–12 weeks from the infection, individuals evolve into the chronic phase of the dis-

ease, in which most of them remain asymptomatic for the rest of their lives. However, around

30–40% of chronically infected patients can develop cardiomyopathy or/and megaviscera. The

cardiac involvement is the most frequent manifestation of the disease that occurs in 14–45% of

chronically infected patients and affects mainly the conduction system and myocardium [5].

Host genetic factors have been suggested to play an important role in the susceptibility to

Chagas disease. [6–9]. Polymorphism in genes encoding cytokines may influence the level of

cytokines production and, consequently, cause different immunological responses [10, 11].

Interleukin-18 (IL-18), a pro-inflammatory cytokine produced mainly by macrophages, has

been proposed to influence the development of Chagas disease. This cytokine is involved in

both innate and adaptive immune response and induces IFN-G production by T cells and NK

cells, promoting the Th1 response [12]. Previous genetic studies performed in a Brazilian and

Colombian cohort found associations between variants of IL18 gene and the predisposition to

T. cruzi infection and chronic Chagas cardiomyopathy [13, 14].

Given the important role played by IL-18 in Chagas disease, in the present study we ana-

lyzed the association of three IL18 genetic variants with the predisposition to T. cruzi infection

and the development of Chagas cardiomyopathy in different Latin America populations.

Materials and methods

Study design and patient population

A candidate-gene case-control study was performed in Colombian, Bolivian and Argentinian

cohorts in order to replicate previous findings [13,14]. Additionally, a meta-analysis was per-

formed combining these cohorts.
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A total of 3,608 individuals from Latin American countries (Colombia, Bolivia, Argentina

and Brazil) were studied. In all cohorts, patients were classified as seropositive for T. cruzi anti-

gens (n = 2,890) and seronegative (n = 718) based on results of at least 2 of 3 independent tests.

Based on clinical evaluation, an electrocardiogram and echocardiogram were recorded to

detect any conduction and structural alterations. Subsequently, the seropositive patients who

presented cardiac alterations were classified as chronic Chagas cardiomyopathy (CCC,

n = 1,707) and asymptomatic (ASY, n = 1,183). The sex distribution for the entire Latin Amer-

ican population studied was 61.4% female and 38.6% male.

Colombian cohort. A total of 406 Colombian individuals from the same population as

the study by Leon Rodriguez et al. (2016) [14] were recruited by the health care team from the

Industrial University of Santander and Cardiovascular Foundation from Colombia. In order

to increase the sample size, these individuals were included with the previously published

Colombian cohort, making a total of 1,577 individuals. From this, 937 were classified as

seropositive for T. cruzi antigens and 640 were classified as seronegative (according to the sero-

logical tests: recombinant antigen ELISA and commercial indirect hemagglutination test).

Based on complementary tests and clinical findings, seropositive patients were classified as

CCC = 576 and ASY = 361. The mean age of participants was 45.55 ± 17.19 years for seronega-

tive individuals, CCC = 61.44 ± 12.82 and ASY = 51.90 ± 14.18. The sex distribution was 58%

female and 42% male.

Bolivian cohort. A total of 630 Bolivian individuals residents in Barcelona, Spain

were recruited from the Infectious Diseases Department of the Vall d’Hebron University Hos-

pital. In this cohort, only seropositive patients were classified as CCC = 100 and ASY = 530

based on complementary tests and clinical findings. The mean age of the participants was

CCC = 50.71 ± 9.41 and ASY = 46.93 ± 9.49. The sex distribution was 69% female and 31%

male.

Argentinian cohort. A total of 350 Argentinian individuals from an endemic region for

Chagas disease (Cordoba province) were included in this study. The study subjects were

recruited from the National Hospital of Clinics and Sucre Clinic, Cordoba city. The population

in this region of Argentina is a homogeneous mixture, with no specific concentration of any

ethnicity. All participants underwent a serological diagnosis for T. cruzi infection through the

enzyme-linked immunosorbent assay (ELISA) that uses recombinant antigen and a commer-

cial indirect hemagglutination test. According to the results of these tests, 272 individuals were

classified as seropositive for T. cruzi antigens and 78 were classified as seronegative. Based on

the results of complementary tests and clinical findings, seropositive patients were classified as

CCC = 182 and ASY = 90. The mean age of participants was 53.82 ± 16.53 years for seronega-

tive individuals, CCC = 60.14 ± 10.16 and ASY = 49.30 ± 13.65. The sex distribution was 71%

female and 29% male.

Brazilian cohort [13]. A total of 1,051 Brazilian seropositive patients for antibodies

against T. cruzi were included in the meta-analysis. From this, 849 individuals were classified

as CCC and 202 ASY. The sex distribution was 52% female and 48% male.

Ethics statement

The study was accepted by the Ethics Committees from the Industrial University of Santander

and Cardiovascular Foundation, Colombia; the Vall d’Hebron University Hospital, Barcelona,

Spain and the National Hospital of Clinics, National University of Cordoba, Argentina. Writ-

ten informed consent was obtained from all subjects prior to participation. The research proto-

cols followed the principles of the Declaration of Helsinki and informed consent was obtained

from all individual participants included in the study.
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Selected polymorphisms and genotyping

The gene encoding IL-18 is located on chromosome 11q22.2-q22.3 [15] and consists of six

exons and five introns [16] (S1A Fig). Three SNPs previously studied in Chagas disease were

selected: rs2043055, rs1946518 and rs360719 for this study [13, 14]. Linkage disequilibrium

(LD, R2 and D’) was estimated using an expectation–maximization algorithm implemented in

Haploview V4.2 [17] for the studied cohorts: Colombian, Bolivian, Argentinian, and from the

American sub-populations genotype data from the 1000 Genomes Project phase III (http://

www.1000genomes.org) [18].

Genomic DNA from blood samples was isolated following standard procedures and the

genotyping was performed using TaqMan assays (Applied Biosystems, Foster City, California,

USA) on a real-time PCR system (7900HT Fast Real-Time PCR System), SNPs were deter-

mined by TaqMan 5´ allelic discrimination assay method performed by Applied Biosystems.

Statistical analysis

For the candidate gene study, the statistical analyses were performed with the software Plink

V1.9 (http://zzz.bwh.harvard.edu/plink/plink2.shtml) [19]. Deviance from Hardy-Weinberg

equilibrium was determined at the 1% significance level in all groups of individuals. Individu-

als that have not achieved an SNP completion rate of 95% have been filtered out. To test for

possible allelic, logistic regression model and Fisher’s exact test were assessed in seronegative

vs. seropositive individuals and asymptomatic vs. chronic Chagas cardiomyopathy individuals.

The Benjamini & Hochberg step-up false discovery rate (FDR) correction was used in all anal-

yses to control for multiple testing. The covariates sex and age were adjusted in logistic regres-

sion models. P-values lower than 0.05 were considered as statistically significant.

To assess the consistency of effects across the cohorts, a meta-analysis was performed with

METASOFT (http://genetics.cs.ucla.edu/meta/) based on inverse-variance-weighted effect

size. Heterogeneity across studies was assessed using Cochran’s Q statistic (Q test P< 0.05)

and I2 heterogeneity index [20]. A fixed-effects model was applied for those SNPs without evi-

dence of heterogeneity (Cochran’s Q test P> 0.05), and a random-effects model was applied

for SNPs displaying heterogeneity of effects between studies (Cochran’s Q test P� 0.05). The

significance threshold for the meta-analyses was estimated based on the Bonferroni correction

(0.05/3 = 0.017) [21].

The statistical power of the studies was estimated with the Power Calculator for Genetic

Studies 2006 (CaTS) software (S1 Table) (http://www.sph.umich.edu/csg/abecasis/CaTS/)

[22].

Evaluation of functionality of the three SNPs analyzed was performed with the online soft-

ware HaploReg v4.1 [23] (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php)

based on empirical data from the ENCODE project (http://www.genome.gov/encode/). Specif-

ically, we focused our attention on experiments performed on blood and T cells lines in the

American population. For regulatory features, Ensembl Browser (https://www.ensembl.org)

[18] and ReMap 2018 v1.2. (http://tagc.univ-mrs.fr/remap/) [24] were used.

Results

The three IL18 SNPs were in Hardy-Weinberg equilibrium in all the analyzed cohorts (P>

0.01). The genotyping success rate was over 90% and the allele frequencies in all cases were

similar to those described for the Americans sub-populations of the 1000 Genomes Project

phase III [18] (S1 Table). The SNPs were in moderate pairwise linkage disequilibrium in the

studied cohorts and in the American sub-populations from the 1000 Genomes Project phase

III [18] (S1B and S1C Fig).
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T. cruzi infection susceptibility

The allelic and genotypic frequencies of seronegative and seropositive individuals from

Colombia were compared in Table 1. The allelic frequencies of the three SNPs were statisti-

cally significant even after multiple testing correction. The frequency of the minor allele, G, in

rs2043055 was significantly reduced in the seronegative compared to seropositive individuals

suggesting an association with higher infection risk, while the frequencies of rs1946518�T and

rs360719�G alleles were significantly increased in seronegative compared to the seropositive

individuals, suggesting an association with the protection against the infection by T. cruzi.
The allelic and genotypic frequencies of seronegative and seropositive individuals from

Argentina are shown in Table 2. No associations between IL18 genetic variants were found.

However, the rs2043055 remained borderline significant for protection against infection by T.

cruzi [P = 0.061, odds ratio (OR) = 0.71, 95% confidence interval (CI) = 0.49–1.02].

In addition, a meta-analysis combining data from Colombian and Argentinean cohorts was

performed (Table 3). The IL18 rs360719 showed consistent effects among the two meta-ana-

lyzed populations with a statistically significant association (CI: 0.66–0.89, P = 0.001, under a

fixed-effects meta-analysis) with an OR for the G allele of 0.76, which was statistically signifi-

cant after a Bonferroni correction (P< 0.017). For this comparison, the sample size attained a

statistical power of over 80% for this OR (S1B1 Table). In both cohorts, the allele effects size

were in concordance and this result indicates an association to the protection against T. cruzi
infection in these cohorts.

Table 1. Colombian cohort. Genotype and allele distribution for IL18 variants in seronegative and seropositive individuals.

SNP A1| A2 Genotype. N (%) MAF Allele test

1|1 1|2 2|2 OR (L95-U95) P LogstReg P FDR_BH

rs2043055 Seronegative (631) G|A 82 (13.00) 300 (47.54) 249 (39.46) 36.77 1.30 (1.10–1.53) 0.002 0.004

Seropositive (927) 164 (17.69) 450 (48.54) 313 (33.76) 41.96

rs1946518 Seronegative (631) T|G 163 (25.83) 334 (52.93) 134 (21.24) 52.3 0.79 (0.67–0.92) 0.003 0.004

Seropositive (927) 214 (23.09) 448 (48.33) 265 (28.59) 47.25

rs360719 Seronegative (631) G|A 103 (16.32) 299 (47.39) 229 (36.29) 40.02 0.75 (0.63–0.89) 0.001 0.004

Seropositive (927) 107 (11.54) 426 (45.95) 394 (42.50) 34.52

1: minor allele | 2: major allele; alleles are showed in forward strand. MAF: minor allele frequency. OR: odds ratios, L95-U95: confidence intervals of 95% L: lower limit;

U: upper limit. Values adjusted by sex and age. Significant P value is shown in bold.

https://doi.org/10.1371/journal.pntd.0007859.t001

Table 2. Argentinian cohort. Genotype and allele distribution for IL18 variants in seronegative and seropositive individuals.

SNP A1| A2 Genotype. N (%) MAF Allele test

1|1 1|2 2|2 OR (L95-U95) P LogstReg

rs2043055 Seronegative (77) G|A 20 (25.97) 29 (37.66) 28 (36.36) 44.81 0.71 (0.49–1.02) 0.061

Seropositive (270) 33 (12.23) 126 (46.67) 111 (41.11) 35.56

rs1946518 Seronegative (77) T|G 19 (24.67) 35 (45.46) 23 (29.87) 47.4 1.03 (0.71–1.49) 0.883

Seropositive (270) 54 (20) 151 (55.92) 65 (24.08) 47.96

rs360719 Seronegative (77) G|A 11 (14.28) 33 (42.85) 33 (42.85) 35.71 0.87 (0.60–1.31) 0.552

Seropositive (270) 25 (9.26) 128 (47.40) 117 (43.33) 32.96

1: minor allele | 2: major allele; alleles are showed in forward strand. MAF: minor allele frequency. OR: odds ratios, L95-U95: confidence intervals of 95% L: lower limit;

U: upper limit. Values adjusted by sex and age.

https://doi.org/10.1371/journal.pntd.0007859.t002
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Chronic Chagas cardiomyopathy susceptibility

The allelic and genotypic frequencies of chronic Chagas cardiomyopathy and asymptomatic

patients from Colombia were compared in Table 4. The allelic frequencies of IL18 rs2043055

was statistically significant even after multiple testing correction (P = 0.037, OR = 0.79,

CI = 0.64–0.99). The frequency of the of the rs2043055� G allele was significantly incremented

in asymptomatic patients, suggesting an association with the protection against the develop-

ment of Chagas cardiomyopathy. However, no significant differences in allelic frequencies

were observed for rs1946518 and rs360719.

The SNP IL18 rs2043055 was studied in 1,051 seropositive Brazilian patients (CCC = 849

and ASY = 202) [13]. The frequency of the G allele, in rs2043055, was increased in chronic Cha-

gas cardiomyopathy patients compared to asymptomatic in the Brazilian, Bolivian and Argen-

tinian cohorts, but no significant differences were found in these cohorts. Nevertheless, in the

Bolivian cohort (Table 5), a trend of association can be observed for this SNP (P = 0.088,

OR = 1.39, CI = 0.95–2.02). In the Argentinian cohort (Table 6), the frequency of the T allele,

in IL18 rs1946518, was increased in asymptomatic compared to chronic Chagas cardiomyopa-

thy patients, and remained borderline significant for suggesting an association with the protec-

tion against the development of Chagas cardiomyopathy (P = 0.078, OR = 0.67, CI = 0.44–1.04).

Further, a meta-analysis combining these results were performed (Table 7). The results of

the available SNPs showed no significant associations.

In silico functional characterization of IL18 gene variants

We further explored the functional annotations of the three variants studied in this work using

HaploReg v4.1. The annotation indicated that the SNPs of IL18 are located in a regulatory

Table 3. Meta-analysis of IL18 variants, Argentinian and Colombian cohorts for T. cruzi infection susceptibility.

Colombian cohort Argentinian cohort Meta-analysis

SNP OR (L95-U95) P OR (L95-U95) P OR (L95-U95) P

rs2043055 1.30 (1.10–1.53) 0.002 0.71 (0.49–1.02) 0.061 1.17 (1.01–1.36) 0.035

rs1946518 0.79 (0.67–0.92) 0.003 1.03 (0.71–1.49) 0.883 0.82 (0.71–0.94) 0.006

rs360719 0.75 (0.63–0.89) 0.001 0.87 (0.60–1.31) 0.552 0.76 (0.66–0.89) 0.001

Total number of individuals: seropositive n = 1,209 and seronegative n = 718

OR: odds ratios, L95-U95: confidence intervals of 95% L: lower limit; U: upper limit. Marked in bold the P value� than the individual cohorts. Significant association

based on the Bonferroni correction P< 0.017.

https://doi.org/10.1371/journal.pntd.0007859.t003

Table 4. Colombian cohort. Genotype and allele distribution for IL18 variants in asymptomatic and chronic Chagas cardiomyopathy (CCC) individuals.

SNP A1| A2 Genotype. N (%) MAF Allele test

1|1 1|2 2|2 OR (L95-U95) P LogstReg P FDR_BH

rs2043055 Asymptomatic (358) G|A 83 (23.18) 159 (44.41) 116 (32.40) 45.39 0.79 (0.64–0.99) 0.037 0.046

CCC (569) 81 (14.24) 291 (51.14) 197 (34.62) 39.81

rs1946518 Asymptomatic (358) T|G 82 (22.91) 160 (44.69) 116 (32.40) 45.25 1.14 (0.92–1.41) 0.225 0.229

CCC (569) 132 (23.20) 288 (50.62) 149 (26.19) 48.51

rs360719 Asymptomatic (358) G|A 45 (12.57) 155 (43.30) 158 (44.13) 34.22 0.99 (0.79–1.26) 0.994 0.765

CCC (569) 62 (10.90) 271 (47.63) 236 (41.48) 34.71

1: minor allele | 2: major allele; alleles are showed in forward strand. MAF: minor allele frequency. OR: odds ratios, L95-U95: confidence intervals of 95% L: lower limit;

U: upper limit. Values adjusted by sex and age. Significant P value is shown in bold.

https://doi.org/10.1371/journal.pntd.0007859.t004
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region of the genome (S2 Table). The annotation based on the epigenomic information of

rs2043055 indicates that this SNP maps in an enhancer region, which is correlated with active

gene expression in primary mononuclear cells and in T cells from peripheral blood. The

rs1946518 and rs360719 variants mapped in a region enriched in histone marks: H3K4me3,

H3K9ac, a hallmark of active promoter region, and H3K27ac in enhancer region in mononu-

clear cells and T cells (S2A Table). Furthermore, according to ReMap 2018 v1.2 these three

SNPs mapped in regulatory regions of the human genome and it has been described as tran-

scription factors (S2B Table).

Discussion

Genetic factors and immunologic response may determine the susceptibility against the infec-

tion and development of Chagas disease [6–9]. In the present study, three IL18 genetic variants

were analyzed in four Latin American populations, being the largest genetic study conducted

to date in Chagas disease. Concerning genetic control of the infection, our results evidenced

the implication of the IL18 rs360719 polymorphism, in our populations. However, when com-

paring cardiomyopathy and asymptomatic patients, no significant associations were detected.

Addressing the question of genetic susceptibility to T. cruzi infection through comparison

of seropositive with seronegative individuals is not an easy task. The recruitment of an ade-

quate number of subjects from endemic areas exposed to T. cruzi is often challenging, and that

is the reason for including only two cohorts in this comparison. The previous study in a

Colombian cohort was the first to report an association for rs2043055, rs1946518 and

rs360719 with T. cruzi infection and suggested that this association was mainly driven by the

Table 5. Bolivian cohort. Genotype and allele distribution for IL18 variants in asymptomatic and chronic Chagas cardiomyopathy (CCC) individuals.

SNP A1| A2 Genotype. N (%) MAF Allele test

1|1 1|2 2|2 OR (L95-U95) P LogstReg

rs2043055 Asymptomatic (528) G|A 72 (13.64) 260 (49.24) 196 (37.12) 38.26 1.39 (0.95–2.02) 0.088

CCC (100) 16 (16) 50 (50) 34 (34) 41

rs1946518 Asymptomatic (528) G|T 101 (19.13) 268 (50.76) 159 (30.11) 44.51 1.24 (0.85–1.80) 0.260

CCC (100) 19 (19) 55 (55) 26 (26) 46.5

rs360719 Asymptomatic (528) G|A 54 (10.23) 237 (44.89) 237 (44.89) 32.67 0.98 (0.66–1.45) 0.934

CCC (100) 10 (10) 50 (50) 40 (40) 35

1: minor allele | 2: major allele; alleles are showed in forward strand. MAF: minor allele frequency. OR: odds ratios, L95-U95: confidence intervals of 95% L: lower limit;

U: upper limit. Values adjusted by sex and age.

https://doi.org/10.1371/journal.pntd.0007859.t005

Table 6. Argentinian cohort. Genotype and allele distribution for IL18 variants in asymptomatic and chronic Chagas cardiomyopathy (CCC) individuals.

SNP A1| A2 Genotype. N (%) MAF Allele test

1|1 1|2 2|2 OR (L95-U95) P LogstReg

rs2043055 Asymptomatic (89) G|A 9 (10.11) 40 (44.94) 40 (44.94) 32.58 1.26 (0.82–1.95) 0.291

CCC (181) 24 (13.26) 86 (47.51) 71 (39.22) 37.02

rs1946518 Asymptomatic (89) T|G 21 (23.59) 51 (57.30) 17 (19.10) 52.25 0.67 (0.44–1.04) 0.078

CCC (181) 33 (18.23) 100 (55.25) 48 (26.51) 45.86

rs360719 Asymptomatic (89) G|A 8 (8.99) 47 (52.81) 34 (38.20) 35.39 0.81 (0.52–1.27) 0.364

CCC (181) 17 (9.32) 81 (44.75) 83 (45.86) 31.77

1: minor allele | 2: major allele; alleles are showed in forward strand. MAF: minor allele frequency. OR: odds ratios, L95-U95: confidence intervals of 95% L: lower limit;

U: upper limit. Values adjusted by sex and age.

https://doi.org/10.1371/journal.pntd.0007859.t006
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polymorphism rs360719 [14]. After the enlargement of this cohort, the association remained,

showing consistent results in a well-powered cohort. Replication of these variants was per-

formed in an Argentinian cohort and only rs2043055, showed a borderline genetic association

but in the opposite direction compared with the Colombian cohort. These differences could be

due to the complex genetic structure of Latin American individuals, reflected by the recent

admixture among Native American, European, and West African source populations [25].

Also, the lack of replication may occur if the assessed polymorphism is not the causal variant

but is rather in LD with it, i.e., variants correlated with each other more often than expected by

chance. LD patterns depend on the genetic background of the founder population and popula-

tion history [26]. The rs360719 in the Argentinian cohort showed no association with T. cruzi
infection, which could be a consequence of an insufficient statistical power (S1A1 Table).

Interestingly, the meta-analysis showed that the variant IL18 rs360719 presented a consistent

effect among the two cohorts, indicating protection against T. cruzi infection. The SNP

rs360719 is located in the promoter region of the IL18 gene. The functional annotation of this

SNP with empirical data from the ENCODE project revealed that is located in histone marks

in primary mononuclear cells and T helper naive cells from peripheral blood, and has been

described as transcription factor (S2 Table). These modifications are critically involved in the

regulation of gene expression [27]. Also, it has been described that IL18 rs360719 polymor-

phism leads to loss of the octamer (OCT)-1 transcription factor binding site. OCT-1 is known

to be a ubiquitously expressed factor involved in the regulation of certain cytokines, like IL-18

[28]. Thus, the rs360719 would be associated with IL-18 expression in peripheral blood mono-

nuclear cells and may play a role in the susceptibility or resistance to T. cruzi infection.

Chronic chagasic cardiomyopathy, the most frequent clinical outcome of Chagas disease,

has been associated with cytokine enriched heart tissue inflammation [29]. Furthermore, local

expression of IL-18 in chronic chagasic cardiomyopathy heart tissue has been described and

would be associated with mononuclear inflammatory infiltrates, cardiomyocyte destruction

and fibrosis [30]. In our study, we analyzed IL18 gene variants in four Latin American popula-

tions with chronic Chagas cardiomyopathy. The IL18 genetic variant, rs2043055, studied in

the Brazilian cohort, showed nominal significant differences in the genotypic frequencies

among moderate and severe chagasic cardiomyopathy patients [13]. When comparing chronic

chagasic cardiomyopathy with asymptomatic patients, this variant showed a significant associ-

ation in the Colombian cohort. However, these results were not validated in the Bolivian and

Argentinian cohorts. These discrepancies in the results could be due to the genetic heterogene-

ity among the study cohorts [25]. The impact of European colonization and slave trade from

western Africa has altered the genomes of Native Americans in multiple and dynamic ways.

Approximately, 9–9.6 generations have passed since admixture and ancestry-enriched SNPs in

Latin American populations may have a substantial effect on health and disease related pheno-

types [31, 32]. For instance, Norris et al. reported SNPs with excess African or European

Table 7. Meta-analysis of IL18 variants, Latin American cohorts for Chagas cardiomyopathy susceptibility.

Colombian cohort Bolivian cohort Argentinian cohort Brazilian cohort Meta-analysis

SNP OR (L95-U95) P OR (L95-U95) P OR (L95-U95) P OR (L95-U95) P OR (L95-U95) P

rs2043055 0.79 (0.64–0.99) 0.037 1.39 (0.95–2.02) 0.088 1.26 (0.82–1.95) 0.291 1.06 (0.85–1.32) 0.598 1.05 (0.82–1.35) 0.259

rs1946518 1.14 (0.92–1.41) 0.225 1.24 (0.85–1.80) 0.260 0.67 (0.44–1.04) 0.078 - - 1.07 (0.90–1.26) 0.426

rs360719 0.99 (0.79–1.26) 0.994 0.98 (0.66–1.45) 0.934 0.81 (0.52–1.27) 0.364 - - 0.95 (0.79–1.15) 0.629

Total number of individuals: rs2043055 CCC n = 1,707 and asymptomatic n = 1,183; rs1946518 and rs360719: CCC n = 858 and asymptomatic n = 981

OR: odds ratios, L95-U95: confidence intervals of 95% L: lower limit; U: upper limit.

https://doi.org/10.1371/journal.pntd.0007859.t007
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ancestry, which are associated with ancestry-specific gene expression patterns and play crucial

roles in the immune system and infectious disease responses [33]. In addition, an interesting

report by Lima-Costa et al. showed that the prevalence of T. cruzi infection is strongly and

independently associated with higher levels of African and Native American ancestry in a Bra-

zilian population [34]. This heterogeneity in ancestry proportions across geographic regions,

and also within countries themselves, are challenging in association studies in order to find

generalizable results across populations [35–37]. All this, suggests that a fine-scale genomics

perspective might represent a powerful tool to understand the role of genetics in this neglected

disease diagnosis and prognosis.

As was mentioned, IL-18 plays an important role in the regulation of IFN-G production

and development of Th1 response. This interleukin is produced by a wide variety of cells,

including dendritic cells, macrophages, keratinocytes, intestinal epithelial cells, and osteo-

blasts, suggesting a key pathophysiological role in health and disease [12]. Several studies have

highlighted the implication of IL-18 in the acute and chronic phase of Chagas disease [38–41].

Considering that infectious diseases exert significant selective genetic pressure, it has been pos-

tulated two genetic mechanisms to explain the pathogenesis of Chagas disease [8]. First, patho-
gen resistance genes (PRG) would be involved in inhibits infection by directly reducing

pathogen burden and secondly, disease tolerance genes (DTG) will operate to minimize tissue

damaging effects of the pathogen [42–44]. Consequently, polymorphisms in PRG and DTG

will be associated with differential disease progression. One of the most relevant disease toler-

ance genes identified was related to directly or indirectly inhibit IFN-G production or Th1 dif-

ferentiation [8], and therefore, IL-18 could be implicated in this regulation.

In conclusion, our results validated the previous work suggesting that IL18 rs360719 plays

an important role in the susceptibility to T. cruzi infection [14]. On the other hand, no evi-

dence of association was found between the IL18 genetic variants and chronic Chagas cardio-

myopathy in the Latin American population. Even though, meta-analyses offers a powerful

approach to identify genetic variants that influence susceptibility of common diseases [45, 46],

in the context of Chagas disease is necessary to contemplate the challenges of studying such an

heterogeneous populations like Latin Americans with recent admixture, where fine-scale

genomic assessments may be necessary [25]. Finally, further studies are needed to reach more

conclusive results concerning the genetic basis of Chagas disease.
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