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Abstract

In this review, we summarize the current knowledge concerning the eukaryotic protozoan
parasite Leishmania tarentolae, with a main focus on its potential for biotechnological appli-
cations. We will also discuss the genus, subgenus, and species-level classification of this
parasite, its life cycle and geographical distribution, and similarities and differences to
human-pathogenic species, as these aspects are relevant for the evaluation of biosafety
aspects of L. tarentolae as host for recombinant DNA/protein applications. Studies indicate
that strain LEM-125 but not strain TARII/UC of L. tarentolae might also be capable of infect-
ing mammals, at least transiently. This could raise the question of whether the current bio-
safety level of this strain should be reevaluated. In addition, we will summarize the current
state of biotechnological research involving L. tarentolae and explain why this eukaryotic
parasite is an advantageous and promising human recombinant protein expression host.
This summary includes overall biotechnological applications, insights into its protein expres-
sion machinery (especially on glycoprotein and antibody fragment expression), available
expression vectors, cell culture conditions, and its potential as an immunotherapy agent for
human leishmaniasis treatment. Furthermore, we will highlight useful online tools and,
finally, discuss possible future applications such as the humanization of the glycosylation
profile of L. tarentolae or the expression of mammalian recombinant proteins in amastigote-
like cells of this species or in amastigotes of avirulent human-pathogenic Leishmania
species.

Author summary

Recent studies indicate that the classification of Leishmania species into one of the four
currently recognized subgenera (L. [Leishmanial, L. [Sauroleishmania], L. [ Viannia], and
L. [Mundinial), or even the related genera, can be a challenging task. A monotonous
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morphology of this group is coupled with a high genetic variability in nature, a multitude
of clinical manifestations, and a propensity for rapid evolution in culture. As some geo-
graphic regions have not been adequately sampled, the known biodiversity of this group
may be an underestimate of its true dimensions. Therefore, the taxonomic classification
of the genus Leishmania and its close relatives is not definitively settled. In this review, we
will focus on biotechnological applications of L. tarentolae, a protozoan parasite of geckos.
As this species belongs to the genus Leishmania and subgenus L. (Sauroleishmania), and
because many Leishmania are human-pathogenic, the taxonomic status and phylogenetic
position of L. tarentolae are relevant for biosafety and also discussed herein. The subgenus
of L. (Sauroleishmania) mostly contains species that are infectious to reptiles, but some
species and strains, such as L. adleri and L. tarentolae strain LEM-125, were also shown to
be (transiently) infectious to humans. However, most strains of L. tarentolae are non-
pathogenic to humans and can be easily handled as laboratory culture. Therefore, this spe-
cies has been a successful model system for representing other Leishmania in basic
research. It has also been of great interest for the scientific community, as it represents a
promising host for the expression of human recombinant proteins (including glycopro-
teins and its future application for the expression of full-length antibodies) and immuno-
therapy agent for human leishmaniasis treatment. These two topics will also be discussed.

Introduction

L. tarentolae is a eukaryotic protozoan parasite commonly regarded as not pathogenic to
humans. It belongs to the genus Leishmania, which currently includes more than 50 species,
and to the subgenus Sauroleishmania [1]. The fact that the 21 sauroleishmanial species form a
monophyletic group that belongs to the genus Leishmania is firmly established. However,
some members of the clade show phenotypic peculiarities indicating that the group is not
homogenous. For example, L. adleri, unlike most sauroleishmanias, can infect mammals [2],
and the two main L. tarentolae strains, TAR and LEM, show different behavior in cell culture
and can be transiently infectious [3, 4]. Out of all sauroleishmanias, L. tarentolae is the best-
studied saurian-pathogenic species today [5]. Initially, the parasite was primarily used as a
model species to study kinetoplastid DNA (kDNA) organization, RNA editing [6-8], and gene
amplification [9]. Recombinant protein production is another important application area. As
most strains of this species are not pathogenic to humans, it is relatively easy and cost effective
to cultivate, and it offers robust recombinant protein yields (0.1-30 mg/L) [10, 11]. Addition-
ally, the expression system can easily be expanded to an industrial production scale. Further-
more, L. tarentolae is able to express functional mammalian antibody fragments and human
glycoproteins [12-14], which is a common pitfall of many other heterologous expression sys-
tems (such as Escherichia coli or yeast) because of the lack of correct posttranslational protein
modifications (PTMs), protein folding difficulties, and the occurrence of inclusion bodies. In
the case of two human glycoproteins, L. tarentolae showed high PTM homogeneity to the
human counterpart with complex biantennary N-glycans (erythropoietin [EPO] [15]) and ini-
tial O-glycans (soluble amyloid precursor protein alpha [sAPPalpha] [16]). In the case of the
N-glycans, only terminal sialic acids (N-acetylneuraminic acids) were missing. In addition, the
N-glycosylation pattern was shown to be exceptionally homogenous. Multisubunit proteins,
like the human heterotrimeric glycoprotein laminin (LM)-322, were also functionally
expressed in L. tarentolae [17]. Because full-length antibodies are multisubunit proteins and
are also glycosylated, it is likely that they will also be functionally expressed in L. tarentolae.
Another growing and promising application area of L. tarentolae is its use as a prophylactic

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007424  July 25,2019 2/29


https://doi.org/10.1371/journal.pntd.0007424

®PLOS |

NEGLECTED

TROPICAL DISEASES

vaccine as well as a therapeutic approach to treat human leishmaniasis. For example, immuni-
zation with recombinant L. tarentolae was shown to protect BALB/c mice against L. infantum
infection. [18].

In this review, we will discuss the taxonomy and phylogeny of the genus Leishmania,
including the position of sauroleishmanial species. We will further review the life cycle of L.
tarentolae and its geographical distribution and highlight some differences and similarities to
human-pathogenic Leishmania species. The current biosafety level of L. tarentolae is also dis-
cussed, with a focus on the TARII and LEM-125 strains. Furthermore, we will summarize the
current state of biotechnological research (as introduced above) and explain in more detail
why L. tarentolae is an advantageous and promising human recombinant protein expression
host. We will outline possible future applications like the humanization of the glycosylation
profile of L. tarentolae with the trans-sialidase (TS) gene and the expression of mammalian
recombinant proteins in amastigote-like cells of L. tarentolae or in an avirulent strain (amasti-
gotes) of human-pathogenic Leishmania species.

Methods

To write this review, we conducted multiple searches on PubMed and Google Scholar with the
following keywords (one, two, or more words combined; deadline of online search, March
2019): Leishmania tarentolae, taxonomy, phylogeny, genus classification, life cycle, geographi-
cal distribution, genome, kinetoplast/kinetoplastid, RNA editing, gene amplification, U inser-
tion/deletion, protein expression, biotechnological application, glycoprotein, antibody,
expression vector, culture conditions, LEXSY, TARII strain, UC strain, LEM strain, Sauroleish-
mania, Leishmania adleri, Leishmania donovani, amastigotes, promastigotes, sand flies,
human pathogenic, vaccine candidate, antileishmanial drug, and immunotherapy agent. Suit-
able manuscripts and reviews were selected, and the information was summarized into the
four main sections: (1) Taxonomic classification of L. tarentolae, (2) Biotechnological applica-
tions of L. tarentolae, (3) Useful online tools/databases, and (4) Discussion and outlook (to dis-
cuss and suggest potential future applications). In addition, most main sections include several
subsections.

Taxonomic classification of L. tarentolae

L. tarentolae belongs to the subgenus Sauroleishmania, which along with additional subgenera
(Leishmania, Viannia, Mundinia) and the related organisms constitute the genus Leishmania.
Although the taxonomic classification of the genus Leishmania is not definitively settled, the
species of lizard parasites (Sauroleishmania) are regarded as a bona fide member of this group.
Here, we will discuss the current taxonomic issues and give insights into the life cycle and geo-
graphical distribution of L. tarentolae and compare its genome with the genomes of human-
pathogenic species.

The genus Leishmania

The genus Leishmania belongs to the class Kinetoplastea and the order of Trypanosomatida [1,
19]. All kinetoplastids possess a DNA-containing region inside their single large mitochon-
drion, which is called the kinetoplast. Since its first description by W. B. Leishman [20], C.
Donovan, and J. H. Wright [21] in 1903-1904, more than 50 Leishmania species, which infect
mammals and reptiles and are transmitted by sand flies, are recognized today [1].

The classification of the genus Leishmania is still in flux, although the phylogenetic relation-
ships among these organisms are becoming increasingly clear. These dixenous parasites of
mammals and reptiles form a coherent group on the phylogenetic trees [22]. This group
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Class
Order

Genus

Section
(Clade)

Subgenus
(Subclade)

Species

Kinetoplastida

| Trypanosomatidae |

Endotrypanum

| sister-clades | | |

| LeishmaniaH Sauroleishmania | IViannia ‘ Mundinia
(L. enrietti complex)

18 species 21 species 9 species 5 species 2 species
L. tropica L. tarentolae L. braziliensis | 5 species L. herreri E. schaudinni
L. major L. adleri L. guyanensis L. enrietti L. hertigi E. monterogeii
L. donovani L. hoogstraali L. lainsoni L. siamensis :

L. mexicana : H L. macropodum

Fig 1. A phylogeny-based classification of the genus Leishmania. L. tarentolae belongs to the subgenus of Sauroleishmania, which
is made up of mostly lizard-infecting parasites. Adapted from [1].

https://doi.org/10.1371/journal.pntd.0007424.9001

emerges relatively late from the monoxenous parasites of insects, and its monophyletic origin
is well supported [19, 23, 24]. Two major phylogenetic lineages (referred to as sections) are rec-
ognized within this clade: Euleishmania and Paraleishmania [25]. Each lineage is further sub-
divided into a series of subclades representing the subgenera. Although the earlier phylogenies
did not confidently reveal the exact branching order among the subclades, recent analyses uti-
lizing genomic datasets have shown a more defined picture [22, 24].

There is no disagreement among taxonomists that the Euleishmania section represents the
bona fide genus Leishmania and its subclades. The subgenera are as follows: L. (Leishmania),
L. (Sauroleishmania), L. (Viannia), and L. (Mundinia), which is sometimes referred to as the
"L. enriettii complex" [19, 24]. It is important to mention that the subgenera L. (Leishmania)
and L. (Sauroleishmania) are sister-clades that diverged relatively late. Thus, the data unequiv-
ocally support the origin of lizard Leishmania from parasites of mammals. This phylogenetic
position was the main argument for the inclusion of these reptilian parasites into the genus
Leishmania as a subgenus rather than separating Sauroleishmania as a separate genus [26]. A
simplified classification/phylogenetic tree of the genus Leishmania is shown in Fig 1.

The current controversy is centred around the taxonomic status of the subclades of the
Paraleishmania section. One problem is that it includes some species that were earlier classified
as members of the genus Endotrypanum. However, there are serious concerns about the valid-
ity of this genus [25]. Some taxonomists revised and expanded this genus [19], whereas others
treated it as nomen dubium and proposed a new section, Paraleishmania, essentially (although
not formally) in its place [27].

The subgenus L. (Viannia) is restricted to the Neotropics, whereas the subgenus L. (Leish-
mania) occurs in both the New and Old World, referring to Middle and South America and
southern Europe, Africa, and Asia, respectively. From the 53 currently recognized species [1],
29 are present in the Old World, 20 in the New World, three species in both, and only one spe-
cies in Australia (L. macropodum [22, 28]). Moreover, 31 species are known to be parasites of
mammals, and 20 species are pathogenic for humans, causing visceral leishmaniasis (VL),
cutaneous leishmaniasis (CL), and mucocutaneous leishmaniasis [29, 30], affecting 1.2-2 mil-
lion people annually (WHO report, 2016). The original grouping of species into subgenera was
based on feature comparison such as the same parasite location in the vector’s intestine [31].
The phenotype-based system is further supported by the molecular analysis of, for example,
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the heat-shock protein 70 (HSP70) gene [32], the maxicircle-encoded ATPase subunit 6 gene
[33], the cytochrome b (Cyt b) gene [34], the DNA/RNA polymerase gene sequences [35], or
the 7SL RNA gene sequences [36]. Moreover, species within the subgenera can be grouped
into complexes (based on hsp70 sequence differences) [32], although this is questioned by
other studies [37].

The subgenus L. (Sauroleishmania) includes 21 species (such as L. tarentolae, L. hoogstrali
[38], L. adleri [39], and L. gymnodactyli [40]), which are all restricted to the Old World and are
transmitted by sand flies of the genus Sergentomyia [41, 42]. Sauroleishmania species primarily
infect lizards [43]. However, L. adleri was also found to be able to infect mammals and has
been associated with CL in humans [2, 44, 45].

There are three hypotheses for the origins of the genus Leishmania: the (1) Palearctic, (2)
Neotropical, and (3) Multiple Origins hypotheses [24]. In the Palearctic hypothesis, the origin
of Leishmania is assumed in Cretaceous lizards with recent migrations to the Nearctic and
Neotropics, suggesting that Sauroleishmania forms a sister-clade to all other species [46-48].
In contrast, the second hypothesis suggests the origin of Leishmania in the Neotropics, sup-
ported by sequence-based phylogenies [25, 35, 49]. Here, data suggest that New World species
emerged 46-34 million years ago and are the ancestors of Old World species [50], making
Sauroleishmania a mammalian-derived and not an ancestral form. However, the Neotropical
hypothesis requires two separate migrations to be valid: either a migration of the ancestors of
Leishmania/Sauroleishmania to the Old World around 24-14 million years ago, followed by a
second migration of a Leishmania subgenus back to the New World, or two migrations into
the Old World by an ancestor of Sauroleishmania and, in addition, by an ancestor of an Old
World Leishmania species [24, 50]. Last but not least, the Multiple Origin hypothesis suggests
a division of Leishmania into the two lineages of Euleishmania (including the subgenera of
Leishmania, Viannia, and Sauroleishmania) and Paraleishmania on the supercontinent Gond-
wana [25, 51]. Subsequently, the breakup of Gondwana separated the ancestors of all Leish-
mania subgenera. This is supported by recently published studies on large, multigene datasets
(with some modifications) [24] and on the molecular evolution and phylogeny of Leishmania
[52]. Based on current knowledge, the Multiple Origin hypothesis is the true hypothesis for the
origin of the genus Leishmania. The phylogenetic position of Sauroleishmania between the
subgenera Leishmania and Viannia also suggests that Sauroleishmania switched from mam-
malian to reptilian hosts [53-55].

L. tarentolae— A model Leishmania system

The best-studied saurian-pathogenic species today is L. tarentolae, which was first isolated
from the gecko, Tarentola mauritanica, in 1921 [5, 56]. The two most frequently used strain
groups of L. tarentolae are the TAR strains, isolated by Parrot from an Algerian gecko in 1939
(e.g., TARII/UC and TARVI) [57, 58], and the LEM strains, isolated by Rioux from geckos in
France (LEM-87, LEM-115, LEM-124, LEM-125, and LEM-306) [38]. L. tarentolae was also
recently identified in reptile-biting Sergentomyia minuta sand flies in Spain [59]. Some of the
old strains have been used for decades in basic research and cell culture because of the easy
and safe handling. This would not be the case with human-pathogenic species. The commer-
cially available strain P10 of Jena Bioscience is most likely based on the TARII/UC strain. In
2011, the genome of strain TARII/UC was sequenced [60], which has further confirmed the
taxonomic status of L. tarentolae as a member of the genus Leishmania and increased the use-
fulness of this promising eukaryotic host for basic and applied research.

However, it was noted that prolonged cultivation of L. tarentolae without a selective pres-
sure to maintain the ability to undergo a full life cycle resulted in genetic drift, which was
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remarkably noticeable in the mitochondrial genome. A recently published comparative study
on the kinetoplast mitochondrial genome network (kDNA) of TARII/UC and LEM-125 shows
that the TARII/UC strain has developed, unlike the LEM-125 strain, a partially defective mito-
chondrial genome [3]. It was further shown that the KDNA of L. tarentolae changes signifi-
cantly during continuous culture from year to year [61], probably resulting in the loss of some
proteins not required in cell culture [62]. Moreover, some LEM strains were shown to be tran-
siently infectious [3, 4], which could raise the question of their current biosafety level.

The phenomenon of genetic drift is due to the high complexity of the kinetoplastid mito-
chondrial genetic system on the one hand and the lack of a mechanism that would ensure its
orderly segregation in cell division on the other. In order to understand this lability of the
kDNA, it is necessary to discuss the kinetoplast mitochondrial DNA and the replication and
genetic role of the minicircles. This was intensively studied in L. tarentolae. The kDNA is a
mass of DNA situated at the base of the flagellum [63, 64]. It consists of a species-dependent
number (5,000-20,000) of small circular DNA molecules known as “minicircles,” all catenated
together into a giant two-dimensional “network” which can be easily isolated because of its
large size and stability [65, 66]. There is also a minor DNA species known as “maxicircles,”
which is around 20-30 kb in size and also catenated to the network. The maxicircles are the
equivalent of the mitochondrial DNA found in other eukaryotes and contain 18 conserved
mitochondrial protein-coding genes, 12 of which are “cryptogenes” and contain encoded
frameshifts or other defects that would prevent translation into functional proteins [67]. In the
1980s, it was discovered that transcripts of the mitochondrial cytochrome oxidase subunit II
gene are modified posttranscriptionally by the insertion of four uridylate (U) residues at pre-
cise sites, which overcame a —1 frameshift and restored a translatable reading frame in the
mRNA [68, 69]. This phenomenon was termed “RNA editing” and has therefore been studied
in L. tarentolae and Trypanosoma brucei for more than 30 years. It was rapidly shown in other
laboratories that the extent of editing varies extensively among the genes and the kinetoplastid
species, with the most extreme cases requiring hundreds of editing events to generate a trans-
latable mRNA out of a G- and A-rich skeletal sequence, a phenomenon which is known as
“pan-editing.” For some time, the genetic role of the thousands of minicircles was not known,
nor was the mechanism and the source of information that determined the precise number of
inserted/deleted U residues into a preedited mRNA. In 1990, Blum and colleagues discovered
in L. tarentolae that its kinetoplastid mitochondrion contains a novel class of small RNAs with
the sequence information for the editing [70]. These RNAs were called “guide RNAs” (gRNAs)
because they guide the enzymatic machinery to produce the precise insertion/deletion of U’s
in the mRNA to make it complementary to the gRNA. At that time, an enzymatic cleavage/
ligation model of editing was proposed, which has since proven essentially correct, although
more complex than envisioned originally. It was initially found that gRNAs were encoded in
the maxicircle DNA, but it soon was shown by using L. tarentolae that most were encoded in
the minicircles, thus finally elucidating a biological role for the minicircles [71].

The number of gRNA genes and their location in the minicircles was found to vary among
species. For example, Leishmania minicircles are around 900 bp and have a single gRNA gene
located at a specific position, whereas T. brucei minicircles are around 1,000 bp and usually
encode three gRNAs [72, 73]. Multiple gRNAs participate in editing of single pan-edited tran-
scripts. The editing begins at the 3’-end of the mRNA and continues toward the 5'-end. The
observed 3'-5' polarity of editing is due to overlapping gRNAs, whereas each subsequent
gRNA can extend the editing only after the preceding gRNA has completed its respective edit-
ing segment ("editing block") [74].

The thousands of catenated minicircles in a single KkDNA network consist of multiple
sequence “classes” depending on the specific gRNAs encoded. Each class is multicopy, but the
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actual number of copies per class fluctuates randomly. The rapid changes in frequencies of
minicircle sequence classes were shown to be a direct consequence of the mode of replication
and segregation of KDNA minicircles, which can be explained in terms of a model for kDNA
minicircle DNA replication and segregation [66]. The model proposes that the kDNA network
rotates during the S phase of the cell cycle. A type II topoisomerase randomly decatenates
closed minicircles from the network, which replicate and then migrate to two antipodal nodes
adjacent to the network where the daughter minicircles are recatenated onto the periphery of
the network. Replicated minicircles are marked by the presence of nicks and gaps, and follow-
ing replication of all network minicircles, covalent closure of all daughter molecules occurs in
G2 phase. During cytokinesis, the doubled network splits into halves so that each daughter cell
receives a KDNA network of the original size. However, recatenation of minicircles is essentially
random, and therefore, the segregation of the minicircle classes during cell division is also ran-
dom. This leads to stochastic variations in the minicircle copy numbers and, in extreme cases,
may result in a complete loss of entire sequence classes. It is clear that a complete set of minicir-
cle classes or gRNAs would be required for editing of all the cryptogene transcripts and transla-
tion. A loss of an entire minicircle class entails a loss of the respective gRNA and a disruption of
editing. However, the cell can survive such a loss if the respective gene product is dispensable. It
is not known if there are also rapid changes in the nuclear genomes.

The most dramatic example of this type of rapid genetic drift has occurred in two strains of
L. tarentolae, as briefly mentioned above [3]. The old laboratory strain TARII/UC was shown
to have lost a number of minicircle classes encoding specific gRNAs and thereby the transla-
tion of those genes, whereas the more recently isolated LEM-125 strain still contained all mini-
circle classes and gRNAs. It was hypothesized that these proteins were not required during life
in culture. The loss of minicircles and gRNAs could also have an impact on recombinant pro-
tein expression. A rapid genetic drift in minicircle composition and sequence has also been
observed in nature. Trypanosoma cruzi is responsible for Chagas disease in South and Central
America. Morel and colleagues have observed that various T. cruzi strains exhibit different
kDNA restriction digest profiles. It is now known that these differences were due to variation
in the frequencies of minicircle sequence classes [75]. This has proved useful in studies of pos-
sible strain-dependent pathologies in humans. There are numerous other examples of rapid
changes in minicircle heterogeneity that were used for discrimination and identification of
other trypanosomatids, including strains and species of Leishmania.

Life cycle and its geographical distribution

The life cycle of Leishmania species from the subgenera L. (Leishmania) and L. (Viannia) alter-
nates between two main morphological forms: motile flagellated promastigotes in the insect
(midgut and/or hindgut [76]) and nonmotile “rudimentary” flagellated amastigotes in specific
immune cells (mostly macrophages) of the vertebrate host [77-79]. There is evidence of two
separate, consecutive growth cycles during the development in the sand fly alone, consisting of
four to five morphologically distinct life cycle stages: (1) procyclic promastigotes, (2) nectomo-
nad promastigotes, (3) leptomonad promastigotes, and (4) metacyclic promastigotes [77, 80,
81]. Some studies also discuss another life cycle stage within the sand fly, the (5) haptomonad
promastigotes, which represent a minor population and can be found attached to, e.g., the
hindgut via the flagellar tip. However, their developmental origin is unknown, although likely
to be derived from either leptomonad or nectomonad forms [77, 81]. Procyclic promastigotes
divide in the midgut (within the blood meal) and subsequently become nondividing nectomo-
nad promastigotes. This new form migrates to the anterior part of the gut and subsequently
transforms into leptomonad promastigotes, which initiate the second growth cycle.
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Leishmania species of the subgenus L. (Leishmania) have in common that colonization of sand
flies, Phlebotomus and Lutzomyia, is restricted to the midgut (suprapylarian) [31, 42]. Exam-
ples of well-known species are L. donovani (Old World) or L. mexicana (New World). Species
of the subgenus L. (Viannia) colonize the midgut as well as the hindgut (peripylarian) of only
Lutzomyia species. In a last step, leptomonads differentiate into nondividing metacyclic pro-
mastigotes (representing the mammalian-infective stage), which are transferred during a
blood meal from the sand fly to the mammalian host [80]. Moreover, the leptomonads play a
major role in the production of the promastigote secretory gel (PSG) plug. The PSG plug is
needed to ensure successful transmission of Leishmania from the sand fly to its mammalian
host, as the sand fly has to regurgitate the PSG plug in order to take a new blood meal [81, 82].
The PSG plug is transferred to the mammalian host together with metacyclic promastigotes.
Inside the new host, metacyclic promastigotes ligate host macrophage receptors, which triggers
phagocytosis and their internalization inside the parasitophorous vacuole of the macrophage
[83, 84]. Subsequently, promastigotes transform into amastigotes, which multiply and infect
other macrophages. Amastigote-infected macrophages can be taken up as part of the blood by
a feeding sand fly, restarting the life cycle.

The complete life cycle of Sauroleishmania species is still debated. These parasites colonize
the hindgut (hypopylarian) of Sergentomyia sand flies as promastigotes [31, 42], but some
studies also claim colonization of the anterior midgut [85, 86]. In lizards (geckos), these para-
sites also dwell predominantly as promastigotes in the lumen of the cloaca and intestine, or in
the bloodstream [87]. Amastigotes, either free or inside monocytes or erythrocytes, are seen
only rarely [56, 85, 87, 88]. Transmission of Sauroleishmania to its vector has never been dem-
onstrated, but it is believed to occur via a similar pool feeding mechanism, as described for
mammalian vectors [80]. Compared with other sand fly genera, species of the genus Sergento-
myia produce a relatively thick peritrophic matrix (the peritrophic matrix encloses the
ingested blood meal), which might be one reason why the development of Sauroleishmania in
the anterior midgut is not favored or possible [89, 90]. It is suggested that Sauroleishmania
might be passed into the hindgut based on their inability to quickly escape from the peri-
trophic matrix [80]. Moreover, it is unknown whether metacyclic promastigotes are produced
in Sergentomyia and whether there are additional developmental stages of Sauroleishmania
(like nectomonads and leptomonads) inside the sand fly. However, the existence of a reptile-
infecting promastigote form can be assumed. The proposed and simplified life cycle of L. tar-
entolae (Sauroleishmania) is summarized in Fig 2.

The geographical distribution of human-pathogenic Leishmania is closely linked to that of
the insect vectors, which represent nearly 100 sand fly species of the genera Phlebotomus (42
species) in the Old World and Lutzomyia (56 species) in the New World [30]. These sand fly
species inhabit tropical and subtropical zones of Asia, Africa, Australia, southern Europe, and
the Americas between the latitudes 50° north and 40° south [30]. L. tarentolae-infected phle-
botomine sand flies and geckos (Tarentola annularis and T. mauritanica) were found in south-
ern Europe, North Africa, and the Middle East [5, 38, 41, 58, 91]. However, the prevalence of
infection in gecko populations remains unknown. Moreover, the spread of L. tarentolae and
other Sauroleishmania across its known geographical border might also be possible through
climate change (allowing sand flies to reach new habitats) and because of the trade of hosts as
pets.

Similarities and differences to human-pathogenic species

From the more than 50 known Leishmania species, the genome from at least 15 has been fully
sequenced, including the two sauroleishmanial species, L. tarentolae and L. adleri [2, 60, 92—
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102]. The data of most of these genomes can be found on the Kinetoplastid Genomics
Resource database TriTrypDB (http://tritrypdb.org/tritrypdb/). Not many genomes of human-
pathogenic Leishmania species were compared with the ones of Sauroleishmania. However,
this would be highly advantageous, as it would give better insights into the evolution of the
Leishmania genus and its split into the subgenera. Compared with the genomes of L. major (36
chromosomes, 32.8 Mb, 8,272 protein-coding genes) [92], L. infantum (36 chromosomes, 32.1
Mb, 8,154 protein-coding genes) [93], or L. adleri (38 chromosomes, 30.4 Mb, 7,849 protein-
coding genes) 2], the genome of L. tarentolae (36 chromosomes, 31.6 Mb, 8,201 protein-cod-
ing genes) [60] contains similar attributes, and 90% of the gene content of L. tarentolae is
shared with those human-pathogenic species. Hence, the important question is: What are the
differences of the remaining approximately 10%? The analyses of the genome predict 95 cod-
ing sequences to be unique to L. tarentolae [60]. Furthermore, 250 genes found in human-
pathogenic species were absent in the gecko parasite genome. Many of these 250 genes are
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preferentially expressed in the amastigote stage of the human-pathogenic species [60]. Although
promastigotes of L. tarentolae are able to enter human phagocytic cells and differentiate into
amastigote-like forms (the term “amastigote-like form” is explained in this section: Cell culture
conditions and the phenotypes of L. tarentolae), there is no clear evidence for their replication
within macrophages [4, 103, 104]. L. tarentolae does possess several virulence factors, such as
cysteine protease B (CPB), lipophosphoglycan 3 (LPG3), and the leishmanolysin GP63 [105],
but it lacks the major virulence factor amastigote-specific protein A2. A2 has been proven to
play a major role in parasite virulence and visceralization capability [106]. Additionally, devel-
opment of amastigotes inside lizards is still uncertain [87, 107]. Underrepresented genes and
their products are normally involved in antioxidant defense or parts of the secretory pathway—
e.g., vesicular-mediated protein transport. In detail, several adaptins are missing, which are
involved in the formation of clathrin-associated adaptor protein complexes necessary for the
formation of transport vesicles within the secretory pathway [108]. Other missing genes are gly-
cosyltransferases (see genome of L. major, genes LmjF35.5250 and LmjF29.2110) or the endo-
plasmic reticulum chaperone calreticulin (LmjF31.2600), which ensures the folding and quality
control of nascent secretory proteins [109]. In contrast, two gene families are enriched in L. tar-
entolae promastigotes—the previously mentioned leishmanolysin (GP63), a surface glyco-
metalloprotease [110, 111], and promastigote surface antigen (PSA) proteins. Unlike other
Sauroleishmania species, L. adleri has been shown to be able to infect mammals [2]. On the
other hand, parasites of the L. donovani complex were shown to infect lizards [112]. Therefore,
Sauroleishmania are not restricted to reptiles, and human-infecting L. donovani complex iso-
lates can infect lizards and are likely transferred by Sergentomyia from human to lizard [112].

For L. tarentolae, in particular, the gene content differences could explain why they are not
able to survive for many generations in human macrophages, why they are mostly found as
free parasites in the insect vector, and why their amastigote form is still under debate. They
seem to be better adapted to the promastigote and insect stages. However, the genome of the
LEM strains should also be sequenced to uncover the differences between this strain, TARII, L.
adleri, and the human-pathogenic species. Ideally, genomic DNA-sequencing platforms
should use long-read technologies to effectively resolve centromeric and telomeric regions and
to clarify whether a gene was not detected or lost due to assembly issues or read-length limita-
tions. Suitable platforms are represented by, for example, PacBio or MiSeq [99].

Biotechnological applications of L. tarentolae

In the past 30 years, the parasite L. tarentolae has been utilized for a broad range of biotechno-
logical and biomedical applications. In the beginning, the parasite was primarily used to study
RNA editing [70, 113] and gene amplification [114, 115]. Later, applications were comple-
mented by the use of the parasite as a vaccine candidate against human leishmaniasis in animal
models [103, 104] and to screen for antileishmanial drugs [4]. Recombinant protein produc-
tion is another important application area for several reasons [116, 117]. We will highlight the
advantages of this eukaryotic protein expression system, describe available expression vectors,
and discuss the cultivation conditions and its use as an immunotherapy agent. An overview of
the biotechnological applications of L. tarentolae is shown in Fig 3.

Advantages of the protein expression machinery of L. tarentolae

The expression machinery of L. tarentolae represents a competitive alternative to mammalian
cell lines for the following reasons [119]: the parasite is probably not pathogenic to humans
[5], it is relatively easy and cost effective to cultivate [10, 11], and it offers mammalian-like
PTMs and satisfying recombinant protein yields averaging 0.1-30 mg/L [116]. Moreover, the
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Fig 3. Biotechnological applications of the eukaryotic parasite L. tarentolae. L. tarentolae is used to study RNA editing (A), gene amplification (B), vaccine
development against human-pathogenic Leishmania species (C), and recombinant (human) protein production (D). AMP, Adenosine monophosphate; ATP,
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https://doi.org/10.1371/journal.pntd.0007424.g003

expression system can easily be extended to an industrial production scale by growing the par-
asites in bioreactors and harvesting proteins in high throughput [11]. In a few examples, the
protein yield could be increased to 500 mg/L (Jena Bioscience, LEXSY Conference presenta-
tion at Halle, Germany 2015), showing the general capacity of this parasite in culture.
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However, this is still around 10x less compared with many recombinant proteins expressed in
mammalian cell lines such as Chinese hamster ovary (CHO cells; up to 5g/L) [120-122]. As it
took around 25 years to increase the yield of proteins expressed in mammalian cell lines more
than 100-fold to its 5 g/L nowadays [120], it can be expected that the yield of recombinant pro-
teins expressed in L. tarentolae will reach a similar g/L range very soon. It is important to men-
tion here that studies benchmarking the in vivo protein expression performance of the L.
tarentolae system in direct comparison with other expression systems has never taken place.
Therefore, its true success and average protein yields remain unknown to date. This lack of
information could be one possible explanation why the L. tarentolae expression system has not
further permeated the research and industrial sector.

Besides high protein yields, PTMs are also very important. In particular, protein glycosyla-
tion plays a major role in humans, as more than 50% of all human proteins are glycosylated
[123], and besides proteins with enzymatic activity, glycoproteins (including monoclonal anti-
bodies) are the most frequently approved recombinant therapeutic proteins [124, 125]. More-
over, many proteins need the (correct) glycosylation for their biological activity [17, 126, 127].
Glycosylation itself is a quality-control mechanism for the folding status of proteins [128]; it
increases the half-life [129], and specific sugar epitopes can regulate the interaction with cell
receptors.

To date, full-length antibodies have not been expressed in L. tarentolae. However, func-
tional expression results of single-chain fragment variables (scFv’s) [12] and scFv-fragment
crystallizable (scFv-Fc) fusion proteins [13] indicate that successful expression of full-length
antibodies is only a matter of time [130]. The successful expression of multisubunit proteins,
like the human heterotrimeric glycoprotein LM-322 [17,131], further underpins the general
capacity of L. tarentolae to express full-length antibodies, as they also consist of several sub-
units. The potential application of L. tarentolae as an alternative platform for antibody expres-
sion has been recently reviewed [132].

Several other human glycoproteins were also successfully expressed in L. tarentolae [14,
116]. In particular, two human glycoproteins showed high posttranslational protein homoge-
neity to the human counterpart with complex biantennary N-glycans (EPO, [15]) and initial
O-glycans (sAPPalpha, [16]). For EPO, only terminal sialic acids (N-acetylneuraminic acids)
were missing. Sialic acids are terminal monosaccharides on many human glycoproteins [133]
and are very important, as they directly regulate the immune response and influence the
serum half-life of glycoproteins such as immunoglobulins (Ig) [127]. Current research indi-
cates that enzymes for the sialic acid biosynthesis pathway are not present in any Leishmania
species [134], but 02,3- and 0.2,6-linked sialic acids have been found on endogenous mem-
brane glycoproteins of L. major and L. donovani [135-137]. To our knowledge, the mechanism
behind the uptake of free sialic acid glycans by Leishmania is unknown. However, a CMP-sialic
acid transporter (like the solute carrier family 35 transporter A1) in the Golgi apparatus mem-
brane was assumed, transporting sialic acids from the cytoplasm into the Golgi [136, 137].
General uptake of free sialic acids is probably occurring through endocytosis. Adding the bio-
synthetic sialic acid pathway to L. tarentolae would be highly advantageous and increase the
quality/similarity of expressed human recombinant proteins. This will be further discussed in
the Discussion and outlook section.

Although not described for L. tarentolae, phosphorylation of the human recombinant cellu-
lar tumor protein p53 was successfully demonstrated in an avirulent strain of L. donovani
[138], indicating that this phenomenon should also exist in L. tarentolae because of their close
relationship. For all these reasons, L. tarentolae is a competitive alternative to mammalian cell
lines.
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Available expression vectors

The expression system of L. tarentolae has been commercialized by Jena Bioscience and is
known as LEXSY (http://www.jenabioscience.com/). Both constitutive [15] and inducible-
integrative [10] expression vectors have been developed, which enable the production of intra-
cellular or secretory recombinant proteins. By homologous recombination (double crossover),
the expression cassette is either inserted into the chromosomal 18S ribosomal RNA locus (ssu;
constitutive system) or into the ornithine decarboxylase locus (odc; inducible-integrative sys-
tem) of L. tarentolae. ssu is a repetitive locus of the L. tarentolae genome with high rates of
transcription by the host RNA polymerase I [15,139], whereas the odc locus is transcribed by
RNA polymerase II. Gene expression regulation by RNA polymerase I is a unique attribute of
Leishmania (including L. tarentolae) and probably all protozoan parasites of the order Kineto-
plastida [140-142]. Furthermore, transcription in Leishmania is polycistronic: there are no
introns (and therefore no Cis-splicing reactions), and posttranscriptional processing of pre-
mRNA is effected by Trans-splicing reactions and polyadenylation within intergenic regions
[143-146]. Protein expression regulation may be influenced by the structure of these inter-
genic regions [141,147].

Over the years, additional expression vector variants were developed, enabling protein
expression in an inducible episomal [148] or cell-free system [149-151]. In the inducible sys-
tems, protein expression is activated through addition of the enhancer, tetracycline, being
analogous to the well-known bacterial T7 RNA polymerase/tetracycline-controlled transcrip-
tional activation (TET) repressor system [10]. It is expected that the T7-driven increase in
mRNA production results in an increase in the recombinant protein yield. However, this
advantage might be hypothetical, as the highly elevated mRNA production might be out-
stripped by the high degradation rates of exogenous transcripts. This has never been properly
investigated but is important to validate the benefits of the L. tarentolae expression system for
recombinant protein production. In the inducible episomal system, plasmids are maintained
extrachromosomally as self-replicating episomes. Finally, proteins can be produced in L. taren-
tolae lysates using a unique cell-free approach in which the translation of endogenous mRNA
is not suppressed by mRNA degradation but, instead, by antisplice leader oligonucleotides.
This results in a much simpler system preparation compared with others. In general, species-
independent translational sequences (SITSs) mediate cell-free protein synthesis, bypassing the
early translation initiation factors. SITSs in combination with targeted suppression of endoge-
nous mRNA of L. tarentolae are necessary factors to create a cell-free system. Recently, a large-
scale benchmarking study showed that the cell-free system of L. tarentolae performs on par
with the HeLa system (in terms of protein integrity and folding) [152]. This laid the foundation
for further studies on, e.g., enzyme discovery and interactome analysis of caveolae [153,154].
Therefore, the cell-free system of L. tarentolae has the potential of becoming a widespread and
important tool in applications like enzyme discovery, metabolic engineering, or gene circuit
prototyping in the context of eukaryotic proteome analysis.

For functional validation, enhanced green fluorescent protein (eGFP) has been expressed in
all expression vector variants. Furthermore, constitutively expressed proteins—for example,
the Ca**-dependent serine protease proprotein convertase 4 (PC4) [155], the chloramphenicol
acetyl transferase (CAT) [156], and the successfully crystallized Cu/Zn superoxide dismutase
(SOD1) [157]—were also expressed in the inducible episomal system [148]. Also, several
human Rab GTPases (guanosine triphosphate hydrolysing enzyme) tagged with eGFP were
expressed in the inducible-episomal [148] as well as in the cell-free system [149,150]. Recently,
the crystal structure of the channelrhodopsin 2 protein could be solved when expressed in L.
tarentolae using the integrative inducible expression system [158]. More expressed proteins of
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different origins and expression vector variants can be found in the review by Basile and col-
leagues from 2009 [116] and in the article by Kushnir and colleagues from 2011 [148].

Cell culture conditions and the phenotypes of L. tarentolae

In cell culture, the parasite is found in its motile promastigote form. Promastigotes are mono-
flagellated and of lance-like structure with a length of 4-12 pm and a width of 0.5-3 um (Fig
4A and 4B). Amastigotes as well as amastigote-like cells (and even dividing promastigotes) are
smaller and of round-like shape with a rudimentary flagellum.

In general, promastigotes divide every 4-6 hours by single fission—their growth rate is
dependent on the oxygen supply. They are cultivated in agitated suspension culture under aer-
obic conditions at 25-27°C, which is the optimal growth temperature in the sand fly host. In
contrast, the body temperature in geckos is quite variable [159]. There is no need of expensive
CO, incubators or sera. For growth, different complex and synthetic media are available for
selection [160]. Hemin, an iron-containing porphyrin, is essential for promastigote growth
and survival [161]. Depending on the selected growth medium, the cell concentration can
reach a maximum of up to 400 million cells/ml under optimal growth conditions. Clonal

B ‘

Fig 4. Microscopy images of L. tarentolae. (A) Fluorescent L. tarentolae promastigotes expressing eGFP. (B) L.
tarentolae promastigotes stained with DAPI, highlighting the nucleus (1) and the kDNA (2). (C) TEM (two fused
images) of an L. tarentolae promastigote, longitudinal cell section, with a magnification of x2,950. Cell nucleus (1),
kinetoplast inside single mitochondrion (2), flagellum within flagellar pocket (3), Golgi apparatus (4), rough
endoplasmic reticulum (5), glycosome (6), and acidocalcisome (7). eGFP, enhanced green fluorescent protein; KDNA,
kinetoplastid DNA; TEM, transmission electron microscopy.

https://doi.org/10.1371/journal.pntd.0007424.9004
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selection can be normally performed on agar plates after 5-10 days postinoculation by using
one or more out of the six available selection markers/antibiotics (nourseothricin, blasticidin,
bleomycin, Geniticin G418, hygromycin, and puromycin).

The occurrence of L. tarentolae amastigotes is still under debate. Past experiments tried to
trigger the differentiation of promastigotes to amastigotes from human-pathogenic Leish-
mania species by mimicking phagolysosomal conditions [162,163]. In detail, the temperature
was raised to 32 or 37°C, the pH was acidified to 5.5 or 4.5, and in some cases, parasites were
additionally cultivated in a CO, incubator with 5%-7% CO,. Analyses of typically expressed
amastigote proteins and gene expression profile studies revealed slight differences between iso-
lated and induced amastigotes [164,165]. Based on those differences, induced amastigotes are
referred to as the “amastigote-like” form today [165]. Induction of amastigote-like forms of L.
tarentolae has also been successfully performed for strain LEM-125 but not for the sequenced
strain, TARII/UC [4]. Like other Leishmania species, L. tarentolae offers some unique organ-
elles, like glycosomes [166-168] and acidocalcisomes [169], and a specific secretory pathway
[170]. A transmission electron-microscopy image of these organelles of L. tarentolae can be
found in Fig 4C.

L. tarentolae as an immunotherapy agent

There are numerous drugs available to treat human leishmaniasis [171]. However, because of
the enormous side effects of many drugs combined with their high costs, the requirement of
long hospitalization, and the increasing emergence of drug-resistant strains, chemotherapy
treatment of leishmaniasis has become a challenging approach [172]. In addition, there is no
vaccine available that provides long-term protection and immunity against leishmaniasis
[171]. In recent years, recombinant proteins were expressed in nonpathogenic L. tarentolae for
the purpose of improving vaccine potential. In one example, a recombinant L. tarentolae strain
was generated expressing the sand fly protein Phlebotomus papatasi-secreted salivary protein
15 (PpSP15), a salivary antigen. Vaccination with L. tarentolae-PpSP15 in combination with
deoxynucleotides of cytosine triphosphate and guanine triphosphate linked via a phosphodie-
ster (CpG) as a prime-boost modality conferred strong protection against L. major infection in
BALB/c mice because of a high production of interferon gamma (IFN-y) and interleukin 17
(IL-17) [173]. In another study, they used L. tarentolae as a live vaccine expressing the L. dono-
vani A2 antigen along with two cysteine proteinases as a trifusion gene. Here, the recombinant
L. tarentolae strain protected BALB/c mice against L. infantum infection [18]. Moreover, L.
tarentolae harboring cysteine proteinase and A2 genes has been successfully tested as a pro-
phylactic vaccine in a dog model against L. infantum [174]. However, the largest drawback of
plasmid DNA vaccine candidates usually is its inefficient intracellular delivery, resulting in low
levels of gene expression, which in turn limits the immune response [175]. Therefore, the
long-term effectiveness of live vaccines and the host immune response against Leishmania
infections must be carefully evaluated. In two other studies with the goal to improve the treat-
ment of CL, they used transgenic L. tarentolae expressing human neutrophil peptide-1, IFN-y,
or IFN-y-induced protein 10 (CXCL-10), respectively. Recombinant proteins were used as a
prophylactic vaccine as well as a therapeutic tool against L. major-infected BALB/c mice,
resulting in improved treatment potential of CL [176,177]. These examples show the great
potential of L. tarentolae as an immunotherapy agent.

Useful online tools/databases

A few online tools/databases are available that can facilitate the work with L. tarentolae and
expand personal knowledge. On the one hand, TriTrypDB (www.tritrypdb.org) can be used as
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a genomic database to search for specific genes or to find out the occurrence of genes between
different Leishmania species [178]. In detail, TriTrypDB is an integrated database offering the
datasets of several Leishmania and Trypanosoma species. Another next generation-sequencing
database is Leish-ESP (http://leish-esp.cbm.uam.es/). It contains transcriptomic and genomic
data of several Leishmania species, including L. braziliensis [101]. On the other hand, LeishCyc
can be used to study biochemical pathways (metabolomics) of Leishmania species using data-
sets of L. major [179,180]. LeishCyc is a useful guide to build up metabolic pathways and for
metabolic data visualization. The U insertion/U deletion Edited Sequence Database (http://
164.67.82.180/trypanosome/database.html) contains sequences of mitochondrial genes and
cryptogenes from kinetoplastid protozoa. Edited sequences and translated amino acid
sequences are also provided. A novel "map" format provides the edited RNA sequence aligned
with the genomic DNA sequence and the translated amino acid sequence; both U deletions
and U insertions are indicated by gaps in the edited sequence or the genomic sequence.

Discussion and outlook

L. tarentolae has been extensively studied for more than 30 years, with the conducted research
having covered a broad set of areas. For example, it has become a model organism to study
kDNA organization and RNA editing [67, 70,181], was genetically modified numerous times
to produce human recombinant proteins for biotechnological and biomedical research [116],
and is becoming a promising therapeutic tool to enable treatment against human leishmaniasis
[176,177], just to name a few. In this review, which is focused on the biotechnological aspects,
we tried to cover only the relevant application areas. We think that human recombinant pro-
tein expression in L. tarentolae has the potential to become a recognized alternative to mam-
malian cell lines, if the following issues are addressed accordingly: (1) Humanization of the L.
tarentolae glycoprotein expression system; (2) Detailed analysis of the T7-driven increase in
mRNA production; (3) Recombinant protein expression in different L. tarentolae strains or
phenotypes. The potential suitability of the L. tarentolae expression system for human recom-
binant full-length antibodies has been reviewed elsewhere [132]. (4) Moreover, we recommend
that the proteomes of Sauroleishmania species be analyzed and the genome of other species of
this subgenus (in addition to L. tarentolae [60] and L. adleri [2]) be fully sequenced, as this
would help to further understand the development of the genus Leishmania and its separation
into the subgenera. We will further outline each of the four mentioned points below.

Humanization of glycoproteins expressed in L. tarentolae

In general, glycoproteins play a major role, as more than 50% of all human proteins are glycosy-
lated [123]. Moreover, they are the most frequently approved recombinant therapeutic proteins
[124, 125]. To increase the homogeneity of recombinant glycoproteins (glycan pattern)
expressed in L. tarentolae, different glycosyltransferases can be transfected. Here, sialic acids are
the most important, as these terminal sugar residues directly regulate the immune response and
directly influence the serum half-life of glycoproteins, e.g., Ig [127]. Leishmania lack enzymes for
the sialic acid biosynthesis pathway [134], although terminal sialic acids (a2,3- and 02,6-linked)
were found on endogenous membrane glycoproteins of L. major and L. donovani [135-137]. To
humanize the glycosylation profile of L. tarentolae, the TS gene can be integrated to express the
TS protein, as recently suggested [182]. The TS is an enzyme of Trypanosoma species that can
transfer sialic acids to endogenous glycoproteins [183,184]. Successful expression of the T'S and
its functionality, verified by the proof of sialylated recombinant proteins, could already be dem-
onstrated with insect cells [185] and yeasts [186]. Additionally, it was also successfully expressed
in L. major. Here, the enzyme was used to investigate the influence on the virulence, not for
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recombinant protein expression [135]. TS expression in L. tarentolae would enable the produc-
tion of human-like, sialylated glycoproteins (like full-length antibodies) with a comparably low
work load and much impact for many biomedical applications.

T7-driven increase in mRNA production

It is expected that the T7-driven increase in mRNA production results in an increase in the
recombinant protein yield. However, this advantage might be a hypothetical one, as the highly
elevated mRNA production might be outstripped by the high degradation rates of exogenous
transcripts. Therefore, we suggest investigating this issue in the near future, as it is important
to validate the benefits of the L. tarentolae expression system for recombinant protein
production.

Recombinant protein expression in different L. tarentolae strains or
phenotypes

To date, the vast majority of all L. tarentolae-based research has been performed on the
TARII/UC strain, which has a partially defective mitochondrial genome [3]. It is unknown
whether this defect might have a negative impact on recombinant protein expression. The
mitochondrial genome of strain LEM-125 is still intact [3]. We suggest testing the ability of
LEM-125 to produce recombinant proteins, either in promastigotes or in amastigotes/amasti-
gote-like cells. The cell-free protein expression system could also be applied here. Our rationale
to use amastigotes/amastigote-like cells is the following: promastigotes are adapted to a life as
extracellular motile cells in the gut of insects, whereas amastigotes are adapted to survive the
intracellular conditions of immune cells of vertebrate hosts [187]. For instance, promastigote
survival depends on the adhesion of parasitic surface gycosylphosphatidylinositol (GPI) pro-
teins to receptors on the cells lining the intestinal wall of the insect vector [188]. In contrast,
strong reduction of surface GPI proteins in amastigotes [170,189] is an important adaptation
process to survive in vertebrates, resulting in decreased immune response [137]. Hence, with-
out differentiation, amastigotes would not be able to establish infections in macrophages, and
promastigotes would not be able to survive/reproduce in the gut of insects. In cell culture,
Leishmania are often maintained as promastigotes. Mimicking phagolysosomal conditions can
induce amastigote-like cells of L. tarentolae [162,163]. However, induction of amastigote-like
cells was only successful with L. tarentolae strain LEM-125 and not for the sequenced strain
TARII/UC [4]. The question is: Would amastigotes or amastigote-like cells be more suitable
for human recombinant protein expression because of their evolutionarily acquired adapta-
tions to the vertebrate host? It is known that, during differentiation, the PTM of endogenous
proteins changes [190]. This could also be the case for recombinant proteins, resulting in a
higher homogeneity of the PTM to the mammalian counterpart. This raises the question of
whether the LEM-125 strain would be a better recombinant protein expression alternative.
However, it is mostly unknown whether the change of the phenotype has an influence on the
translation of the introduced gene, protein expression, and modification. So far, only green
fluorescent protein (GFP) was episomally expressed in amastigote-like cells, but without
recombinant protein analysis [106], showing that despite morphological change, the gene was
still transcribed and led to a functional product. Alternatively, an avirulent designed Leish-
mania strain of, for example, L. major, could be used to produce human recombinant proteins.
In summary, it needs to be investigated in the future whether amastigote-like cells of L. taren-
tolae strain LEM-125 or amastigotes/amastigote-like cells of human-pathogenic species are
better suited (higher homogeneity of PTMs to the original counterpart) for human recombi-
nant protein expression than promastigotes.
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Genomic analyses of more Sauroleishmania species

There are 21 known species of the subgenus Sauroleishmania [1], and most of them have not
been fully sequenced so far. They represent an evolutionary product of switching from mam-
malian to reptilian hosts. Based on the transient infection capabilities of L. adleri and L. taren-
tolae (LEM-125) [2, 4], one could assume that both species might have retained a relic
capability of infecting mammals, or it is a contaminative/nonspecific infection. This question
can be addressed by a comparable genomic analysis involving additional sauroleishmanial and
human-pathogenic species, or by using infection models with mice or human cell cultures.

When the previously suggested issues are all successfully applied, it can be expected that
the L. tarentolae expression system will be an adequate alternative and work on par with mam-
malian cell lines and therefore be much more attractive for applied science in the medical
sector.

Key learning points

1. The Sauroleishmania subgenus includes 21 species of sand fly-transmitted para-
sites, which primarily infect reptiles (lizards) as vertebrate hosts. Molecular phylo-
genetic data unequivocally support the evolutionary origin of Sauroleishmania
from parasites of mammals.

2. The two most frequently used L. tarentolae strains are the TAR strains [TARII/
UC, from which the P10 strain from Jena Bioscience was most likely derived, and
TARVI] and the LEM strains (LEM-87, LEM-115, LEM-124, LEM-125, and LEM-
306). Strain LEM-125 was shown to transiently infect mammals, including
humans, which could raise the question of its biosafety level, making future studies
on strain-related differences absolutely necessary.

3. Recombinant protein production in L. tarentolae is a promising application area
because of its ease and low cost of cultivation, the high yields of recombinant pro-
teins, and a homogenous human-like glycosylation pattern.

4. Ttis anticipated that successful full-length antibody expression may be achieved
within a few years, either in promastigotes of L. tarentolae strain TARII or in
amastigote-like cells of strain LEM-125, or in an avirulent strain of a human-path-
ogenic Leishmania species. Humanization of the glycosylation profile can be
achieved with, for example, the transfer of TS gene.

5. Recombinant L. tarentolae can be used for the generation of prophylactic vaccines
or for the development of a therapeutic approach against human leishmaniasis.
This has been successfully shown in a mouse model.
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