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Abstract

Background

Daboia siamensis (Eastern Russell’s viper) is a medically important snake species found
widely distributed across Southeast Asia. Envenomings by this species can result in sys-
temic coagulopathy, local tissue injury and/or renal failure. While administration of specific
antivenom is an effective treatment for Russell’s viper envenomings, the availability of, and
access to, geographically-appropriate antivenom remains problematic in many rural areas.
In this study, we determined the binding and neutralizing capability of antivenoms manufac-
tured by the Thai Red Cross in Thailand against D. siamensis venoms from four geographi-
cal locales: Myanmar, Taiwan, China and Thailand.

Methodology/Principle findings

The D. siamensis monovalent antivenom displayed extensive recognition and binding to
proteins found in D. siamensis venom, irrespective of the geographical origin of those ven-
oms. Similar immunological characteristics were observed with the Hemato Polyvalent anti-
venom, which also uses D. siamensis venom as an immunogen, but binding levels were
dramatically reduced when using comparator monovalent antivenoms manufactured
against different snake species. A similar pattern was observed when investigating neutrali-
zation of coagulopathy, with the procoagulant action of all four geographical venom variants
neutralized by both the D. siamensis monovalent and the Hemato Polyvalent antivenoms,
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while the comparator monovalent antivenoms were ineffective. These in vitro findings trans-
lated into therapeutic efficacy in vivo, as the D. siamensis monovalent antivenom was found
to effectively protect against the lethal effects of all four geographical venom variants precli-
nically. Assessments of in vivo nephrotoxicity revealed that D. siamensis venom (700 pg/kg)
significantly increased plasma creatinine and blood urea nitrogen levels in anaesthetised
rats. The intravenous administration of D. siamensis monovalent antivenom at three times
higher than the recommended scaled therapeutic dose, prior to and 1 h after the injection of
venom, resulted in reduced levels of markers of nephrotoxicity and prevented renal morpho-
logical changes, although lower doses had no therapeutic effect.

Conclusions/Significance

This study highlights the potential broad geographical utility of the Thai D. siamensis mono-
valent antivenom for treating envenomings by the Eastern Russell’s viper. However, only
the early delivery of high antivenom doses appears to be capable of preventing venom-
induced nephrotoxicity.

Author summary

Snakebite is a major public health concern in rural regions of the tropics. The Eastern
Russell’s viper (Daboia siamensis) is a medically important venomous snake species that is
widely distributed in Southeast Asia and Southern China, including Taiwan. Envenoming
by D. siamensis causes several systemic pathologies, most notably acute kidney failure and
coagulopathy. The administration of antivenom is the mainstay therapeutic for treating
snakebite, but in remote areas of Southern China access to antivenom is limited, and can
result in the use of inappropriate, non-specific, antivenoms and treatment failure. There-
fore, maximizing the utility of available efficacious antivenom is highly desirable. In this
study, we investigated the utility of the widely available Thai Red Cross antivenoms for
binding to and neutralizing D. siamensis venoms sourced from four distinct locales in
Asia. Since the effectiveness and antivenom dose required to prevent D. siamensis venom-
induced nephrotoxicity has been controversial, we also examined the preclinical efficacy
of D. siamensis antivenom at preventing this pathology in experimentally envenomed
anaesthetised animals. Our findings suggest that monovalent antivenom from Thailand,
which is clinically effective in this country, has highly comparable levels of immunological
binding and in vivo venom neutralization to D. siamensis venoms from China, Taiwan
and Myanmar. We also show that the early administration of high therapeutic doses of
antivenom are likely required to neutralize nephrotoxins and thus prevent acute renal fail-
ure following envenoming. Our findings suggest that certain Thai Red Cross antivenoms
likely have wide geographical utility against D. siamensis venom and therefore may be use-
ful tools for managing snakebite envenomings by this species in the absence of locally
manufactured therapeutics.

Introduction

Snake envenoming is one of the world’s most lethal neglected tropical diseases, resulting in as
many as 138,000 deaths per year [1]. Snakebite predominately affects the rural poor
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populations of the tropics, with the regions of sub-Saharan Africa, South Asia and Southeast
Asia suffering the greatest burden of both morbidity and mortality [1,2]. One of the most med-
ically important groups of venomous snakes are the Russell’s vipers (Viperidae: Daboia spp.).
These relatively large, predominately nocturnal, snakes have a wide distribution across much
of southern Asia [3] and have been classified into two species, the Western Russell’s viper
(Daboia russelii) and the Eastern Russell’s viper (Daboia siamensis). The Western Russell’s
viper is found distributed across India, Pakistan, Bangladesh and Sri Lanka, while the Eastern
Russell’s viper has a wide distribution throughout Southeast Asia and Southern China, includ-
ing Taiwan [4,5] (Fig 1). In 2016, the World Health Organization (WHO) categorized D. sia-
mensis as a snake causing high levels of morbidity and mortality in Myanmar, Thailand and
some Indonesian islands, i.e. Java, Komodo, Flores and Lomblen [6].

Envenomings by medically important Asian vipers are typically clinically characterized by
hemodynamic alterations. Clinical outcomes following D. siamensis envenoming can include:
local painful swelling at the bite-site, conjunctival oedema, systemic coagulopathy and/or
haemorrhage, while hypopituitarism has also been reported [7]. In addition, D. siamensis
venom can induce renal toxic effects (nephrotoxicity), which are characterized by hematuria,
tubular necrosis and acute renal failure [8]. These variable clinical signs observed following
snakebites are a consequence of Russell’s viper venoms exhibiting considerable variation
across their range, resulting in differences in their toxin profiles, which in turn impacts upon
clinical outcomes observed in snakebite victims [9].

Two major snake venom toxin families are thought to be predominately responsible for the
bleeding disorders and renal failure observed following systemic envenoming by D. siamensis,
the enzymatic phospholipases A, (PLA;) and snake venom metalloproteinases (SVMP). Both
toxin types are often found to be major components of viper venoms [10], but each toxin fam-
ily is known to encode multiple isoforms that vary among species and are capable of exhibiting
distinct functional activities [10,11]. Such protein neo-/sub-functionalization is thought to be
underpinned by multiple gene duplication events coupled to accelerated bursts of adaptive
evolution [12-14]. Consequently, snake venom PLA,s are responsible for several pharmaco-
logical activities including neurotoxicity, myotoxicity, anticoagulant effects, smooth muscle
relaxation/hypotension and hypersensitivity [15], while SVMP functional activities include the
activation of different coagulation factors and the degradation of endothelial cell membranes,
resulting in coagulopathy and haemorrhage [16]. Other toxin families (e.g. L-amino acid oxi-
dases, serine proteases and C-type-lectin-like proteins [9]) likely contribute to pathology fol-
lowing envenoming by Russell’s vipers, and together with the PLA, and SVMPs, these toxin
families comprise >90% of all of the toxins found in the venom proteome [17]. In terms of
specific toxins, prior studies have demonstrated that the SVMP RVV-X is a potent activator of
Factor X [18], and thus contributes to the depletion of coagulation factors (notably fibrino-
gen), resulting in a syndrome similar to disseminated intravascular coagulation (DIC), termed
venom-induced consumption coagulopathy (VICC) by some authors [19]. Moreover, both
PLA, and SVMP toxins from D. siamensis venom have been demonstrated to initiate kidney
injury via an increase in renal vascular resistance or renal ischemia, resulting in decreases in
renal blood flow, glomerular filtration rate and urine flow [20,21]. Finally, D. siamensis venom
fractions enriched in PLA, and SVMP toxins have been demonstrated to cause marked
decreases in mean arterial pressure and also promoted the release of inflammatory mediators
in aneasthetised dogs [20].

The only effective treatment for systemic snakebite envenoming is specific antivenom,
which consists of polyclonal antibodies isolated from hyperimmune animal serum/plasma.
Non-pharmacological treatments, which include the local use of tourniquets, cross-shaped
skin incision, local suction or irrigation, or the administration of non-specific snake
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Fig 1. The geographical distribution of Daboia siamensis in Asia [4, 5].
https://doi.org/10.1371/journal.pntd.0007338.9g001

antivenom (i.e. made against distantly related snake species to that responsible for the snake-
bite) are typically ineffective, and potentially harmful [22]. There are two types of specific anti-
venom available for treating D. siamensis envenomings; monovalent (or monospecific)
antivenom, which comprises of polyclonal antibodies derived from equine plasma hyperim-
munized with D. siamensis venom only, and polyvalent (or polyspecific) antivenom, which
consists of antibodies sourced from animals immunized with D. siamensis venom and venoms
from other medically important snake species.

An example of this latter type of antivenom is made by The Queen Saovabha Memorial
Institute (QSMI) of the Thai Red Cross Society in Bangkok, Thailand, which produces the
Hemato Polyvalent Snake antivenom (HPAV) for treating viper envenomings from D. siamen-
sis, Calloselasma rhodostoma and Trimeresurus albolabris. QSMI also produce monovalent
antivenoms for D. siamensis (DSAV), C. rhodostoma (CRAV) and T. albolabris (TAAV), while
other monospecific products against D. siamensis are manufactured elsewhere in Asia, such as
Myanmar (Myanmar Pharmaceutical Factory) and Taiwan (Centre for Disease Control). Pre-
vious studies have reported a degree of cross-neutralizing effect between the HPAV and DSAV
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antivenoms from Thailand against the toxicity of D. siamensis venoms from different geo-
graphical localities, i.e. Myanmar and Taiwan, in preclinical studies and enzyme-link-immu-
nosorbent assay (ELISA) binding experiments, respectively, although their efficacy was
seemingly lower than that of local antivenoms made using venom from those localities [17,23].
Despite these three antivenoms being manufactured for treating D. siamensis envenomings in
Mpyanmar, Taiwan and Thailand, respectively, the high burden of D. siamensis envenoming in
Southern China has resulted in a therapeutic need that current remains unfilled [17]. This
therapeutic shortfall places an onus on the scientific community to robustly assess the likely
therapeutic value of alternative antivenoms for treating D. siamensis envenomings in countries
where antivenom supply may be restricted.

In addition, while antivenom remains the primary treatment for Russell’s viper envenom-
ings across Asia, there has been considerable debate regarding its clinical effectiveness against
venom-induced nephrotoxicity. In part, this stems from questions relating to the most appro-
priate dosing regimen for antivenom, and a lack of robust clinical studies relating to this topic.
For example, even the use of high doses of monospecific antivenom (> 4 vials; 40 ml) in
envenomed patients has been said to result in limited success in reversing progressive renal
failure [7]. Consequently, dialysis (either peritoneal dialysis or haemodialysis) is often relied
upon to manage such severe clinical outcomes. Despite the value of preclinical models for
exploring antivenom efficacy, little research has been undertaken on the therapeutic value of
antivenom at treating D. siamensis-induced nephrotoxicity. Leong et al. (2014) demonstrated
that the Hemato Polyvalent antivenom (200 ul) exerted a protective effect on the occurrence of
hematuria and proteinuria following the injection of D. siamensis venom within 4 h. However,
due to the restricted monitoring time employed in this study, key markers of nephrotoxicity,
such as blood urea nitrogen (BUN) and creatinine, were not detected [23].

In this study, we sought to further investigate the likely efficacy of antivenom against D. sia-
mensis venoms sourced from different geographical locales. We used a variety of in vitro
immunological and functional assays and in vivo preclinical assessments of antivenom efficacy
to assess the binding and neutralising effect of Thai (QSMI) antivenoms against D. siamensis
venoms sourced from Thailand, Myanmar, Taiwan and southern China. Subsequently, we
investigated the protective effect of the monospecific D. siamensis antivenom (DSAV) against
the nephrotoxicity caused by D. siamensis venom in vivo, by quantifying plasma blood urea
nitrogen (BUN) and creatinine levels in experimentally envenomed rats. Our findings demon-
strate extensive antivenom cross-reactivity and neutralization of the geographical venom vari-
ants of D. siamensis, but that nephrotoxicity caused by D. siamensis venom is only inhibited
when antivenom is delivered early and in high volumes. These results strongly advocate for
further clinical research to be undertaken to validate the efficacy of D. siamensis antivenom
across South-East Asia, particularly in (i) regions where antivenom availability is currently
restricted and (ii) systemically envenomed snakebite victims suffering from nephrotoxicity.

Materials and methods

Snake venoms

Specimens of Thai Russell’s viper (D. siamensis) were maintained in captivity at QSMI, The
Thai Red Cross Society Bangkok, Thailand. Venom was extracted from several snakes (> 20
specimens, including both male and female), pooled, and then frozen before being freeze-
dried. Pooled D. siamensis venoms from Myanmar (Batch number: 21/30) and Taiwan (Batch
number: 21/34) were sourced from the Centre for Snakebite Research & Interventions’ (Liver-
pool School of Tropical Medicine) historical venom archive, from an unknown number of
snakes. Venom from Chinese D. siamensis was pooled from three specimens of unknown sex
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from Guangxi Province. All venom samples were stored at 4°C in lyophilized form, prior to
use. Venoms were weighed, reconstituted in phosphate-buffered saline (PBS) and venom pro-
tein concentrations measured using a Nanodrop (ThermoFisher) and BCA protein assay
(Pierce Biotechnology, Rockford, IL, USA).

Antivenoms

Hemato Polyvalent Snake antivenom (HPAV; Lot NO: HP00218, expiry date 03/2023), mono-
valent antivenoms for D. siamensis (DSAV; Lot NO: WR00117, expiry date 11/2022), C. rho-
dostoma (CRAV; Lot NO: CR00316, expiry date 06/2021) and T. albolabris (TAAV; Lot NO:
TA00317, expiry date 07/2022) were purchased from QSMI of Thai Red Cross Society, Bang-
kok, Thailand. The freeze-dried antivenoms were dissolved with pharmaceutical grade water
supplied by the manufacturer. The dissolved antivenoms were then stored at 4°C prior to use.
The protein concentrations were measured using a Nanodrop (ThermoFisher) and BCA pro-
tein assay (Pierce Biotechnology, Rockford, IL, USA). Normal horse IgG (1 mg/mL; Bio-Rad,
UK) was used as negative control.

Immunological assays

The protein concentrations of antivenoms were adjusted to 50 mg/ml for all immunological
assays (original concentrations of reconstituted antivenoms were: HPAV, 54 mg/ml; DSAV,
21 mg/ml; CRAV, 24.5 mg/ml; and TAAV, 14 mg/ml).

End point titration (EPT) ELISA

Immunological binding activity between venoms and antivenoms were determined following
a previously described method [24]. First, 96 well ELISA plates (Nunc) were coated with 100
ng of venom (a separate plate for each Russell’s viper venom sample) prepared in carbonate
buffer, pH 9.6 and the plates incubated at 4°C overnight. Plates were washed after each stage
using six changes of TBST (0.01 M Tris-HCI, pH 8.5; 0.15M NaCl; 1% Tween 20). Next, the
plate was incubated at room temperature for 3 hours with 5% non-fat milk (diluted with
TBST) to ‘block’ non-specific reactivity. The plates were then washed and incubated (in dupli-
cate) with DSAV, CRAV, TAAV or HPAV antivenom, at an initial dilution of 1:100, followed
by 1:5 serial dilutions across the plate, and then incubated overnight at 4°C. The plates were
then washed again and incubated with horseradish peroxidase-conjugated rabbit anti-horse
IgG (1:1000; Sigma, UK) for 3 hours at room temperature. The results were visualized by addi-
tion of substrate (0.2% 2,2/-azino-bis (2-ethylbenzthiazoline-6-sulphonic acid) in citrate
buffer, pH 4.0 containing 0.015% hydrogen peroxide (Sigma, UK), and optical density (OD)
measured at 405 nm. The titre is described as the dilution at which absorbance was greater
than of the negative control (IgG from non-immunised horses; Bio-Rad, UK) plus two stan-
dard deviations.

Relative avidity ELISA

The chaotropic ELISA assay was performed as previously described [25]. In brief, the assay
was performed as per the EPT ELISA assay detailed above, except that the antivenoms and
normal horse IgG were diluted to a single concentration of 1:10,000, incubated overnight at
4°C, washed with TBST and then a chaotrope, ammonium thiocyanate (NH,SCN), added to
the wells in a range of concentrations (0-8 M) for 15 minutes. Plates were then washed again
with TBST, and all subsequent steps were the same as the EPT ELISA. The relative avidity was
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determined as the percentage reduction in ELISA OD reading (measured at 405 nm) between
the maximum (8 M) and minimum (0 M) concentration of NH,SCN.

SDS-PAGE and immunoblotting

Lyophilized D. siamensis venoms were reconstituted to 1 mg/ml in reducing protein loading
buffer and heated at 100°C for five minutes. Nine ug of venom, together with molecular weight
marker (Broad range molecular weight protein markers, Promega) was added to a 15%
SDS-PAGE gel and separated under 200 volts, with the resultant proteins visualised by staining
with Coomassie Blue R-250.

For immunoblotting, we repeated the electrophoresis experiments, except the gels were not
stained, and were instead electro-blotted onto 0.45 um nitrocellulose membranes using the
manufacturer’s protocols (Bio-Rad, UK). Following confirmation of successful protein transfer
by reversible Ponceau S staining, the membranes were incubated overnight in blocking buffer
(5% non-fat milk in TBST), followed by six washes of TBST over 30 minutes and incubation
overnight with primary antibody (i.e. the four antivenoms; HPAV, DSAV, CRAV, TAAV and
horse 1gG) diluted 1:5,000 in blocking buffer. Blots were washed as above, then incubated for 2
hours with secondary antibody—horseradish peroxidase-conjugated rabbit anti-horse IgG
(Sigma, UK) diluted 1:1,500 with PBS. Then the membrane was washed again with TBST and
visualised after the addition of DAB substrate (50 mg 3,3-diaminobenzidine, 100 ml PBS and
0.024% hydrogen peroxide; Sigma, UK).

In vitro coagulopathic activity

The neutralising effect of Thai antivenoms on the coagulopathic activity of D. siamensis ven-
oms was determined using a previously described citrated bovine plasma coagulation assay
[26]. Briefly, frozen bovine plasma (VWR International, Leicestershire, UK) was defrosted at
37°C and centrifuged to remove precipitates (20-30 s at 1400 rpm). PBS (10 pL/well) was used
as a control (PBS alone) as well as a diluent. Stock solutions of venom (100 ng/10 pL) were
manually pipetted in triplicate into the wells of a 384 well microtiter plate. The wells were then
overlaid with CaCl,; 20 mM (20 puL) and plasma (20 uL) using a Thermo Scientific Multidrop
384-autopipettor. To determine the protective effect of antivenom on clotting activity, we
scaled therapeutic doses recommended by the manufacturer to the venom dose used as chal-
lenge (i.e., 1 mL of HPAV and DSAYV per 0.6 mg of venom, 1 mL CRAYV per 1.6 mg venom,
and 1 mL TAAV per 0.7 mg venom). To prepare the mixture, either HPAV (0.17 uL or 9.2 pg/
well), DSAV (0.17 pL or 3.6 pg/well), CRAV (0.07 uL or 1.7 pg/well) or TAAV (0.15 pL or
3.6 pg/well) was mixed to the venom/PBS solution for 10 min prior to the addition of CaCl,;
20 mM (20 uL) and plasma (20 pL).

For all samples, we measured the kinetic absorbance at 25°C every 76 s for 100 cycles using
a BMG Fluorostar Omega plate reader at 595 nm (BMG LABTECH, UK). Three different
sources of data, consisting of single reading, a reading range, and average rate in time per well,
were obtained for the determination of coagulation curves. In addition, the area under the
curve (AUC) of each reaction was calculated and normalized as the percentage of venom clot-
ting activity.

Preclinical assessments of venom lethality and antivenom efficacy

Animal ethics and care. We assessed venom toxicity and antivenom efficacy in vivo using
the well-established, WHO-recommended, lethal dose 50 (LD5,) and effective dose 50 (EDs)
assays [25]. Male Jc:ICR mice were purchased from Nomura-Siam International Co. Ltd.,
Bangkok, Thailand. Animals were housed in stainless steel containers with access to food and
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drinking water ad libitum. The venom LDs assays were performed at the Department of Phar-
macology, Phramongkutklao College of Medicine using protocols approved by the Subcom-
mittee for Multidisciplinary Laboratory and Animal Usage of Phramongkutklao College of
Medicine and the Institutional Review Board, Royal Thai Army Department, Bangkok, Thai-
land (Documentary Proof of Ethical Clearance no: IRBRTA 456/2560) in accordance with the
U.K. Animal (Scientific Procedure) Act, 1986 and the National Institutes of Health guide for
the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978).

In vivo venom lethality. As an essential prerequisite to assessing antivenom efficacy, we
first determined the median murine lethal dose (LDs5,) for each of each of the four D. siamensis
venoms using WHO-recommended protocols [27]. In brief, groups of 4-5 male Jcl:ICR mice
(18-22 g) received an intravenous (i.v.) tail injection of varying doses of venom in 100 ul PBS
and, 24 hours later, the number of surviving mice in each group was recorded. The venom
LDs, (the amount of venom that causes lethality in 50% of a population of injected mice) and
corresponding 95% confidence limits of each venom were calculated using probit analysis
[28].

In vivo antivenom efficacy. We next quantified the efficacy of the Thai D. siamensis
monovalent antivenom (DSAV; Lot NO: WR00117, expiry date 11/2022) at neutralizing the
lethal effects of each of the four D. siamensis venoms. To do so, we used the median effective
dose (EDsg) assay; a WHO-recommended test for determining the least amount of antivenom
required to prevent death in 50% of a population of mice injected with a defined lethal dose of
venom. For all experiments, we used a high challenge dose of venom that equated to six times
the venom LDs, dose determined in the earlier experiments. Briefly, various doses of DSAV
were mixed with 6 x the venom LDs, determined for each of the four geographical venoms,
and the final volume made up to 200 pl with PBS. The mixture was then incubated at 37°C for
30 minutes before being intravenously injected into the tail vein of groups of 4-5 mice and, 24
hours later, the number of surviving mice in each group was recorded. The median effective
dose (EDs) and corresponding 95% confidence limits were calculated using probit analysis
[28].

In vivo measures of nephrotoxicity

Animal ethics and care. Male Sprague-Dawley rats were purchased from Nomura-Siam
International Co. Ltd., Bangkok, Thailand. Rats were housed in stainless steel containers with
access to food and drinking water ad libitum. Approvals for all experimental procedures were
obtained from the Subcommittee for Multidisciplinary Laboratory and Animal Usage of Phra-
mongkutklao College of Medicine and the Institutional Review Board, Royal Thai Army
Department, Bangkok, Thailand (Documentary Proof of Ethical Clearance no: IRBRTA 1130/
2560) in accordance with the U.K. Animal (Scientific Procedure) Act, 1986 and the National
Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No.
8023, revised 1978).

Anaesthetised rat preparation. Male Sprague-Dawley rats weighing 300-350 g were
anaesthetised using Zoletil (20 mg/kg) and Xylazine (5 mg/kg) via the intraperitoneal (i.p.)
route. Additional anaesthetic was administered throughout the experiment as required. A
midline incision was made in the cervical region, and cannulae were inserted into the right
jugular vein (for antivenom administration), carotid artery (for measurement of blood pres-
sure and sample collection) and the trachea (for artificial respiration, if required). Arterial
blood pressure was recorded using a reusable pressure transducer filled with heparinised saline
(25 U/mL). If required, normal saline (100 pl) was intravenous administered via the right jugu-
lar vein to maintain blood volume. Systemic blood pressure was monitored on a MacLab
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system (ADInstruments). The rats were kept under a heat lamp during the experiment. At the
conclusion of the experiment, the animals were euthanised by an overdose of pentobarbitone
@iv.).

Venom dose optimisation. Preliminary experiments examined the nephrotoxic effects of
D. siamensis venom via intramuscular (i.m.) doses of 100 pg/kg (e.g. 30 pg for 300 g rat),

200 ug/kg (e.g. 60 pg for 300 g rat) and 700 ug/kg (e.g. 210 ug for 300 g rat) (n = 3 per venom
dose). Venom was dissolved in 0.9% NaCl and administered i.m. using a 27-gauge needle into
the extensor muscles of the right hind limb. Venom doses < 700 ug/kg failed to induce a sig-
nificant increase in blood urea nitrogen (BUN) and creatinine within 12 hours. Subsequently,
the dose of 700 pg/kg (i.m.) was chosen to study the effectiveness of DSAV in subsequent
experiments (Supporting information 1, S1 Fig).

Determination of D. siamensis monovalent antivenom effectiveness. Where indicated,
monovalent D. siamensis antivenom (DSAV, Lot No.: WR00117, expiry date 11/2022) at two
(i.e. 0.7 mL for 300 g rat) and three times (i.e. 1.05 mL for 300 g rat) the venom/antivenom
ratio of the recommended therapeutic dose (i.e. 1 mL antivenom per 0.6 mg D. siamensis
venom) was manually administered via the jugular vein at an infusion rate of 0.25 mL/min
over 3-4 min. Control rats were injected with the same volume of normal saline (0.9% sodium
chloride, i.v.). Antivenom was administered 15 min prior, or 1 h after, venom administration.

Blood collection for determination of creatinine and blood urea nitrogen (BUN). At
various time points during the animal experiments (0, 3, 6, 9, and 12 h post-injection of
venom or 0.9% NaCl), approximately 0.5 mL of blood was taken via the carotid artery and col-
lected in to 1.5 mL Eppendorf tubes. After collection, the samples were centrifuged at 5,500
rpm for 10 min. The supernatant was stored at —-20°C for no longer than 12 h, before determi-
nation of creatinine and BUN levels. Creatinine and BUN levels were measured at 37°C via an
automated process using Flex reagent cartridges and a Dimension clinical chemistry system
supplied by Siemens Healthineers (Germany). Plasma BUN values were measuring using 340
and 383 nm wavelengths by bichromatic rate, whereas plasma creatinine level was measured
using 540 and 700 nm wavelengths using bichromatic rate.

Histopathological studies

Histopathological evaluation of the kidneys of envenomed rats was determined following a
previously described method [29]. Following blood collection at 12 h, all animals were sacri-
ficed prior to kidney isolation. Both kidneys were removed from each animal and preserved in
10% formaldehyde before being embedded in paraffin. Embedded samples were cut and
stained with hematoxylin-eosin (H&E) and/or periodic acid Schiff (PAS). Tissue examination
was performed under a light microscope (Olympus BH-2, Olympus Optical Co., Japan). Areas
in the slide with pathological changes due to typical nephrotoxicity were photographed using
an Olympus C-35AD camera (Olympus Optical Co., Japan).

Data analysis and statistics

Increases in plasma BUN and creatinine were calculated by subtracting the values of the con-
trol group from the treatment group, and then presented as mean + standard error of the
mean (SEM). The 95% confidence interval (95% CI) was also calculated. All statistical analyses
were performed using GraphPad Prism 6 (GraphPad Software Inc., USA). Multiple compari-
sons were made using one-way analysis of variance (ANOVA) followed by Bonferroni’s multi-
ple comparison test. Statistical significance was indicated where P < 0.05.
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Results

Comparison of the end-point titre of antivenoms against D. siamensis
venoms

To compare the immunological binding of Daboia siamensis antivenom (DSAV) with other
monovalent antivenoms (i.e. Calloselasma rhodostoma and Trimeresurus albolabris monova-
lent antivenoms, CRAV and TAAV respectively) and the Hemato Polyvalent antivenom
(HPAV) against D. siamensis venom, we performed end-point titration ELISA experiments.
First, the concentration of each equine F(ab’), antivenom was standardised to 50 mg/ml before
ELISAs were performed with D. siamensis venom from the four geographical localities: Thai-
land, Myanmar, Taiwan and China. Overall, the patterns of immunological binding, as evi-
denced by an initial plateau and then subsequent decline of OD value (405 nm) after
successive antivenom dilutions, was strikingly similar for each of the four venoms tested (Fig
2). The OD readings of the various antivenom/venom combinations at the 1:2,500 dilution
provide the most discriminatory comparison and, for clarity, are presented in Table 1. The
general trend, including at this dilution, revealed that the antibody-venom binding levels are
highest when using the HPAV and DSAYV antivenoms, with both displaying considerably
higher binding levels to the four different D. siamensis venoms than that of the TAAV and
CRAV monovalent antivenoms. These results were anticipated, as D. siamensis venom is used
as an immunogen for both the HPAV (among other venoms) and the DSAV products. While
the binding trends are similar, the Taiwanese Russell’s viper venom displayed the lowest bind-
ing to both DSAV and HPAYV, while venom from Thailand, followed closely by China, showed
the highest binding activity to HPAV and DSAAV (Fig 2; Table 1). Interestingly, the venom
from China displayed a surprisingly high level of binding to the CRAV and TAAV antiven-
oms, although this remained considerably lower than the binding observed with DSAV and
HPAYV (Fig 2; Table 1).

Comparison of the avidity of antivenoms against D. siamensis venoms

To determine the strength of venom-antivenom antibody binding, we performed avidity ELI-
SAs using a chaotrope to disrupt protein-protein interactions (ammonium thiocyanate,
NH,SCN). The assay was performed by exposing the same four antivenoms and four D. sia-
mensis venoms to increasing concentrations of NH,SCN, before reading binding levels by OD
(405 nm). Consistent with our findings from the EPT ELISA assay, the venom interactions
with HPAYV, closely followed by DSAV, were least affected by the presence of the chaotrope, as
evidenced by the lowest percentage reduction in OD after 4M NH,SCN treatment against each
of the four Russell’s viper venoms (Fig 3, Table 2). The avidity of both these antivenoms against
all D. siamensis venoms was considerably stronger than that observed with CRAV and TAAV
(Fig 3, Table 2). However, in contrast to the EPT ELISA, the strength of binding varied among
the geographical variants of D. siamensis tested, with the greatest avidity detected with the
Thai venom used as an immunogen, and lowest avidity observed with the Chinese and Myan-
mar venoms (Fig 3, Table 2).

Visualising the specificity of antivenoms against D. siamensis venoms

To visualise the specificity of the various antivenoms against the venoms of D. siamensis from
Thailand, Myanmar, Taiwan and China, we performed SDS-PAGE gel electrophoresis and
western blotting experiments. The venoms (9 pg) were first resolved in a 15% SDS gel under
reducing conditions. Our analysis shows that the four venoms have broadly similar profiles,
with a variety of proteins detected across a large molecular weight range in each sample (Fig
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Fig 2. Hemato Polyvalent (HPAV) and D. siamensis monovalent (DSAV) antivenoms show extensive and comparable immunological binding to four geographical
venom variants of D. siamensis. Line graphs show the immunological cross-reactivity of four commercial antivenoms from the Thai Red Cross Society and the negative
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https://doi.org/10.1371/journal.pntd.0007338.9g002

4A). There is, however, a degree of variation in the toxic constituents observed, both in terms
of the intensity of shared venom components, and the unique presence of protein bands in
some instances (Fig 4A). Notably, a high degree of similarity was observed between the D. sia-
mensis venoms from Thailand and Taiwan, whereas the venoms from Myanmar and China
exhibited a distinct protein pattern between 10-15 kDa, a finding consistent with prior analy-
ses of Myanmar Russell’s viper venom [30]. Despite evidence of such variation, western
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Table 1. Comparison of the immunological binding between the various antivenoms and the four geographical venom variants of D. siamensis. The table displays
the optical density readings (405 nm) at 1:2,500 dilutions of the antivenoms determined by end-point titration ELISA experiments. Data displayed are means (+SD) of trip-
licate OD readings (n = 3).

Locale of Antivenom
D. siamensis venom Hemato Polyvalent D. siamensis C. rhodostoma T. albolabris
(HPAYV) (DSAYV) (CRAV) (TAAV)
Thailand** 2.19 +0.02 2.14 +0.03 1.09 +0.04 1.37 £0.02
Myanmar 2.13+£0.11 2.00 £0.16 0.74 +0.04 1.05 +0.11
Taiwan 1.86 +£0.12 1.85 +0.03 0.67 +0.04 0.91 +0.02
China 2.18 £0.03 2.11 £ 0.07 1.81 +£0.05 1.84 +0.01

** indicates the venom locale used to raise the antibodies.

https://doi.org/10.1371/journal.pntd.0007338.t001

blotting experiments with HPAV and the DSAV against each of the four D. siamensis venoms
revealed extensive immunological recognition (Fig 4C and 4D, respectively). In each case, the
vast majority of venom components observed in the SDS-PAGE profiles were recognised by
the antibodies of the two antivenoms with high intensity, and little variation was observed
between the two antivenoms (Fig 4C and 4D). In contrast, the CRAV and TAAV monovalent
antivenoms displayed almost a complete absence of immunological recognition to the various
D. siamensis venoms tested (Fig 4E and 4F, respectively).

Quantifying the coagulopathic venom effects and their neutralization by
antivenom

We next quantified the coagulopathic effect of the Thai D. siamensis venom (100 ng) using a
small scale plasma coagulation assay, which revealed rapid and potent coagulation, consistent
with previous studies using D. russelii venom [26]. Following the addition of DSAV at 1x, 2x
and 3x the scaled recommended therapeutic dose, we observed significant inhibition of coagu-
lation with each antivenom treatment (p < 0.05 vs venom only control) (Supporting Informa-
tion, S2 Fig). We therefore used the 1x recommended therapeutic dose of DSAV (3.6 pg/well)
as a potentially discriminatory dose to compare the relative neutralizing capability of the three
other antivenoms (1x recommended therapeutic dose corresponds to: 9.2 pg/well for HPAV,
1.7 ug/well for CRAV, and 3.6 pg/well for TAAV) against the Thai D. siamensis venom. HPAV
exhibited significant inhibition of coagulopathic venom activity, in a manner highly compara-
ble with DSAV. Consistent with the lower levels of immunological binding observed in our
earlier experiments, the CRAV and TAAV monovalent failed to inhibit the coagulopathic
activity of Thai Russell’s viper venom (Supporting Information, S2 Fig).

We then assessed the ability of the two antivenoms (DSAV and HPAV) exhibiting neutralizing
potential against the Thai D. siamensis venom, to neutralize the coagulopathic venom effects of D.
siamensis venoms from Myanmar, Taiwan and China. All three of these venoms (100 ng) caused
rapid clotting activity comparable with that of the Thai venom (Fig 5). Despite the venom varia-
tion previously observed, both the DSAV and HPAV antivenoms prevented the rapid coagulation
induced by all of the D. siamensis venoms when used at 1x the scaled recommended therapeutic
dose (n = 3, P< 0.05, one-way ANOVA, followed by Bonferroni’s -test, Fig 5).

Neutralisation of venom lethality in vivo by D. siamensis monovalent
antivenom

To assess whether these promising in vitro immunological and functional assay findings trans-
lated into in vivo venom neutralization, we employed the WHO-recommended murine LDs,
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https://doi.org/10.1371/journal.pntd.0007338.g003

and EDs assays using venom from the four geographical variants of D. siamensis and the Thai
D. siamensis monovalent antivenom (DSAV). The lethal effects (expressed as murine LDs;s) of
the four D. siamensis venoms ranged from 4.89 (China) to 10.40 (Thailand) pg/mouse

(Table 3). However, the 95% confidence limits of these LD5qs overlapped between the four
venoms, indicating there is likely no significant difference in venom potencies (Table 3). Next,
we challenged groups of mice with six times the respective LDs, dose of venom and calculated
the antivenom effective dose (EDs5,) of the DSAV antivenom against each geographical variant
of D. siamensis. Despite the high venom dose used as challenge, the DSAV antivenom
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Table 2. Comparisons of the avidity between the various antivenoms and the four geographical venom variants of D. siamensis. The table displays the percentage
reduction in optical density (405 nm) readings after the addition of 4M NH,SCN as a chaotrope, as determined by avidity ELISA experiments.

Locale of Antivenom
D. siamensis venom Hemato Polyvalent D. siamensis C. rhodostoma T. albolabris
(HPAV) (DSAV) (CRAV) (TAAV)
Thailand** 2.66 6.64 71.06 65.26
Myanmar 16.28 29.97 74.19 57.34
Taiwan 13.10 19.32 48.43 51.15
China 26.22 27.19 79.20 65.52

** indicates the venom locale used to raise the antibodies.

https://doi.org/10.1371/journal.pntd.0007338.t002

successfully prevented lethality caused by all four D. siamensis venoms, supporting earlier find-
ings suggesting antivenom efficacy despite venom variation (Table 3). However, the preclinical
efficacy of DSAV varied. Unsurprisingly, its efficacy was greatest against the venom locale
used for its manufacture (Thailand; EDs5, 17.00 pl per mouse), but we also observed highly
comparable neutralization of D. siamensis venom from Taiwan (29.16 pl per mouse; overlap-
ping 95% confidence intervals). Despite successful neutralization, reductions in efficacy were
observed against the venoms from Myanmar (60.00 pl per mouse) and China (49.99 pl per
mouse), suggesting that larger therapeutic doses may be required to treat snakebite victims in
these regions, should the antivenom be used clinically in the absence of locally manufactured
products.

The effectiveness of DSAV on Russell’s viper-induced nephrotoxicity

Significant increases in plasma BUN levels were observed following the administration of Thai
D. siamensis venom (700 pg/kg) via the intramuscular (i.m.) route into the anaesthetised rat,
when compared to the control group (Supporting information, S1 Fig). Time course sampling
(every three hours) revealed that BUN increased at each time point up to the end of the experi-
ment (12 hrs, Fig 6A). The intravenous administration of DSAV (i.v.) at 3x the scaled recom-
mended therapeutic dose (i.e., 1 mL per 0.6 mg of D. siamensis venom) prior to the injection
of venom resulted in a significant reduction in plasma BUN levels compared to the venom
only controls (n = 4-5, P < 0.05) (Fig 6A). However, no significant reduction in BUN levels
was observed with a reduced therapeutic dose of 2x that recommended clinically. The adminis-
tration of antivenom 1 h after the i.m. administration of venom also did not significantly
decrease plasma BUN levels compared to the administration of venom alone (n = 4-5,

P < 0.05, one-way ANOVA, followed by Bonferroni’s ¢-test, Fig 6B).

In addition to BUN, the intramuscular administration of D. siamensis venom (700 pg/kg)
also resulted in significant increases in plasma creatinine levels compared to the control group
(Fig 7A and 7B). Creatinine levels also increased over time and were significantly reduced
when DSAYV at 3x the recommended therapeutic dose (n = 4-5, P < 0.05) was intravenously
administration prior to the injection of venom, but no significant effect was observed when 2x
the recommended dose was administered (Fig 7A). However, in contrast with BUN, the
administration of antivenom (i.v., infusion; 3x recommended titre) 1 h after the i.m. adminis-
tration of venom caused a significant decrease in plasma creatinine compared to the adminis-
tration of venom alone (n = 4-5, P < 0.05, one-way ANOVA, followed by Bonferroni’s t-test,
Fig 7B).

Histopathological analysis of rat kidneys dissected at the 12 h time point following venom
administration (700 pg/kg; i.m.) exhibited mild to moderate morphological changes compared
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Fig 4. The protein profiles of the four D. siamensis venoms and their immunorecognition when probed with
antivenoms from the Thai Red Cross Society. (A) SDS-PAGE analysis of D. siamensis venoms from Thailand (TH),
Myanmar (MY), Taiwan (TW) and China (CN). Western blotting experiments performed with the four D. siamensis
venoms and: (B) the negative control (normal horse IgG), (C) the Hemato Polyvalent antivenom (HPAV), (D) the D.
siamensis monovalent antivenom (DSAYV), (E) the C. rhodostoma monovalent antivenom (CRAV), and (F) the T.
albolabris monovalent antivenom (TAAV).

https://doi.org/10.1371/journal.pntd.0007338.g004
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Fig 5. The procoagulant activity of the four different D. siamensis venoms and their neutralization by the DSAV and HPAV antivenoms. (A) Thailand, (B)
Myanmar, (C) Taiwan and (D) China. The antivenoms were tested at the manufacturer’s recommended therapeutic dose. The data represents kinetic profiles of clotting
from the plasma coagulation assay displayed as mean areas under the curve from triplicate measurements, transformed into percentage of the venom only control, and
error bars on treatment groups represent SEM. * P < 0.05, compared to D. siamensis venom alone (one-way ANOVA, followed by Bonferroni t-test).

https://doi.org/10.1371/journal.pntd.0007338.9g005

with the negative control (Fig 8F). These changes were characterized by the presence of hyaline
cast, dilatation of renal capillary, diffuse or focal glomeruli and/or congestion of interstitial
vessels (Fig 8A) and tubular injury (Fig 8B) with loss of brush border. While the pre-adminis-
tration of D. siamensis antivenom (3 x recommended therapeutic dose, i.v.) prevented mor-
phological changes of the kidney (Fig 8E), the administration of antivenom (3 x recommended
therapeutic dose, i.v.) 1 h after venom delivery only partially prevented venom-induced vessel
congestion, and tubular injury (Fig 8C and 8D, respectively).
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Table 3. Venom lethality and venom-neutralising efficacy of D. siamensis monovalent antivenom (DSAV). The
venom lethality for each geographical variant of Daboia siamensis is expressed as the Median Lethal Dose (LDs). The
venom-neutralising efficacy (ED5,) was determined for DSAV against 6xLDs, doses of venom from each of the four
geographical variants of D. siamensis. 95% confidence limits are displayed in parentheses.

Locale of Venom
D. siamensis venom LDs, (pg/mouse)
Thailand 10.40 (5.61-19.26)
Myanmar 6.00 (3.26-11.04)
Taiwan 6.70 (3.26-13.77)
China 4.89 (4.11-5.83)

Antivenom (DSAYV)
EDs, (uL/mouse)
17.00 (10.88-26.56)
60.00 (40.58-88.70)
29.16 (23.75-35.79)
49.99 (47.23-52.90)

https://doi.org/10.1371/journal.pntd.0007338.t003

Discussion

Snakes of the genus Daboia (Russell’s vipers; D. siamensis and D. russelii) are widely distrib-
uted across Asia and bites by these species cause thousands of fatalities each year. The mainstay
of treatment for Russell’s viper envenoming is the administration of polyclonal antibodies,
known as monovalent or polyvalent antivenoms. However, the treatment of systemic enven-
oming caused by D. siamensis has long been problematic in many Asian countries, due to chal-
lenges related to the access of antivenom and the dosing regimen used to effect cure. For
example, in southern parts of mainland China, where envenoming by D. siamensis poses a sub-
stantial health problem, access to monovalent antivenoms is very limited, which has resulted
in the use of non-specific or species-inappropriate antivenoms, leading to reports of treatment
failures and mortality [17]. Herein, we examined the effectiveness of the Thai monovalent D.
siamensis (DSAV) and Hemato Polyvalent (HPAV) antivenoms against four different geo-
graphical variants of D. siamensis using in vitro biochemical and immunological assays. We
also used animal models to determine the preclinical efficacy of the DSAV antivenom against
the nephrotoxic effects and lethality caused by D. siamensis venom.

We first used a range of immunological assays to assess the amount of binding, strength of
binding and specificity of antivenom antibodies against D. siamensis venoms from Thailand,
Myanmar, Taiwan, and China. Both end point titration and avidity ELISA experiments dem-
onstrated substantial cross-reactivity between all four D. siamensis venoms and the DSAV and
HPAYV antivenoms, and very little cross-reactivity with the control antivenoms used (CRAV
and TAAV; neither of these products use D. siamensis as an immunogen). The EPT ELISA
showed that D. siamensis venoms from Myanmar, Taiwan, and China are well recognised by
these two commercial antivenoms, with binding levels highly comparable to those observed
with the Thai venom (Fig 2), which was used for immunization during antivenom production.
The avidity ELISA was more discriminatory, with the strength of antibody-venom protein
binding greatest for both antivenoms against the Thai D. siamensis venom (Fig 3). These
results are in line with a previous study, which showed that the Thai DSAV antivenom exhibits
immunoreactivity to D. siamensis venoms from Taiwan and Guanxi, South China, but to a
lesser extent than the binding observed with Chinese monovalent antivenom [17].

Prior proteomic studies have demonstrated that D. siamensis venom from Myanmar con-
tains at least six major protein families; serine proteinases, metalloproteinases, PLA,, L-amino
acid oxidases, vascular endothelial growth factors and C-type lectin-like proteins [9]. In our
SDS-PAGE analysis, we find that D. siamensis venom from Myanmar and China displayed
high intensity protein bands at around 10-15 kDa, which differed from the highly comparable
venom protein profiles of the Taiwanese and Thai D. siamensis venoms (Fig 4A). However,
western blotting experiments showed that both the DSAV and HPAV antivenoms recognise
the vast majority of venom proteins present in these venoms, despite the element of venom
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Fig 6. High doses of D. siamensis monovalent (DSAV) antivenom are required to abrogate increased plasma BUN levels caused by the
administration of Thai D. siamensis venom. (A) The graphs show increases in the blood urea nitrogen (BUN) concentrations of rats administered with
(i) D. siamensis venom (700 ug/kg, i.m.), and (ii) venom alongside the pre-administration of DSAV at two times the recommended therapeutic dose and
(iii) venom alongside the pre-administration of DSAV at three times the recommended therapeutic dose. (B) Prior administration of DSAV at three
times the recommended therapeutic dose significantly prevented the increase plasma BUN compared with antivenom given 1 h after venom. Data is
displayed for BUN of rats administered with (i) D. siamensis venom (700 pg/kg, i.m.), (ii) venom alongside the pre-administration of DSAV at three
times the recommended therapeutic dose, and (iii) venom and antivenom (3x recommended dose) 1 hr after venom administration. The data displayed
is presented as increased levels compared to the control (normal saline, n = 4-5) and represent mean measurements (n = 4-5), with error bars
representing SEM. * P < 0.05, compared to D. siamensis venom alone (one-way ANOVA, followed by Bonferroni ¢-test).

https://doi.org/10.1371/journal.pntd.0007338.g006

variation present in the Myanmar and China geographical variants (Fig 4C and 4D). The
exception to this is perhaps proteins observed in the 50-100 kDa molecular weight range,
where lower binding between both antivenoms and the venoms was observed, with those from
Myanmar and Taiwan exhibiting the lowest cross-reactivity. While immunological assays
alone cannot be used to define the likely preclinical efficacy of an antivenom [25,31], strong
immunological characteristics are an essential prerequisite for venom neutralization in vivo.
Thus, our findings from ELISA and immunoblotting experiments suggested that the Thai
DSAV and HPAV antivenoms may neutralise D. siamensis venom from different parts of its
range, and thus may be a useful clinical tool across Southeast Asia.

To test this hypothesis, we used preclinical models of antivenom efficacy to assess whether
the DSAV antivenom neutralised D. siamensis venom from the different geographical locales
in vivo. Our findings demonstrate that this monovalent antivenom was effective at neutralising
venom-induced lethality by all four venoms, albeit with varying efficacy. The result of these
experiments demonstrated some correlation with our immunological assays, particularly the
relative avidity ELISA and the SDS-PAGE protein profiles, as the DSAV antivenom was most
effective at neutralising the compositionally similar venoms from Thailand and Taiwan.
Reductions in preclinical efficacy were observed against the venoms from China and Myan-
mar, suggesting that while the clinical use of this antivenom may be valuable for treating vic-
tims of D. siamensis snakebite in these regions, higher therapeutic doses may be required to
effect cure. Future clinical studies will be required to investigate this further. These findings
do, however, further reinforce the notion that antivenoms are most effective at neutralising
venom from the locality used in the immunisation process, and that alternative therapeutics
should perhaps only be used in the absence of products specific to the particular region in
question. Furthermore, in the case of D. siamensis, our results suggest that the other D. siamen-
sis antivenoms available in south-east Asia (e.g. those manufactured by Myanmar Pharmaceu-
tical Factory and Taiwan Centre for Disease Control), should also be explored in vivo for their
likely cross-neutralising effects against D. siamensis venom sourced from snakes from neigh-
bouring countries, in the hope that multiple products will be found to be effective across the
region, thereby de-risking antivenom supply challenges in the region.

Envenoming by snakes of the genus Daboia manifest in a variety of clinical outcomes. For
example, in Sri Lanka, some bites by D. russelii russelii have been reported to cause neurotoxic-
ity characterized by flaccid paralysis, myotoxicity associated with skeletal muscle breakdown,
and coagulopathy [32,33]. In the case of D. siamensis, two of the most severe and common
clinical outcomes observed following envenoming by this species are systemic coagulopathy
and acute renal failure [7,34]. Unfortunately, such signs are common when antivenom therapy
is delayed or absent, and in a prior study resulted in over 70% of systemically envenomed Tai-
wanese victims presenting with thrombocytopenia, hemolysis and acute renal failure [35]. Rus-
sell’s viper venom is thought to cause systemic coagulopathy via procoagulant toxins (e.g.
RVV-X and RVV-V) potently activating the clotting factors Factor X and Factor V [36]. Con-
tinual activation of the blood coagulation cascade results in the depletion of clotting factors,
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Fig 7. High doses of D. siamensis monovalent (DSAV) antivenom are required to abrogate increased plasma creatinine levels caused by
the administration of Thai D. siamensis venom. (A) Plasma creatinine concentrations of rats administered with (i) D. siamensis venom

(700 pg/kg, i.m.), and (ii) venom alongside the pre-administration of DSAV at two times the recommended therapeutic dose and (iii) venom
alongside the pre-administration of DSAV at three times the recommended therapeutic dose. (B) Delayed administration of DSAYV still results
in significantly reduced plasma creatinine levels induced by D. siamensis venom in vivo. The graphs show plasma creatinine concentrations of
rats administered with (i) D. siamensis venom (700 pg/kg, i.m.), (ii) venom alongside the pre-administration of DSAV at three times the
recommended therapeutic dose, and (iii) venom and antivenom (3x recommended dose) 1 hr after venom administration. The data displayed
is presented as increased levels compared to the control (normal saline, n = 4-5) and represents mean measurements (n = 4-5), with error bars
representing SEM. * P < 0.05, compared to D. siamensis venom alone (one-way ANOVA, followed by Bonferroni ¢-test).

https://doi.org/10.1371/journal.pntd.0007338.9g007

most notably fibrinogen, and results in an incoagulable blood syndrome [37,38]. The presence
of coagulopathy makes victims highly vulnerable to suffering from severe haemorrhages,
which can be lethal, particularly if bleeds occur intracranially [39].

To assess the ability of the Thai antivenoms to neutralise the specific coagulopathic effects
of D. siamensis venom, we used a plasma coagulation assay previously validated using Russell’s
viper venom [26]. All four D. siamensis venoms exerted strong procoagulant effects in a com-
parable manner, but this venom activity was effectively neutralised by the DSAV, and to a
lesser extent by the HPAV, at the scaled recommended therapeutic dose (i.e. 1 mL antivenom
per 0.6 mg of D. siamensis venom). We found no significant differences between the neutralis-
ing activity of either of these antivenoms against the four different venoms. In contrast, neither
the CRAV or the TAAV showed any neutralising activity against Thai D. siamensis venom-
induced coagulopathy, which is consistent with these venoms being absent from the immuno-
gen mixture, and supports the hypothesis that different venomous snakes cause coagulopathy
via different mechanisms [40]. Overall, these findings support the notion that the extensive
immunological cross-reactivity observed among the DSAV [41] and HPAV antivenoms and
D. siamensis venoms translates into neutralisation of coagulopathic toxins, which may in turn
at least partially explain the promising preclinical efficacies observed.

Nephrotoxicity is an important complication diagnosed following envenomings by a num-
ber of hemotoxic and myotoxic snake species, such as D. siamensis and certain sea snakes (sub-
tamily Hydrophiinae) [8]. Envenoming by D. siamensis has previously been described to cause
a number of pathological renal changes including proteinuria, haematuria, rhabdomyolysis
and acute renal failure [8]. Acute renal failure has been indirectly linked to other systemic
pathologies caused by D. siamensis venom, such as intravascular haemolysis, VICC and
glomerulonephritis, while direct nephrotoxic activity has also been reported as a cause of renal
failure [8]. Prior in vivo experiments, which monitored renal hemodynamics in anaesthetised
dogs, showed that purified PLA, and SVMP toxins from D. siamensis venom played an impor-
tant role in causing renal vascular changes [20]. Furthermore, rapid increases in plasma BUN
and creatinine levels appear to be useful markers for the diagnosis of Russell’s viper venom-
induced acute renal failure [34]. In particular, elevation in plasma creatinine appears to be a
significant biomarker indicating nephrotoxicity induced by snake envenomation. For exam-
ple, a number of studies have shown that changes in plasma creatinine following envenom-
ation by Pseudechis australis (mulga snake) or Crotalus durissus (neotropical rattlesnake) is a
direct marker of either acute or chronic renal failure in both animals and humans [42-44].

It remains unclear how effective antivenom therapy is at preventing nephrotoxicity caused
by D. siamensis venom. A previous preclinical study using experimentally envenomed mice
indicated that the administration of HPAV 10 minutes prior to venom delivery effectively
inhibited hematuria and proteinuria-induced by D. siamensis venoms from Thailand and
Myanmar [23]. In this study, we used an anaesthetised rat model, and demonstrated that the
intramuscular delivery of D. siamensis venom (i.e. 700 ug/kg which is equivalent to 132 pg/kg
in human [45]) results in marked increases in both BUN and creatinine. We found progressive
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Fig 8. Morphological changes of rat kidneys following administration of Thai D. siamensis venom. (A, C, E and F) H&E stain; 400x magnification, (B
and D) PAS stain; 400x magnification. Intramuscular (i.m.) administration of Thai D. siamensis venom causes congestion of interstitial vessels (A), and
tubular necrosis (B). Administration of D. siamensis antivenom (DSAV) 1 h after venom administration partially minimized venom-induced vascular
congestion (C) and tubular necrosis (D). Intramuscular (i.m.) administration of D. siamensis venom with pre-administration of antivenom for 15 min
failed to cause morphological changes in renal tissue (E), similarly with administration of vehicle control (F). Scale bar = 50 um. * indicates interstitial
vessel congestion. Black triangular shape represents tubular injury.

https://doi.org/10.1371/journal.pntd.0007338.g008

increases in renal dysfunction up to the end of our experiments (12 h post-venom administra-
tion), with both plasma BUN and creatinine levels increasing at every 3 h sampling point.
These results are comparable to morphological changes observed in isolated kidney tissues at
12 h after venom administration indicating the presence of congestion of renal vessels and
tubular necrosis. These pathological characteristics were previously reported to be associated
with PLA, and/or SVMP toxins inducing direct nephrotoxicity and acute kidney injury [21].

DSAV administered prior to venom, or 1 h after venom delivery, significantly reduced
increases in plasma creatinine concentration, but only had a significant effect on reducing BUN
levels when the antivenom was administered prior to the venom. These findings are in general
agreement with clinical observations from D. siamensis envenoming, where the earlier adminis-
tration of antivenom prevented renal failure, whereas late treatment (>3 h) did not inhibit renal
dysfunction, as determined by increases in serum-creatinine levels [34,35]. However, further
studies are required to investigate whether some of the nephrotoxic effects of D. siamensis
venom are not effectively inhibited by antivenom, as in the case of the BUN levels monitored
here. Moreover, a relatively high volume (i.e., three times the recommended scaled therapeutic
dose) of the DSAV monovalent antivenom was required to reduce plasma creatinine and BUN
levels herein, with therapeutic doses twice that recommended found to have no significant effect.
Consequently, the administration of high initial doses of antivenom, with repeated doses subse-
quently, has been clinically recommended in the presence of rebound antigenemia and recurrent
toxicity [46]. Our preclinical findings demonstrate that higher therapeutic doses of antivenom
than currently recommended may be required to prevent severe renal toxicity, and this seems
likely to be particularly relevant when patients present to hospital in a delayed manner.

Conclusion

In this study, we demonstrate that the Thai monovalent and polyvalent antivenoms, i.e. DSAV
and HPAYV, exhibit extensive immunological binding and in vitro and in vivo neutralizing
effects against D. siamensis venoms from Myanmar, Taiwan and China. These findings suggest
that these antivenoms may be useful therapeutic agents across much of Southeast Asia, particu-
larly in the event that local antivenom supply is insufficient for the needs of the many snakebite
victims, which is perhaps most pertinent for southern parts of China. We also demonstrate in
an anaesthetised rat model that the early administration of high doses of DSAV antivenom may
be effective at preventing acute kidney injury, although further work needs to be undertaken to
better understand the nephrotoxic effect of D. siamensis venom and the disparity between its
effect on reducing the BUN and creatine levels described herein. To this end, further work is
needed to assess the neutralising effect of antivenom against nephrotoxicity caused by purified
toxins from Russell’s viper venoms, to better understand venom-induced acute renal failure and
the efficacy of snakebite therapies against this important pathological syndrome.

Supporting information

S1 Fig. Daboia siamensis venom (700 pg/kg, i.m., n = 3) significantly increases (A) plasma cre-
atinine and (B) BUN levels compared with vehicle control (saline, # = 3) in an anaesthetised
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rat model of nephrotoxicity. Data points represent readings from plasma samples collected
every 3 hrs. * P < 0.05, compared to vehicle control (one-way ANOVA, followed by Bonfer-
roni t-test).

(TIF)

S2 Fig. The procoagulant activity of D. siamensis venom and its neutralization by Thai
antivenoms. (A) The neutralizing effect of increasing concentrations of D. siamensis monova-
lent antivenom (DSAV) (1x, 2x and 3x recommended therapeutic dose) on the clotting activ-
ity of Thai D. siamensis venom. (B) The comparative neutralizing effect of monovalent
antivenoms made against D. siamensis (DSAV), C. rhodostoma (CRAV) and T. albolabris
(TAAV) venom, and the Hemato Polyvalent antivenom (HPAV), on the procoagulant venom
activity of Thai D. siamensis venom. The coagulation assay kinetically monitors the clotting of
bovine plasma, and the data displayed represents areas under the curve of the resulting kinetic
profiles, transformed into percentage of the venom only control. Data points represent the
means of triplicate measurements, and error bars represent SEM. * P < 0.05, compared to D.
siamensis venom alone (one-way ANOVA, followed by Bonferroni ¢-test).

(TIF)

$3 Fig. The kinetic profiles of procoagulant activity of the three different D. siamensis ven-
oms and their neutralization by the D. siamensis monosvalent (DSAV) and the Hemato
Polyvalent (HPAV) antivenoms. (A) Thailand, (B) Myanmar, (C) Taiwan and (D) China.
The antivenoms were tested at the recommended therapeutic dose (1x). The data displayed is
the kinetic profiles from the plasma coagulation assay and data points represent the means of
triplicate measurements, and error bars represent SEM. Normal clotting is indicated by the
red line (PBS).

(TIF)
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