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Abstract

Background

Leishmania development in the sand fly gut leads to highly infective forms called metacyclic

promastigotes. This process can be routinely mimicked in culture. Gene expression–profil-

ing studies by transcriptome analysis have been performed with the aim of studying promas-

tigote forms in the sand fly gut, as well as differences between sand fly–and culture-derived

promastigotes.

Findings

Transcriptome analysis has revealed the crucial role of the microenvironment in parasite

development within the sand fly gut because substantial differences and moderate correla-

tion between the transcriptomes of cultured and sand fly–derived promastigotes have been

found. Sand fly–derived metacyclics are more infective than metacyclics in culture. There-

fore, some caution should be exercised when using cultured promastigotes, depending on

the experimental design. The most remarkable examples are the hydrophilic acidic surface

protein/small endoplasmic reticulum protein (HASP/SHERP) cluster, the glycoprotein 63

(gp63), and autophagy genes, which are up-regulated in sand fly–derived promastigotes

compared with cultured promastigotes. Because HASP/SHERP genes are up-regulated in

nectomonad and metacyclic promastigotes in the sand fly, the encoded proteins are not

metacyclic specific. Metacyclic promastigotes are distinguished by morphology and high

infectivity. Isolating them from the sand fly gut is not exempt from technical difficulty,

because other promastigote forms remain in the gut even 15 days after infection. Leish-

mania major procyclic promastigotes within the sand fly gut up-regulate genes involved

in cell cycle regulation and glucose catabolism, whereas metacyclics increase transcript

levels of fatty acid biosynthesis and ATP-coupled proton transport genes. Most parasite’s

signal transduction pathways remain uncharacterized. Future elucidation may improve
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understanding of parasite development, particularly signaling molecule-encoding genes in

sand fly versus culture and between promastigote forms in the sand fly gut.

Conclusions

Transcriptome analysis has been demonstrated to be technically efficacious to study differ-

ential gene expression in sand fly gut promastigote forms. Transcript and protein levels are

not well correlated in these organisms (approximately 25% quantitative coincidences),

especially under stress situations and at differentiation processes. However, transcript and

protein levels behave similarly in approximately 60% of cases from a qualitative point of

view (increase, decrease, or no variation). Changes in translational efficiency observed in

other trypanosomatids strongly suggest that the differences are due to translational regula-

tion and regulation of the steady-state protein levels. The lack of low-input sample strategies

does not allow translatome and proteome analysis of sand fly–derived promastigotes so far.

Introduction: Why is studying sand fly–derived promastigotes

important?

The Leishmania spp. (Kinetoplastida: Trypanosomatidae) life cycle is digenetic because two

hosts are involved: a mammal and a sand fly (being the genera Phlebotomus and Lutzomyia
proven vectors; Psychodidae: Phlebotominae). The promastigote is the motile stage, which

develops within the gut of the invertebrate host and is transmitted to the mammalian host dur-

ing blood sucking (reviewed in [1]). A small fraction of inoculated promastigotes are internal-

ized by mononuclear phagocytic cells [2] and differentiate to the amastigote stage, which is the

round, nonmotile dividing form (reviewed in [3, 4]). Eventually, a sand fly feeds from the

blood of an infected mammal. Amastigotes are released and transform into promastigotes,

which begin the complex developmental process within the sand fly gut, becoming more infec-

tive for transmission to the mammalian host [5].

Studying sand fly–derived promastigotes is not exempt from difficulties for three reasons:

first, few parasites can be isolated from the insect gut (approximately 2×105 from the whole

gut, approximately 104 promastigotes from the stomodeal valve [SV] area) [6, 7] compared

with cultures (2–4×107 promastigotes/mL) [8–10]; second, the promastigote populations are

phenotypically heterogeneous and asynchronous in the sand fly gut [5, 11–14] and in culture

[15]; and third, maintenance of sand fly laboratory colonies, experimental infection, and para-

site isolation from the gut are not exempt from technical difficulties [16, 17], being accessible

for specialized laboratories. As a consequence, most research on the promastigote stage is per-

formed in axenic culture, and the molecular, biochemical, and physiological features of this

stage have been scarcely described within its natural environment. As the genome sequences

of these parasites are available [18, 19], high-throughput transcriptome analysis of sand fly–

derived promastigotes has been performed in L. infantum and later on in L. major.
The main promastigote forms within the sand fly gut are procyclics, nectomonads, lepto-

monads, and metacyclics [14, 20]. These forms have also been found in culture [21]. The main

metacyclic promastigote isolation method is based on the different agglutination ability in the

presence of the peanut agglutinin (PNA), despite the structural differences in the lipophospho-

glycan (LPG) [22]. Promastigote development in the sand fly gut was extensively reviewed [14,

20, 23].
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In vitro infection of the human myeloid U937 cell line with L. infantum promastigotes

showed that the peanut lectin–nonagglutinating metacyclic subpopulation (LiPro-PNA−) is

more infective than the agglutinating subpopulation (LiPro-PNA+) and the whole population

in stationary phase of axenic culture (LiPro-Stat), from which both are isolated [24]. The same

approach has revealed that LiPro-Stat and LiPro-PNA− are less infective (approximately 50%

and approximately 20%–30%, respectively) than promastigotes isolated from the sand fly vec-

tor Phlebotomus perniciosus (LiPro-Pper) SV [7, 25, 26]. Sand fly metacyclics are present in the

SV vicinity, which is located in the thoracic midgut forefront and plays a crucial role in para-

site injection into the mammalian host’s dermis during blood meal intakes. In the case of the

P. perniciosus–L. infantum vector–parasite pair, the metacyclic promastigote proportion in

culture [24, 25] and within the sand fly gut [27] is approximately equal (approximately 10%).

The percentages are much higher (up to 90%) in other parasite and vector species [28, 29]. Cul-

ture passage also affects the yield in metacyclic promastigotes [28]. Therefore, higher infectiv-

ity levels of sand fly–derived promastigotes isolated from the SV are explained by a more

advanced differentiation status (i.e., these promastigotes are more "metacyclic in character")

instead of a simple enrichment in metacyclics. Working with promastigotes from the gut is

technically demanding, but transcriptome analysis and infection experiments indicate that

using the culture model does not always lead to reliable results. Case-by-case decision-making

is required in the experimental design [7].

Promastigote development in the sand fly gut

According to Gossage and colleagues’ model [14], based on time course flow cytometry analy-

sis, the Leishmania spp. life cycle is completed in three dividing phases, which are separated by

nondividing transmission stages. One of them is amastigote replication within mammalian

phagocyte phagolysosomes. Then, the blood meal phase takes place in the sand fly abdominal

midgut. This phase consists of procyclic promastigote replication followed by differentiation

to nectomonad promastigotes. This is valid for suprapylarian species, which are grouped

within the subgenus Leishmania. Peripylarian species (subgenus Viannia) begin development

in the hindgut [30]. Nectomonads are nondividing forms with an elongated flagellum that

migrate toward the thoracic midgut. During the sugar meal phase, they become leptomonads,

which are able to divide. A few leptomonad promastigotes differentiate to metacyclic promas-

tigotes, which are the highly infective stage (Fig 1A). Other forms, like haptomonads and para-

mastigotes, have been reported. This terminology is useful for understanding development.

However, Gossage and colleagues [14] stress the importance of finding molecular markers,

which may help in defining these stages more precisely. In Leishmania spp., the term “meta-

cyclic” has been defined as the infective form or the end product of promastigote development

within the sand fly vector [31], a small rapid-swimming form with an elongated flagellum dif-

ferentiated from leptomonads [14]. Gossage and colleagues [14] highlighted the absence of

parasite–sand fly interactions in axenic culture and warned about improper usage of the terms

procyclics and metacyclics when identified with logarithmic and stationary-phase promasti-

gotes, respectively.

Bates [20] and Dostálová and Volf [23] reviewed promastigote–sand fly interactions during

development and the hypotheses about the metacyclic promastigotes transmission mecha-

nisms. During the blood meal phase, blood is digested within the chitinous peritrophic matrix

(PM), whereas embedded procyclic promastigotes proliferate [32]. Then, nectomonads accu-

mulate in the anterior part of the matrix and are able to escape [33, 34] thanks to the chitinase

secreted by the gut epithelium [35, 36]. Nectomonads are able to migrate forward and firmly

attach to the gut epithelium microvilli. These facts contribute to explain why the sand fly is a
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true vector because promastigotes are not expelled during defecation and continue their devel-

opmental process. One of the attachment mechanisms in L. major within P. papatasi is the

Fig 1. Isolation of metacyclic promastigotes from the sand fly gut. (A) Promastigote stages during development within the sand fly

gut. Adapted from [14]. (B) Location of metacyclic promastigotes in the anterior pole of the PSG-promastigote plug in contact with

the SV. Reproduced from [7]. (C) In vitro infectivity of sand fly–derived L. infantum metacyclic promastigotes (LiPro-Pper)

compared with metacyclic promastigotes from culture (LiPro-PNA−) in the human cell line U937. Reproduced from [25]. LiPro-

PNA−, L. infantum metacyclic promastigotes from culture obtained by the peanut agglutinin negative selection method; LiPro-Pper,

L. infantum metacyclic promastigotes from the P. perniciosus stomodeal valve; PNA, peanut agglutinin; PSG, promastigote secretory

gel; SV, stomodeal valve.

https://doi.org/10.1371/journal.pntd.0007288.g001
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LPG interaction with gut epithelium galectins. However, the presence of LPG receptors in

other sand fly species remains unclear, and LPG-independent development has been reported.

In fact, LPG composition is variable across species. The LPG, together with certain proteopho-

sphoglycans (PPGs), may also have a major role in resistance to proteolysis within the gut

(reviewed in [23]). Once nectomonads reach the SV, they become leptomonads and divide

[14]. Leptomonads produce the promastigote secretory gel (PSG) [37], mainly composed of fil-

amentous PPG [38], which also lets them bind to the epithelium to some extent. A small frac-

tion of leptomonads become haptomonad promastigotes [39], which tightly attach to the

epithelium through hemidesmosome-like structures [40, 41], probably priming PSG plug for-

mation [20] and/or favoring blockage [42, 43], whereas some others differentiate to metacyclic

promastigotes [37]. This process is called metacyclogenesis and is defined as the transforma-

tion of poorly infective to highly infective promastigotes [28, 44]. In the sand fly gut, metacyc-

lic promastigotes dedifferentiate back into leptomonad-like promastigotes, which have been

called retroleptomonad promastigotes, when a second blood meal is ingested by an infected

sand fly. Interestingly, retroleptomonad promastigotes rapidly differentiate to metacyclic pro-

mastigotes, which causes an important increase in promastigote numbers and infectiousness

[29]. Culture passage also causes promastigote dedifferentiation (see "The axenic culture

model: Strengths and limitations" section).

According to the blocked fly hypothesis, the PSG plug obstructs the SV until it is removed

by regurgitation during blood meal intakes [45]. Leptomonads are embedded, and most meta-

cyclics are located in the plug poles [20]. A different hypothesis is passive inoculation of pro-

mastigotes found in the proboscis only [46–48]. Both hypotheses are not mutually exclusive,

because both mechanisms may participate in transmission [20]. In fact, low-dose and high-

dose bite patterns have been observed and may correlate to the respective aforementioned

transmission mechanisms [49]. In addition, chitinase-mediated damage was observed in the

SV [33], supporting the regurgitation hypothesis. The pharyngeal and cibarial pumps would

contribute to the process [42, 43]. PSG high solubility explains why a few metacyclic promasti-

gotes are released from the PSG plug pole when it contacts blood being ingested (reviewed in

[50]). PSG and sand fly saliva egestion accompanying metacyclic promastigotes probably play

a role in the initial infection steps [51], including immune response modulation [52–54].

The phenotypical features of the different promastigote forms found in the sand fly gut dif-

fer between species. Separately studying each form is challenging. For example, the binding

ability is strictly stage dependent, as nectomonads and leptomonads are considerably bound to

the epithelium according to the different mechanisms mentioned above and further explained

in the next section, whereas procyclics and metacyclics are nonbinding forms. Nonetheless,

the relative binding ability is variable between different species, and in certain cases, a mild

binding tendency has been observed in procyclics and metacyclics. For example, nectomonads

bind tighter than leptomonads in L. infantum, whereas no substantial differences have been

observed in the case of Leishmania mexicana, and unlike in L. infantum, L. mexicana metacyc-

lics bind slightly tighter than procyclics [55].

Sand fly–Leishmania interactions

Few molecular interactions between Leishmania spp. and the sand fly gut have been revealed

[23]. The innate immune response to pathogens has been profusely studied in insects, includ-

ing receptors, signaling pathways, and effectors (antimicrobial peptides, reactive oxygen spe-

cies [ROS], autophagy, etc.) [56–60]. Defensins, a caspar-like protein, and ROS were

associated to innate immunity of the sand fly against Leishmania spp. [23, 61–65]. Midgut

transcriptomic analysis in Lutzomyia longipalpis, P. papatasi, and P. perniciosus [66–69]
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revealed important data about molecules that potentially interact with Leishmania spp.

molecules.

The blood meal induces digestive enzymes (fundamentally, trypsins and chymotrypsins).

These are serine proteases [66–72] like other enzymes induced at the transcript level in the

midgut, such as an alanyl aminopeptidase (a novel serine protease), astacin-like metallopro-

teases, and metallocarboxypeptidases [73]. Resistance to proteases is variable depending on the

Leishmania species. This feature is crucial for vector competence, defining compatible and

noncompatible vectors with a given Leishmania species [74–76]. At least half of the amastigote

population transforming into immature promastigotes during the first hours of gut coloniza-

tion are killed, even in compatible species [37]. At the early development stages, the parasite is

able to control protease activity levels and timing [66, 72, 77–80] through gene expression

modulation and production of serine protease inhibitors (ISPs) in the sand fly midgut when

the vector is compatible. The L. major genome encodes for ISPs that do not have targets in the

parasite’s proteome [18] but have been shown to be active against mammalian host phago-

cytes’ proteases [81] and trypsin activity from sand fly guts [82]. Amastigotes and metacyclic

promastigotes are resistant to sand fly gut proteases but not procyclic promastigotes—namely,

in the first 2–8 hours of amastigote-to-promastigote transition [83]. Phosphoglycans (PGs)

and the secreted acid phosphatase (SAP) are essential for resistance [31]. For example, LPG

acts as a shield against proteolytic activities.

The PM is composed of peritrophins, which contain one or more chitin-binding domains

(CBDs), which have been predicted in most cases [66, 67, 69]. Multiple CBD peritrophins

probably cross-link PM chitin fibrils. PM formation is an extrinsic protection mechanism for

promastigotes during blood meal digestion [83, 84]. The sand fly midgut transcriptionally reg-

ulates peritrophins in the presence of promastigotes [66, 67]. The PM starts to disintegrate

about 2 days after ingestion. A necessary but not sufficient condition for successful promasti-

gote development within the sand fly gut is PM breakage allowing nectomonad promastigote

release. This is not always possible depending on parasite and vector species, and parasites’

chitinase implication is controversial [33, 66, 67, 85–88]. Hemoglobin inhibits Leishmania spp.

chitinase. For this reason, the parasite is not able to escape the PM until blood has been

digested [89]. However, chitinases from a given Leishmania species are not able to break the

PM of all sand fly vector species, and not escaping from the PM leads to parasite elimination

through defecation. Therefore, this mechanism contributes to parasite–vector competence

[86].

Once nectomonads escape the PM, attachment to the gut epithelium is required to avoid

clearance and then progressively ascend throughout the gut. It has been shown that nectomo-

nad and leptomonad promastigotes specifically attach to the gut microvilli, and the mechanism

depends on the parasite–vector pair [55, 90]. A molecule involved in attachment is the Leish-
mania spp. FLAG1/SMP1 flagellar protein [91]. According to these interactions, sand fly vec-

tors are classified as restrictive, meaning they are compatible with one or very few Leishmania
species, and permissive, meaning they support development of multiple Leishmania species

[92–94]. The most studied parasite–sand fly interaction is the species- and strain-specific

Leishmania LPG–sand fly midgut galectin attachment mechanism [95, 96]. This interaction

has been demonstrated only in the L. major Friedlin V1 strain–P. papatasi or P. duboscqi pairs,

but other L. major strains are not able to bind. The LPG is composed of a glycosylphosphatidyl

inositol (GPI) anchor and a glycan backbone composed of PG units and attached to the anchor

through a hexasaccharide core [97]. Side-chain composition varies depending on the species

and strain [98]. Monogalactosylation is the optimal pattern for galectin recognition, which has

been shown through engineered Leishmania donovani lines optimized for galactosylation pat-

tern [99]. Also, LPG side-chain composition is stage dependent. Arabinose residues are cap
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side-chain galactose residues in L. major, thus allowing promastigote release from galectins

[98]. Alternative interaction mechanisms remain undiscovered. Galectins are absent in the

midgut of permissive species such as L. longipalpis and P. perniciosus [66], which allow survival

of LPG-deficient L. major and L. mexicana promastigotes in their guts in an LPG-independent

manner [23, 45]. However, this is controversial because other authors reported that LPG com-

position mediates Leishmania spp. competence in different vectors [100]. This statement was

hypothesized to be valid only in specific vectors [101]. Although LPG-based attachment-

release mechanisms in different Leishmania spp.–sand fly pairs have been reported, the recep-

tors have not been identified yet (see next section). In summary, it is known that different

mechanisms mediate attachment of nectomonad promastigotes to the sand fly gut microvilli,

but most remain uncharacterized, and there is controversy about LPG’s roles in different para-

site species.

Finally, the sand fly gut conditions may contribute to promastigote differentiation. An

acidic environment, nutrient depletion, and probably scarce tetrahydrobiopterin levels induce

metacyclogenesis. In this process, endosome sorting and autophagy are essential [102], as well

as several L. major proteins of unknown function encoded in the HASP/SHERP gene cluster

(hydrophilic acidic surface proteins and small hydrophilic endoplasmic reticulum proteins)

[103].

The axenic culture model: Strengths and limitations

The first axenic culture of Leishmania parasites was performed by Nicolle in the Nicolle–

Novy–McNeal medium [104]. Since then, an increasing number of culture media have been

developed, leading to easy, fast, and highly productive promastigote cultures. Regarding cell

cycle and differentiation, promastigote populations in axenic culture, like in the sand fly gut,

are complex and asynchronous. It is assumed that development within the sand fly gut is mim-

icked in axenic culture at 26–27˚C in undefined media containing heat-inactivated mamma-

lian serum [105–110]. Stationary-phase promastigotes are infective despite the absence of

parasite–sand fly interactions. However, cultured promastigotes are less infective than meta-

cyclic promastigotes obtained from the sand fly gut, at least in L. infantum and L. major [7, 25,

111]. In fact, infectivity is attenuated as the number of culture passages increases. For this rea-

son, passages through laboratory animals are required (reviewed in [109]). These observations

highlight the importance of the promastigote–sand fly interactions and suggest that adaptation

to the culture conditions results in a progressive loss of the infective properties. Like in the

sand fly gut, promastigote populations are heterogeneous in culture, and only a small fraction

are metacyclic. The most widespread and successful method to isolate subpopulations of meta-

cyclic promastigotes from cultures is based on LPG agglutination in the presence of the PNA.

During metacyclogenesis, the LPG is modified, which leads to the loss of agglutination capabil-

ity in the presence of PNA [22]. The modifications consist of adding α-D-arabinopyranose res-

idues to the β1,3-D-galactose residue (βGal) side chains [112, 113]. Therefore, the PNA

metacyclic selection method is negative. The agglutinating (PNA+) subpopulation is less infec-

tive than the nonagglutinating (PNA−) subpopulation in L. major and L. infantum [22, 24].

However, the LPG structure in L. infantum [114], including L. infantum chagasi [115], is dif-

ferent and varies depending on the strain, including side chains composed of glucose mono-

mers or oligomers [114]. The LPG of a Sudanese L. donovani strain agglutinates at early

differentiation stages when in contact with PNA [113, 116, 117], but metacyclic forms fail to

agglutinate [24, 113, 117–119]. L. infantum PNA− promastigotes are more infective than

PNA+ promastigotes [24] and the whole stationary-phase population [25], which suggests that

the LPG participates in alternative attachment mechanisms. Soares and colleagues [115]
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reported an L. infantum LPG–L. longipalpis midgut epithelium interaction based on PG recep-

tors. The interaction is based in β1,3-glucosylation, and release is caused by glucose residue

removal. The same mechanism was previously described for an Indian L. donovani strain and

the vector P. argentipes [117]. To add more complexity, the mechanism is opposite in Leish-
mania braziliensis because glucose residue addition leads to ex vivo detachment from L. longi-
palpis gut explants [120]. In summary, the LPG–gut interaction and release mechanisms differ

between species and are not related to PNA-based separation of procyclics and metacyclics.

The minimum agglutinating amount of PNA is variable between L. infantum strains starting

at 50 μg/mL [24, 118]. The different LPG composition in the aforementioned species explains

these observations. Interestingly, PNA− and PNA+ forms can be isolated in the monogenetic

trypanosomatid Crithidia fasciculata [121], but the implications for life cycle understanding

are unknown.

In vitro infection experiments of the human myeloid U937 cell line with L. infantum pro-

mastigotes have shown that the LiPro-PNA− metacyclic subpopulation is more infective than

the agglutinating LiPro-PNA+ and the whole population in stationary phase of axenic culture

(LiPro-Stat), from which both are isolated [24]. The same approach has revealed that LiPro-

Stat and LiPro-PNA− are less infective (approximately 50% and approximately 20%–30%,

respectively) than promastigotes isolated from the SV of the sand fly vector P. perniciosus
(LiPro-Pper) [7, 25, 26]. Sand fly metacyclics are found in the SV vicinity. In the case of the P.

perniciosus–L. infantum vector–parasite pair, the proportion of metacyclic promastigotes in

culture [24, 25] and within the sand fly gut [27] is approximately equal (approximately 10%).

The percentages are much higher (up to 90%) in other parasite and vector species [28, 29]. Cul-

ture passage also affects the yield in metacyclic promastigotes [28]. Therefore, higher infectiv-

ity levels of sand fly–derived promastigotes isolated from the SV are explained by a more

advanced differentiation status (i.e., these promastigotes are more "metacyclic in character")

rather than a simple enrichment in metacyclics.

Considering how challenging working with promastigotes from the gut is, the cost–benefit

balance presumably tilts to axenic culture in principle, but this is not as clear when considering

results obtained by means of transcriptome analysis. Alternative methods for isolation of meta-

cyclic promastigotes, like centrifugation in Percoll gradient, have been described, which are

out of the scope of this review.

Transcriptome analysis of sand fly–derived promastigotes:

Technical considerations and current datasets

Microarrays are dense molecular probe matrixes on a solid surface. DNA microarrays contain

thousands of genes, gene fragments, and/or noncoding sequences that are hybridized with one

or more labeled nucleic acid sample (DNA, cDNA, or RNA) for different purposes, such as

gene expression profiling. In this case, total RNA or mRNA samples are directly labeled, ampli-

fied and labeled, or reversely transcribed in order to obtain directly or indirectly labeled

cDNA. The fluorescent labels enable measuring the relative levels of each target sequence once

emission signals have been acquired with a specialized scanner (Fig 2). Bioinformatics analysis

is relatively simple because probes are usually identified beforehand, and just two basic steps

are required: normalization and statistical analysis of differential gene expression (DGE).

More technical details on microarray analysis can be found in reviews by Mantione and col-

leagues [62] and Lowe and colleagues [63]. A review of the DNA microarray technology

impact in Leishmania research is also available [65].

RNA sequencing (RNA-seq) is a high-throughput approach based in Next Generation

Sequencing (NGS) that consists of genome-scale amplification and NGS of short cDNA
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fragments generated from RNA samples. For this purpose, double-stranded cDNA is gener-

ated and PCR amplified, incorporating appropriate linkers for NGS. The primers used in all

steps and the PCR conditions are designed according to the desired fragment size range,

which is typically between 0.1 and 1 Kbp. The products are fragmented and subjected to NGS

in any of the platforms commercially available (464-pyrosequencing, Illumina, Ion Torrent,

etc.) (Fig 2). Alternatively, fragmented RNA can be used as the input in the library preparation

protocol. Bioinformatics analysis is complex because reads of up to 300 bp [122] must be

mapped on the genome sequence, which requires demanding skills. Further information on

technical details has been reviewed by Mantione and colleagues [62] and Lowe and colleagues

[63].

Nowadays, transcriptome analysis is a routine technical approach thanks to the develop-

ment of the DNA microarray technology during the mid-1990s, which has been extensively

used during the last 2 decades and is being replaced by RNA-seq. At this point, it is important

to remark that the condition for a technical approach to be valid is reliability rather than nov-

elty. Both DNA microarray hybridization analysis and RNA-seq are reliable for gene expres-

sion profiling or DGE analysis, although RNA-seq is a more powerful and robust approach

[123, 124]. Microarrays and RNA-seq are technically reproducible (>99%) and accurate

(approximately 90%) high-throughput approaches. Both can detect splice variants. However,

RNA-seq requires much less input of RNA sample amount to reach the same genome cover-

age, is approximately 1,000 times more sensitive, and is characterized by lower background

levels and a dynamic range approximately 100–1,000 times higher. In addition, RNA-seq is

appropriate for SNP detection and UTR analysis and does not necessarily require a reference

genome sequence [67, 123, 124].

Before execution of a DGE analysis, biological samples must be examined to determine

whether they are appropriate to address the proposed hypothesis. For example, the main fea-

tures of metacyclic promastigotes are high infectivity and morphology (fusiform, small size,

showing an elongated flagellum). Therefore, metacyclic promastigotes can be identified for

downstream DGE by infection experiments (Fig 1B and 1C) [7, 25, 26] or morphological fea-

tures [125]. Promastigotes dedifferentiate once isolated because they are nondividing forms

[14]. In fact, Leishmania spp. is adapted to respond very quickly to different environments

[126]. Considering the replacement principle, experimentation with animals can be substi-

tuted by in vitro infection of established myeloid cell lines. Given the scarce number of pro-

mastigotes obtained from each sand fly, each sample should be composed of a mixture of

promastigotes from different sand flies. A fraction of the sample should be immediately pro-

cessed for RNA isolation upon extraction from the gut (e.g., lysed in Trizol reagent) and the

remaining fraction used as soon as possible for the infection experiment [7, 25, 26]. In contrast

with RNA-seq, which always includes a PCR amplification step, DGE based on the DNA

microarray technology is not suitable for very-low-input samples unless RNA is amplified.

Thanks to RNA amplification, as low as 20 ng of LiPro-Pper total RNA per replicate sample

was sufficient to conduct transcriptome comparisons with intracellular amastigotes,

Fig 2. Strategies for DGE analysis of sand fly–derived promastigotes. Only transcriptomics strategies are feasible to date for DGE analysis for very-low-

input samples such as sand fly–derived promastigotes. In slRNA-seq strategies, the SL sequence is used in second-strand cDNA synthesis (#), thus increasing

specificity when analyzing samples containing genetic material from the host. A cross-hybridization control should be included in microarray experiments

to avoid biased results due to noise of the host genetic material. The RNA-seq strategies allow for multiplexed analysis by including indexing sequences

during PCR amplification (†). Mapping to genome and alignment to transcript annotations is required during microarray hybridization experiments only

when the DNA probes spotted on the slides have not been identified before the experiment (�). An example is shotgun genome DNA microarrays, in which

only the clones of interest containing DEGs are sequenced and aligned to identify those genes [24]. aRNA, amplified RNA; Cy3, cyanine 3; Cy5, cyanine 5;

DEG, differentially expressed gene; DGE, differential gene expression; IVT, in vitro transcription; NGS, Next Generation Sequencing; RNA-seq, RNA

sequencing; SL, spliced leader sequence; slRNA-seq, spliced-leader RNA sequencing.

https://doi.org/10.1371/journal.pntd.0007288.g002
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stationary-phase promastigotes, and PNA− promastigotes using microarray analysis [7, 25,

26]. Reliability of microarray results is not compromised by RNA amplification as otherwise

suggested in [125]. In fact, reliability is improved regardless of whether it is required for sam-

ple expansion [127–129]. The amplification procedure consists of double-stranded cDNA syn-

thesis starting from a poly(T) oligonucleotide incorporating the T7 promoter sequence

upstream, followed by linear amplification by means of in vitro transcription (IVT) with the

T7 RNA polymerase, obtaining reverse-complement RNA molecules ready for synthesis of

labeled cDNA and subsequent hybridization with shotgun or oligonucleotide DNA microar-

rays. Preparation of RNA-seq libraries also requires synthesis of double-stranded cDNA and

amplification, and the L. major RNA input was 5–20 ng [125]. The basic conceptual difference

relies on PCR instead of IVT for required amplification for subsequent processing through

high-throughput sequencing or labeled-cDNA synthesis and hybridization, respectively (Fig

2). Primer design is performed according to each high-throughput sequencing platform (e.g.,

Illumina adaptors and sequencing primers). Moreover, index sequences can be added for mul-

tiplexed sequencing. RNA-seq data analysis demands considerably more bioinformatics skills

and computer resources than microarray analysis does [123].

The presence of tissue from the sand fly host should be minimized when isolating the bio-

logical sample. Microarray cross-hybridization controls were performed to select specific

hybridization conditions and remove the few cross-hybridizing spots found from analysis [7,

25, 26]. Specific sequence alignment against the parasite’s genome sequence would presumably

remove most noise from sand fly sequences, but it may interfere in quantification of conserved

sequences. Spliced-leader RNA-seq (slRNA-seq) is a fast, simple, and selective method that

overcomes this inconvenience without biasing the results that would be obtained otherwise

with a regular RNA-seq procedure [130, 131]. slRNA-seq allows for low input amounts of L.

donovani RNA (1 ng) samples embedded in a human RNA amount 1,000 times larger,

although these samples should be sequenced more deeply to reach the same coverage as pure

Leishmania spp. RNA [130]. Once analysis is completed, validation of certain results by quan-

titative PCR (qPCR) or northern blot may be convenient. Even when the transcript levels have

been validated, they do not quantitatively correlate to the protein levels in about 75% of cases

[132]. Unfortunately, transcriptome analysis is the only feasible omics approach for sand fly–

derived promastigotes so far because of the sample-amount requirements for translatome and

proteome analysis (see "Translatome and proteome analysis: A major challenge" section). The

number of qualitative RNA protein–level coincidences (up-regulation, down-regulation, and

constant expression at both levels) in Lahav and colleagues’ [132] datasets is about 60%. This

suggests that at least one-third of the changes in transcript levels will not be reflected in protein

levels. Groups of functionally related genes showing transcript-level variation in the same

sense (up-regulation or down-regulation) in the biological process under study will be more

likely reflected at the protein level. This is also variable depending on the life cycle stages ana-

lyzed. For example, lower RNA–protein correlation has been observed across organisms under

stress situations (fundamentally, the differentiation processes of procyclics to metacyclics and

metacyclics to amastigotes) (reviewed in [133]). mRNA changes not correlated to protein lev-

els may also be important for regulation of steady-state transcript levels. Mature RNA can be

immediately used for protein synthesis or be stabilized and indefinitely kept translationally

inactive (reviewed in [134]). Modulation of translational efficiency is an additional gene

expression–regulation mechanism [135].

Four DGE analyses of L. infantum promastigotes obtained from experimentally infected

P. perniciosus within the vector [7, 25, 26, 69] and one of L. major from P. duboscqi [125] have

been performed (Table 1). An slRNA-seq analysis of heterogeneous populations has also been

published [69]. The outcomes of these studies are considerably different fundamentally
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because the comparisons are not equivalent. First, L. infantum is responsible for zoonotic vis-

ceral leishmaniasis in the Mediterranean Basin and South America, whereas L. major is

responsible for cutaneous leishmaniasis in the Old World. Their different affinity for sand fly

vector species and in key developmental processes (e.g., attachment of nectomonads to the gut

epithelium; see above) is a probable cause of obtaining mismatched DGE. Second, most sam-

ples and comparisons are not equivalent. For example, intracellular L. infantum amastigotes

obtained in vitro from the myeloid human U937 cell line [26] are not equivalent to intracellu-

lar L. major amastigotes obtained from mice footpad lesions (LmAM) [125]. As it could be

expected, the number of�2-fold differentially expressed genes (DEGs) was 2.4 times greater

in the latter, where more complex biological samples represented not only the parasite and the

host cell themselves but also the complex interactions with other immunological components.

In both cases, DEG data referred to L. infantum (LiPro-Pper) and L. major sand fly metacyclic

promastigotes (LmSFMP). In the first case [26], they were isolated from the anterior pole of

the PSG plug in contact with the SV because this location is enriched in metacyclics, and their

infectivity was checked by using the in vitro infection model (see above). Haptomonad pro-

mastigotes are also present in any residual material carried over from the SV structure (Fig

1B). In the second case, procyclics, nectomonads, and metacyclics were isolated from different

guts and processed individually, assuming that the populations were homogeneous after 2, 4,

and 15 days of development, respectively. The whole guts were macerated, promastigote popu-

lations were quantified with a hemocytometer, and morphology was examined. Only samples

that were supposed to have>90% stage homogeneity were included for analysis [125]. How-

ever, squeezing whole guts does not necessarily guarantee homogeneity of populations, even

when timing is expanded, because different parasite forms are always remaining in the gut.

For example, Killick-Kendrick and colleagues [27] did not find more than 10% of L. infantum
metacyclics in the P. perniciosus gut even 8–15 days after blood feeding from infected dogs. As

mentioned above, this is dependent on the parasite–vector pair. In summary, all populations

analyzed in the studies listed in Table 1 are homogeneous, with the exception of the study com-

paring heterogeneous populations on purpose [69]; but complete sample homogeneity is

impossible to reach nowadays. An alternative analysis strategy is single-cell genomics. Unfor-

tunately, molecular markers are not available for metacyclic promastigotes, which are the

Table 1. Transcriptome studies and sample abbreviations.

Ref. Stages Microenvironment Comparisons Approach

[24] PNA+ versus PNA− Stat Pro Culture LiPro-PNA+ versus LiPro-PNA− Microarrays

[25] SV-derived versus PNA− Pro P. perniciosus gut versus culture LiPro-Pper versus LiPro-PNA− Microarrays

[7] SV-derived versus Stat Pro P. perniciosus gut versus culture LiPro-Pper versus LiPro-Stat Microarrays

[26] SV-derived Pro versus Ama P. perniciosus gut versus human cell line LiPro-Pper versus LiAma Microarrays

[125] Nectomonad versus procyclic Pro P. duboscqi gut LmSFNP versus LmSFPP RNA-seq

Metacyclic versus procyclic Pro P. duboscqi gut LmSFMP versus LmSFPP

Ama versus procyclic/metacyclic Pro P. duboscqi gut versus BALB/c mice footpad lesions LmAM versus LmSFPP/LmSFMP

[69] All-gut versus culture forms P. perniciosus whole-gut versus culture mixtures LisfPro versus LiacPro RNA-seq

[136] Procyclic versus metacyclic Pro Culture LmCPP versus LmCMP RNA-seq

[8] Log versus Stat Pro Culture LiPro-Log versus LiPro-Stat Microarrays

Original abbreviations have been used. Abbreviations: ac, mixture from axenic culture; Ama, amastigotes; CMP, culture metacyclic promastigotes; CPP, culture

procyclic promastigotes; Li, L. infantum; Lm, L. major; Log, logarithmic phase; PNA, peanut agglutinin; Pper, Phlebotomus perniciosus stomodeal valve; Pro,

promastigotes; Ref., reference; RNA-seq, RNA sequencing; sf, sand fly whole midgut; Stat, stationary phase; SFPP, sand fly procyclic promastigotes; SFMP, sand fly

metacyclic promastigotes; SV, stomodeal valve.

https://doi.org/10.1371/journal.pntd.0007288.t001
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result of metacyclogenesis. HASP and SHERP are metacyclogenesis markers (i.e., they are

expressed not only in metacyclic promastigotes but also in intermediate stages) in L. major
[103]. For these reasons, comparisons of LiPro-Stat with LiPro-Pper and LiPro-PNA− with

LiPro-Pper [7, 25] are not equivalent to comparisons of LmSFMP with sand fly procyclics

(LmSFPP) [125] or culture metacyclics (LmCMP) versus log phase promastigotes (LmPro-

Log) [136]. For example, amino acid transporters aATP11 were up-regulated in LmSFMP ver-

sus LmSFPP and in nectomonad promastigotes (LmSFNP) versus LmSFPP [125], but it was

not observed in LiPro-Pper versus LiPro-Stat, possibly because LiPro-Stat populations could

contain nectomonad-, leptomonad-, and metacyclic-like forms [21]. Consistently, no aATP11

was differentially regulated when comparing LiPro-Pper and LiPro-Stat either [25]. Not only

is the experimental design different in order to answer different biological questions but also

the parasite–vector models are different in many instances. For example, only one kind of pro-

mastigote–sand fly gut interaction is clearly known so far, which is the LPG–galectin binding

mechanism, only demonstrated in the L. major–P. papatasi and L. major–P. duboscqi pairs

(reviewed in [23]). Another example is the gut microbiota, which has been shown to favor pro-

mastigote differentiation in L. longipalpis [137] but may be different in other sand fly species.

In summary, generalization across Leishmania–sand fly models should be cautiously consid-

ered case by case, and different experimental settings should be taken into account when com-

paring DGE studies. An example of correct generalization is the HASP/SHERP cluster, gp63,

and autophagy genes in L. major and L. infantum (see next section).

The across-experiment comparison of LmSFMP/LmSFPP and LmCMP/LmPro-Log [125]

is presumably robust even when the technical RNA-seq approach is not exactly the same, as

supported by the methodological study on meta-analysis of RNA-seq expression data by Sud-

mant and colleagues [138]. Only 26 DEGs were claimed to differ between both datasets, but

actually, the number of genes differentially expressed�2-fold at a statistical level of signifi-

cance α = 0.05 is 398 in LmSFMP/LmSFPP [125] and only 108 in the case of LmCMP/LmPro-

Log [136], of which 72 are not coincident. In the case of L. infantum, the number of DEGs

found in the direct comparison of LiPro-Pper with LiPro-PNA− was 285 at the cutoff expres-

sion values mentioned above [25], comparable to the number of LiPro-Pper/LiPro-Stat DEGs

[7]. Most DEGs were different between both L. infantum datasets, which reflects the above-

mentioned differences found in infectivity between these promastigote populations (LiPro-

Pper > LiPro-PNA−> LiPro-Stat). All L. major and L. infantum datasets are different because

different stages have been compared in each case. For example, the LmSFMP/Lm-SFPP DGE

analysis is not comparable to the LiPro-Pper/LiPro-Stat study because cultures in stationary

phase mostly contain nectomonads and metacyclics [21] and probably low amounts of procyc-

lics and leptomonads. In an slRNA-seq analysis of L. infantum comparing heterogeneous pop-

ulations of sand fly promastigotes (LisfPro) [69] taken from the whole gut of P. perniciosus,
with the heterogeneous promastigote populations in axenic culture (LiacPro), we observed

approximately 950 genes up-regulated�2-fold, which is 2.0 to 3.6 times higher than expected

compared with the previous DGE datasets about more homogeneous promastigote popula-

tions showing approximately 300 DEGs each [7, 25, 125]. Therefore, the DGE rates are, rela-

tively, not very high in Leishmania spp., including homogeneous and heterogeneous

populations (maximum approximately 1,000 DEGs out of approximately 8,300 genes anno-

tated in the genome sequences). In summary, global concordances and differences between

studies on sand fly–derived promastigotes have been found, but comparative interpretation of

studies should be cautious, considering different biological comparisons, sample source origin

and preparation, and technical approaches.
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What has transcriptome analysis taught?

The microenvironment influences the parasite’s differentiation processes [7, 125]. Steady-state

transcript-level changes of the glucose-6-phosphate N-acetyltransferase, the cytochrome oxi-

dase subunit VI, the vacuolar proton-translocating pyrophosphatase, and the amastin super-

family genes, when comparing promastigotes with amastigotes (all decreasing in amastigotes

except for the amastins), were observed when promastigotes were obtained from the sand fly’s

SV [26] and from cultures [8]. However, most DEGs between LiPro-Stat and amastigotes are

not coincident with DEGs between LiPro-Pper and amastigotes. Up-regulation of several

amastin superfamily genes in metacyclics from the sand fly with respect to metacyclics from

culture in L. infantum [25] and with respect to sand fly procyclics in L. major [125] provides

additional evidence supporting the preadaptation hypothesis [8, 13, 26, 139–142], which con-

sists of promastigote preparation in advance to survive within the host phagocytes (i.e., the

amastigote stage). The highest levels of amastin transcripts are found in amastigotes when

compared with both sand fly–derived promastigotes [26, 125] and cultured promastigotes [8].

Cell cycle–related genes are generally down-regulated in LmSFMP and LmSFNP compared

with LmSFPP and LmAM, which is in agreement with the replicative or nonreplicative status of

these stages [125]. Steady-state transcript–level comparisons between procyclic and metacyclic

promastigotes in the sand fly gut (LmSFMP versus LmSFPP) [125] and in culture (LmCMP ver-

sus LmCPP) [136] resulted in relatively similar results because few differences were found

between both studies. This includes transporters (pteridine transporter, nucleoside transporter

1, glucose transporters lmgt1 and lmgt2, amino acid transporters, and the ATP-binding cassette

transporter ABC10), signaling molecules (phosphoprotein phosphatase and protein kinase

LmjF.26.2570), calpain-like cysteine peptidase LmjF.30.2040, inosine guanosine nucleoside

hydrolase, P27 protein, H2B and H4 histones, 4E-interacting protein LmjF.25.2450, the mem-

brane-bound acid phosphatase 2 (MBAP2), and several hypothetical protein-encoding

transcripts.

Many genes involved in metacyclogenesis (see below) are highly up-regulated in heteroge-

neous populations of sand fly-derived promastigotes (LisfPro) compared with cultured pro-

mastigotes (LiacPro) [69] but not in more homogeneous metacyclic populations (LiPro-Stat

versus LiPro-Pper, LiPro-PNA− versus LiPro-Pper, and LmSFMP/LmSFPP versus LmCMP/

LmPro-Log) [7, 25, 125]. Comparing L. infantum heterogeneous populations composed of all

promastigote development forms from the sand fly (whole-gut preparations) and culture

(growth curve mixtures), we also observed that gp63 and autophagy genes were up-regulated

[69], as well as the HASP/SHERP cluster. As mentioned above, these genes are essential for

metacyclogenesis at least in L. major. In fact, Inbar and colleagues’ [125] results are in agree-

ment because gp63 and autophagy gene up-regulation was found in LmSFNP. In addition,

they found that LPG3, a gene essential for biosynthesis and assembly of GPI-anchored glyco-

conjugates, reaches its expression peak in LmSFPP. Sand fly–derived populations enriched in

metacyclics (LiPro-Pper) are more infective than stationary-phase cultures (LiPro-Stat) and

metacyclics obtained from those populations (LiPro-PNA−) [7, 25]. Autophagy, gp63, and

HASP/SHERP gene cluster up-regulation in sand fly–derived promastigotes compared with

cultured promastigotes supports that metacyclogenesis is more successful in the sand fly gut

than in culture. Therefore, the microenvironment exerts an important influence in differentia-

tion [7].

SHERP is essential for metacyclogenesis in L. major [103]. Inbar and colleagues [125]

revealed evidence supporting this statement that consists of SHERP up-regulation in LmSFNP

and LmSFMP, reaching maximum levels in LmSFMP. L. infantum transcriptome analysis is

also in agreement with the role in metacyclogenesis, but SHERP transcripts are less abundant
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in LiPro-Pper than in LiPro-Stat [7], indicating that the levels are higher in nectomonads and

leptomonads in culture (major forms within the stationary phase compared with metacyclics)

than in sand fly–derived metacyclics. SHERP is not differentially expressed between LiPro-

Pper and LiPro-PNA−, indicating that different microenvironments do no influence SHERP
expression in L. infantum [25]. Stationary-phase promastigote cultures mostly contain necto-

monad promastigotes [21], whereas most promastigotes derived from the sand fly’s SV and

isolated using the PNA-negative selection method are metacyclic. HASP-A1 is also down-regu-

lated in LiPro-Pper versus LiPro-Stat [7], leading to the same conclusion about metacyclogen-

esis because this is also an essential gene for this process (see above). L. infantum sfPro versus

acPro (heterogeneous populations) transcriptome analysis is also consistent with the previous

studies because SHERP is up-regulated in sfPro (i.e., metacyclogenesis taking place more

extensively in sand fly than in culture). Interspecies comparison should be cautious, as previ-

ously mentioned. SHERP data are concordant between L. major and L. infantum with the pre-

viously established idea about essentiality for metacyclogenesis, but simultaneously,

transcriptome analysis has revealed specific differences.

Genes involved in fatty acid biosynthetic processes are up-regulated in sand fly–derived

metacyclics in both L. infantum and L. major [7, 125], but the highest levels of these transcripts

are reached in LmSFNP. According to DGE, glucose catabolism may be more pronounced not

only in LmSFPP than in LmSFMP [125] but also in cultured than in sand fly–derived promas-

tigotes (LiPro-Stat versus LiPro-Pper) [7]. Certain amino acid biosynthesis processes seem

more active in culture according to DGE [7]. Genes involved in ATP synthesis–coupled proton

transport are up-regulated in sand fly metacyclics (LiPro-Pper versus LiPro-Stat and LiPro-

Pper versus LiPro-PNA−). According to relative infectivity (LiPro-Pper > LiPro-PNA−>

LiPro-Stat), sand fly metacyclics are “more metacyclic” than culture metacyclics. These find-

ings are consistent with the considerable energy requirements for high motility ascribed to

metacyclic promastigotes [14].

Confrontation of the transcriptomes and infectivity of sand fly–derived promastigotes with

cultured promastigotes [7] is in agreement with the principle of nonequivalence of stationary-

phase promastigotes supported by Gossage and colleagues [14]. Both transcriptomes showed

moderate correlation in gene expression and 286 DEGs, and infectivity was approximately

30%–50% higher in LiPro-Pper. On the basis of these results, it was postulated that the ade-

quacy of axenic promastigotes may depend on each particular experimental aim and design

[7]. The characteristic transcriptome profiles found in LmSFPP, LmSFNP, and LmSFMP [38]

are presumably a consequence of their adaptation to the different microenvironments in

the vector as well. In fact, 72 out of the 108 DEGs found in LmCM/LmPro-Log [136] were

not found among the 398 DEGs found in LmSFMP/LmSFPP, as stated above. Inbar and col-

leagues [125] performed LmSFMP versus LmSFPP differential expression analysis and com-

pared data with an analogous experiment using cultured parasites (LmCMP versus LmCPP)

[136]. Both studies were performed using the same RNA-seq procedure. These data are not

comparable to LiPro-Pper versus LiPro-PNA− promastigotes because this is a direct com-

parison [25] and these populations are not normalized to their initial procyclic promasti-

gote forms. In other words, directly comparing sand fly–derived and culture-derived

metacyclics does not correspond to comparing the differences between metacyclics and

procyclics in both environments, unless procyclics from culture were exactly equal to pro-

cyclics in the sand fly, which is very unlikely. Different isolation methods may also influence

the results (see the previous section).

A considerable number of the DEGs are involved in signal transduction and gene expres-

sion regulation at the posttranscriptional, translational, and posttranslational levels between

cultured and sand fly–derived promastigotes [7, 25]. However, the biological implications of
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these findings remain unknown (see below). The finding that consists of translational effi-

ciency being lower in differentiated nondividing metacyclic epimastigotes than in undifferen-

tiated dividing Trypanosoma cruzi epimastigotes [143, 144] should guide interpretation.

Promastigotes constitutively secrete exosomes to the sand fly gut lumen. Coinoculation of

cultured L. major promastigotes with sand fly gut–derived L. major exosomes leads to greater

footpad lesions in mice [145]. These exosomes contain gp63 and other virulence factors [146–

150]. These studies indicate that a parasite’s exosome content has immunomodulatory and sig-

naling-inducing activities. Exosomes are secreted from multivesicular bodies (MVBs) and the

flagellar pocket. Protein content of culture- and sand fly–derived promastigote exosomes is

very similar [145]: gp63, which is secreted in the midgut and contributes to egestion [151];

HSP70 [152] and HSP83 [145]; calpain-like cysteine peptidases [153]; tryparedoxin peroxidase

[154]; and surface antigen proteins [155]. Transcripts encoding for these proteins were also

found increased in sfPro versus acPro [69].

Unanswered questions about development and metacyclogenesis

within the sand fly gut

Metacyclic promastigotes are defined by morphology, but their molecular features are not

entirely known. PNA separation is effective to obtain highly infective promastigotes because

PNA− promastigotes are more infective than PNA+ in both L. major [22] and L. infantum [24],

but the subpopulations obtained by this procedure may not be entirely equivalent in other spe-

cies. A major LPG role in parasite–vector interaction is well defined only for L. major, whereas

the parasite-interaction mechanisms remain unknown in all other species. LPG-independent

promastigote development has been demonstrated in permissive vector species (see "Sand fly–

Leishmania interactions" section). However, highly infective (therefore metacyclic) promasti-

gotes isolated using the PNA-negative selection procedure is possible in L. infantum [24, 118,

156], which usually develops in permissive vectors such as P. perniciosus. Alternative unknown

mechanisms participate in recognition because LPG is not strictly required for development,

and the importance of this molecule is relegated to L. major only [31]. However, it is produced

in all Leishmania species. Unknown PG receptors recognize the LPG in the sand fly gut [115,

117], which has at least an additional function acting as a shield against proteolytic activity

during the first L. major development stages (see "Sand fly–Leishmania interactions" section),

and presumably in L. infantum because both contain the key repeated (Gal-Man-PO4) motif

in the LPG structure [114]. Variation of the LPG structure (see "The axenic culture model:

Strengths and limitations" section) at the last stages toward the metacyclic stage makes negative

selection with PNA possible in both species. Surprisingly, PNA− and PNA+ subpopulations

could be isolated in the monoxenous parasite C. fasciculata [121], a fact of unknown meaning

suggesting that PG derivatives capable of agglutinating with the PNA may have more than one

function. Studying LPG function in C. fasciculata may lead to raising other approaches for

searching LPG interactions and alternative functions in different Leishmania species. High-

throughput comparative metabolomics approaches may be useful to answer these questions,

but not transcriptomics approaches. Bearing these considerations in mind, we suggest that the

role of the modified LPG at this stage may not be necessarily the same between species, as

already shown for the unmodified LPG at earlier stages. Consequently, we postulate that the

“metacyclic status” of PNA− from L. infantum may not be necessarily the same as for PNA−

from L. major, as the molecular markers and infection mechanisms may be different depend-

ing on the species. This is not surprising, because each species complex causes different pathol-

ogy, and accurate measurements comparing metacyclic promastigote infectivity of each

species are not possible. The peanut lectin has different affinity for LPG from a distinct origin,
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as different substitutions of the molecule disaccharide backbone are found depending on the

species (see "The axenic culture model: Strengths and limitations" section). In any case, L.

major [22] and L. infantum PNA− promastigotes [24] have been demonstrated to be more

infective than PNA+ promastigotes.

When comparing the heterogeneous populations LisfPro and LiacPro by slRNA-seq, a

group of genes directly involved in metacyclogenesis was found to be highly up-regulated

(�4-fold) [69], which suggests that they are required during most stages of the developmental

process within the sand fly gut compared with culture, not just at the last developmental stages.

This includes five out of 14 autophagy genes, four out of eight gp63 genes, the HASP gene clus-

ter (HASPA1, HASPA2, HASPB, respectively, LinJ.23.1200, LinJ.23.1220, and LinJ.23.1240),

one out of three membrane-bound acid phosphatases (LinJ.28.2850), all three apical mem-

brane antigen 1 (ama1, LinJ.30.1470, LinJ.30.1480, and LinJ.30.1490) proteins, and the META

domain–containing protein 2 (META2, LinJ.17.0970) gene. Both small hydrophilic surface

protein–encoding gene copies (SHERP, LinJ.23.1210, and LinJ.23.1230) are not included in

the LisfPro versus LiacPro DEG set according to the 2-fold threshold value imposed, but they

still show statistically significant approximately 1.5-fold higher levels in sfPro versus acPro

[69]. Whereas SHERP is clearly up-regulated in L. major metacyclics (LmSFMP versus

LmSFPP and LmCMP versus LmPro-Log) and, to a lower extent, in nectomonads (LmSFNP

versus LmSFPP) [125, 136], different expression profiles supporting an overexpression maxi-

mum in nectomonads (LiPro-Pper versus LiPro-Stat) [7] (see the reasons in the previous sec-

tion) were observed in L. infantum. Although the specific SHERP expression profiles are

different, both are concordant with SHERP essentiality in metacyclogenesis [103]. Cultured

and sand fly–derived L. infantum and L. major metacyclics differentially regulate SHERP
expression (LiPro-Pper versus LiPro-PNA−, and comparison between LmSFMP versus

LmSFPP and LmCMP versus LmCPP). Interestingly, both SHERP genes are up-regulated in

LiPro-Stat versus LiPro-Log of this species according to microarray analysis [8] and further

confirmation by qPCR in two independent works [24, 157]. This is equivalent to stating that

the set of nectomonads, leptomonads, and metacyclics up-regulate SHERP compared with pro-

cyclics. SHERP is a good metacyclogenesis marker but not a metacyclics marker because it is

overexpressed in more than one promastigote form (nectomonads and metacyclics). The data

suggest that the SHERP gene expression patterns are similar between L. major and L. infantum,

except for the promastigote form reaching the maximum expression levels, which peak earlier

in L. infantum than in L. major. This would not be surprising whenever confirmed in the

future given the different biological affinity for vectors and different developmental processes

of both species, resulting in different disease progression in mammalian hosts. These observa-

tions are in agreement with the fact that metacyclic promastigote features and behavior may

vary between species and are not entirely known. For example, they are highly infective, or

more infective than other promastigote forms, but by how much? Which molecules are true

markers of metacyclics in each species?

The META1 gene was described to be expressed specifically at the metacyclic stage in cul-

ture, but the high-throughput DGE studies of L. infantum and L. major have not confirmed

this result at the transcript level in sand fly–derived promastigotes [7, 25, 125]. As mentioned

before and discussed below, studies at the protein level like western blot or proteomic

approaches are not viable so far. About half of the genes annotated in the Leishmania spp.

genomes encode for hypothetical proteins, most of unknown biological role in the parasite.

These observations provide an idea of how little is known about development within the sand

fly vector.

Elucidation of processes involving the unknown relationship between external stimuli from

the microenvironment, the parasite’s uncharacterized sensing and intracellular signaling
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mechanisms, and the unusual gene expression regulation mechanisms found in these organ-

isms (reviewed in [134, 158]) may probably help to further illustrate promastigote develop-

ment within the sand fly gut. For these purposes, elucidation of signal transduction pathways

and the underlying mechanisms affecting gene expression regulation is essential because more

crucial genes in development may be found.

Translatome and proteome analysis: A major challenge

In an experiment combining DGE analysis by means of DNA microarrays and quantitative

proteomics with polysome profiling in L. donovani, Lahav and colleagues [132] observed that

gene expression regulation is performed at the posttranscriptional, translational, and post-

translational levels, leading to find that only 25% of transcript levels were quantitatively corre-

lated with the corresponding protein levels, as mentioned previously. Therefore, DGE at the

translational and posttranslational levels is more directly related to physiological changes of

the different life cycle stages than at the posttranscriptional level. A complete picture of DGE

would be provided by combined transcriptome, translatome, and proteome analysis. Polysome

profiling is an approach for measuring translational efficiency that consists of separation of

mRNA–ribosome complexes (polysomes) according to their molecular weight by means of

density gradient centrifugation for subsequent quantification of the fractions and high-

throughput analysis of the mRNA molecules in each fraction. The procedure requires approxi-

mately 4 × 108 cells (50 mL at an optical density of OD600 nm = 0.6) in the case of Saccharomy-
ces cerevisiae [159]. As the average cell volume of this yeast species is approximately 900 μm3

and the average volume of a Leishmania spp. cell is approximately 65–75 μm3, about 10 times

more promastigotes or amastigotes would be required in principle.

Ribosome profiling is a more specific high-throughput approach for measurement of trans-

lational efficiency. Protection of mRNA sequences by ribosomes is quantified by means of

NGS from a ribosome-footprinting library combined with a fragmented-mRNA library [160].

The first ribosome-profiling studies in trypanosomatids have revealed that changes in protein

production between slender bloodstream and procyclic stages of T. brucei are more extensive

than indicated by transcriptome profiling [135, 161]. In these approaches, at least 109 parasites

per sample were used to generate the ribosome-footprinting and the fragmented-mRNA

library. Jensen and colleagues [135] also mapped the 50 ends of mRNAs by means of slRNA-

seq. The same general finding was reported for T. cruzi [144], in which a higher amount of par-

asites was used. Consequently, ribosome profiling is not viable for studies in Leishmania spp.

promastigotes obtained from the sand fly so far. In fact, as many as approximately 104 infected

sand flies would be required to obtain enough promastigotes for a replicate of a ribosome-pro-

filing experiment, and many more sand flies would be required for ribosome profiling of more

homogeneous populations—for example, approximately 106 for metacyclics.

Typical samples for proteome analysis require approximately 1–2 × 108 Leishmania spp.

cells for both two-dimensional electrophoresis-based strategies [162] and quantitative proteo-

mics strategies [163]. Although this is about one-tenth to one-fifth of the amounts required for

translatome analysis, the numbers still indicate that proteome analysis is not possible for sand

fly–derived promastigotes either. Even western blot semiquantitative analysis of single-protein

levels has not been tested so far and would be very challenging, if not impossible. Despite the

approach being very sensitive, the challenge is to obtain sufficient sample and equalize

amounts across samples in order to make them comparable. Consequently, only transcript lev-

els can be analyzed so far. Although transcriptome analysis is very informative and many strat-

egies based on this approach can be developed (e.g., DGE of knock-out or knock-in

promastigote cell lines within the sand fly vector) leading to significant biological findings, the
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absence of low-input translatome and proteome approaches implies that many physiological

aspects of promastigote development within the sand fly gut will remain unexplored for a long

time.

Concluding remarks

Metacyclic promastigotes are distinguished by morphology (rapid-swimming forms with an

elongated flagellum) and high infectivity. No molecular markers are available. Metacyclics can

be isolated by negative selection with PNA, as confirmed by infection experiments. Caution

should be exercised when using cultured promastigotes depending on the experimental design,

and when comparing studies. Transcriptome analysis has revealed the crucial microenviron-

mental role in parasite development in the sand fly gut because substantial differences and

moderate correlation between cultured and sand fly–derived promastigotes have been found.

In fact, sand fly–derived metacyclics are more infective than metacyclics in culture, and genes

involved in metacyclogenesis such as the HASP/SHERP cluster, the gp63 metalloprotease fam-

ily, and autophagy genes are overexpressed in sand fly metacyclic promastigotes compared

with cultured promastigotes. Differential expression of several genes involved in gene expres-

sion regulation, signaling, and metabolic processes between sand fly–derived and cultured

promastigotes supports an important microenvironmental influence differentiation. Elucidat-

ing signal transduction pathways in these parasites may substantially improve understanding

of the relationships between promastigotes and the different microenvironments in the sand

fly gut (Table 2). Unfortunately, translatome and proteome analysis is not feasible in promasti-

gotes obtained from the sand fly gut so far.

Table 2. Functional genomics in sand fly–derived promastigotes: Main findings.

Ref. Main findings

[7, 125] The microenvironment influences parasite differentiation.

[7, 25] Sand fly–derived promastigotes from the stomodeal valve are more infective than stationary-phase

and PNA− cultured promastigotes. Approximately 300 genes are differentially regulated.

[69, 125] Autophagy, gp63, and HASP/SHERP cluster genes are up-regulated during metacyclogenesis

(nectomonad and metacyclic promastigotes). These findings confirm that these genes are

metacyclogenesis markers.

[125] Pteridine, glucose, nucleoside, and amino acid transporter genes are up-regulated in L. major sand

fly–derived versus cultured metacyclics.

[125] Calpain-like cysteine peptidase, membrane-bound acid phosphatase 2, and several signaling

molecule–encoding genes are up-regulated in L. major sand fly–derived versus cultured

metacyclics.

[7, 25, 26] Many signal transduction genes are differentially expressed between cultured and sand fly–

derived promastigotes.

[7, 25, 26, 66] Most signal transduction mechanisms are unknown in Leishmania parasites. Therefore, changes

between sand fly–and culture-derived promastigotes are unknown.

[69, 125] Several genes involved in fatty acid biosynthetic processes are up-regulated in sand fly–derived L.

major and L. infantum promastigotes.

[145] Promastigotes secrete exosomes to the sand fly gut lumen. Coinoculation with L. major
promastigotes leads to magnified footpad lesions in mice.

[145] Protein content of culture- and sand fly–derived promastigote exosomes is very similar.

[146–150] gp63 and other virulence factors are present in exosomes.

[69, 145, 151–

155]

Several proteins contained in promastigote exosomes (gp63, HSP70, HSP83, calpain-like cysteine

peptidases, surface antigen proteins, etc.) are up-regulated in whole-gut sand fly–derived

promastigotes.

Abbreviations: gp63, glycoprotein 63; HASP, hydrophilic acidic surface protein; PNA, peanut agglutinin; Ref.,

reference; SHERP, small endoplasmic reticulum protein.

https://doi.org/10.1371/journal.pntd.0007288.t002
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The main outstanding questions are: (1) What are the molecular features of the different

Leishmania spp. promastigote forms? (2) Are the multiple roles of the LPG different between

species, causing different types of leishmaniasis? (3) Are there truly stage-specific markers? (4)

Are they different between species? (5) How different are canonical signal transduction cas-

cades and those of Leishmania spp.? (6) Are there developmentally regulated changes in

Trans-splicing? If so, what implications would they have? (7) How can relative protein levels

be analyzed in sand fly–derived promastigotes?

Key learning points

• Metacyclic promastigotes are highly infective forms, but no markers are available.

• Accurate description of samples compared by means of high-throughput strategies

and caution when comparing different studies are essential and are particularly impor-

tant for samples obtained from the sand fly because different vector and parasite pairs

are considered.

• Transcriptome data and infection experiments support that sand fly–derived promas-

tigotes are more infective than cultured ones.

• Sand fly–derived promastigotes are more infective than cultured promastigotes to in

vitro–cultured human phagocytes, which combined with transcriptome profiles, sup-

ports that metacyclogenesis is more successfully completed in the sand fly gut.

• Transcriptome analysis in Leishmania infantum and L. major promastigotes derived

from the sand fly gut confirm that the hydrophilic acidic surface protein (HASP), the

small hydrophilic endoplasmic reticulum protein SHERP, and the glycoprotein 63

(gp63) genes are involved in metacyclogenesis and already increased in nectomonad

promastigotes and thus are not metacyclic promastigote markers.

• Differential expression of several genes involved in gene expression regulation, signal-

ing, and metabolic processes between sand fly–derived and cultured promastigotes

supports an important influence of the microenvironment in differentiation.

• Studying the translatome and the proteome is not feasible in sand fly–derived promas-

tigotes so far. Transcriptomics is the only alternative, and interpretation of the results

should be cautiously discussed because transcript levels do not always reflect protein

levels.
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