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Abstract

Antigenic variation is employed by many pathogens to evade the host immune response,
and Trypanosoma brucei has evolved a complex system to achieve this phenotype, involv-
ing sequential use of variant surface glycoprotein (VSG) genes encoded from a large reper-
toire of ~2,000 genes. T. brucei express multiple, sometimes closely related, VSGs in a
population at any one time, and the ability to resolve and analyse this diversity has been lim-
ited. We applied long read sequencing (PacBio) to VSG amplicons generated from blood
extracted from batches of mice sacrificed at time points (days 3, 6, 10 and 12) post-infection
with T. brucei TREU927. The data showed that long read sequencing is reliable for resolving
variant differences between VSGs, and demonstrated that there is significant expressed
diversity (449 VSGs detected across 20 mice) and across the timeframe of study there was
a clear semi-reproducible pattern of expressed diversity (median of 27 VSGs per sample at
day 3 post infection (p.i.), 82 VSGs at day 6 p.i., 187 VSGs at day 10 p.i. and 132 VSGs by
day 12 p.i.). There was also consistent detection of one VSG dominating expression across
replicates at days 3 and 6, and emergence of a second dominant VSG across replicates by
day 12. The innovative application of ecological diversity analysis to VSG reads enabled
characterisation of hierarchical VSG expression in the dataset, and resulted in a novel
method for analysing such patterns of variation. Additionally, the long read approach
allowed detection of mosaic VSG expression from very few reads—the earliest in infection
that such events have been detected. Therefore, our results indicate that long read analysis
is a reliable tool for resolving diverse gene expression profiles, and provides novel insights
into the complexity and nature of VSG expression in trypanosomes, revealing significantly

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007262  April 3, 2019

1/22


http://orcid.org/0000-0003-1524-2232
http://orcid.org/0000-0001-5739-976X
http://orcid.org/0000-0002-4896-4592
http://orcid.org/0000-0003-2994-6169
http://orcid.org/0000-0003-2589-8091
http://orcid.org/0000-0003-4749-4725
http://orcid.org/0000-0002-8304-9066
https://doi.org/10.1371/journal.pntd.0007262
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007262&domain=pdf&date_stamp=2019-04-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007262&domain=pdf&date_stamp=2019-04-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007262&domain=pdf&date_stamp=2019-04-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007262&domain=pdf&date_stamp=2019-04-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007262&domain=pdf&date_stamp=2019-04-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007262&domain=pdf&date_stamp=2019-04-15
https://doi.org/10.1371/journal.pntd.0007262
https://doi.org/10.1371/journal.pntd.0007262
http://creativecommons.org/licenses/by/4.0/
https://github.com/siddharthjayaraman/longread-application
https://github.com/siddharthjayaraman/longread-application
https://github.com/siddharthjayaraman/longread-application

@' PLOS NEGLECTED
2 : TROPICAL DISEASES Long read sequencing determines expressed antigen diversity in trypanosome infections

UF140610) to LM, and a Royal Society grant
(RG110378) to LM and CHF. TM and LM were

funded by a Roslin sequencing grant (BBSRC). The

Roslin Institute is supported by the BBSRC (BB/
J004227/1, BB/J004235/1 & BBS/E/D/20002173).
RR and CC are supported by the BBSRC (BB/
P004202/1). The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

higher diversity than previously shown and the ability to identify mosaic gene formation early
during the infection process.

Author summary

Antigenic variation is a system whereby pathogens switch identity of a protein that is
exposed to the host adaptive immune response as a way of remaining one step ahead and
avoiding being detected. African trypanosomes have evolved a spectacularly elaborate sys-
tem of antigenic variation, with variants being used from a library of ~2,000 genes. Our
ability to understand how this rich repository is used has been hampered by the resolution
of available technologies to discriminate between what can be closely related gene vari-
ants. We have applied a long read sequencing technology, which generates sequence infor-
mation for the whole length of the antigen gene variants, thereby avoiding having to try
and piece together antigen sequences from lots of small fragments, the pitfall of standard
sequencing. Applying this technology to material taken at specific time points from
batches of mice infected with trypanosomes reveals that the diversity of variants is much
higher than previously suspected, and that there is a clear semi-predictable pattern in the
gene expression. Additionally, using this technology we have been able to detect the pres-
ence of ‘mosaic’ genes, which are created by stitching together fragments from several
donor genes in the library, much earlier in infection than has been shown previously.
Therefore, we shed new light on the complexity of antigenic variation and show that long
read sequencing will be a very useful tool in analysing and understanding the expression
patterns of closely related genes, and how pathogens use them to cause persistent infec-
tions and disease.

Introduction

Antigenic variation is used by many pathogens as a means of staying one step ahead of the
host’s adaptive immune response. Trypanosoma brucei has long been a paradigm for the study
of antigenic variation, and the protein responsible, the variable surface glycoprotein (VSG) has
been the focus of much research [1-3]. Each trypanosome in a population expresses a single
species of protein, and an inherent, parasite-driven switching process causes a proportion of
the population to replace their active VSG gene with a different VSG gene, resulting in the
expression of a protein in those cells with different epitopes exposed to the host immune sys-
tem (at a rate of up to 10> switches per cell/generation [4]). The post-genomic era has revealed
T. brucei’s antigenic variation system to be unrivalled in its elaboration, particularly in terms
of the scale of the numbers of genes that comprise the VSG family. Sequencing the genome of
T. brucei has uncovered a gene family much greater in numbers and complexity than was pre-
viously thought. Characterisation to date suggests that at least 2,000 VSG genes are in the
genome of each trypanosome, providing a spectacularly large repertoire of potential antigens
[5, 6], particularly when compared to other pathogens that undergo antigenic variation, such
as Plasmodium Falciparum (60 genes in PIEMP1 family [7]), Anaplasma marginale (~10 mem-
bers in the msp2 & msp3 gene families [8]), and Borrelia burgdorferi (15 members in the vis
gene family[9]).

The scale of the gene family size is also reflected in the complexity of switching mechanisms
employed to change the identity of the surface antigen. The VSGs are expressed from one of
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approximately 20 bloodstream expression sites (BES)[10], the active expression occurring in a
dedicated sub-nuclear organelle, the expression site body (ESB)[11], with the remainder of
BESs being transcriptionally silent. A minor mechanism of VSG switching, accounting for
only approximately 10% of events in wild type trypanosomes [12], is to turn off the transcrip-
tion of the active BES and activate one of the silent BESs (‘transcriptional switching’). How-
ever, the majority of switching is through replacing the gene sequence in the active BES via
gene duplication, which involves the copying of variable amounts of sequence, ranging from
within the gene to the whole telomere [13, 14]. Insights into mechanisms involved in switching
suggest that replacing expressed VSG sequence is driven by DNA recombination, and DNA
repair/homologous recombination pathways and proteins (e.g. RAD51) have been identified
to be involved in the gene duplication process of VSG switching [15] (reviewed in [16]). A fur-
ther layer of complexity is the construction of novel VSG sequences in the BES from multiple
donor VSG sequences, a form of segmental gene conversion termed ‘mosaic’ gene formation
[17, 18]. Mosaic gene formation was previously considered to be a rare and minor mechanistic
component of overall VSG switching in an infection (e.g. [14]). However, the revelation upon
the sequencing of the T. brucei genome that a significant proportion of the VSG repertoire
(80-90%) consisted of pseudogenes [19] that cannot be expressed as functional proteins began
to alter that perception [5, 20]. It has become clear from subsequent experimental work that
mosaic gene formation is an integral component of VSG switching, particularly after the early
stages of infection (i.e. beyond the first peak of parasitaemia in mouse infections)[5, 21].

One of the challenges of analysing VSG expression in vivo, and in particular gaining an
accurate measurement of the level of expressed diversity given the extent of the VSG repertoire
(i.e. to what extent is the repertoire actually used during infection), has been the relatively lim-
ited resolution of available techniques-in particular the manual cloning and sequencing of
individual VSG cDNAs that has been undertaken in recent studies [5, 21]). While this
approach clearly provides accurate data at the level of individual VSG transcripts, the limita-
tions have undoubtedly resulted in a low estimate of the diversity and complexity of VSG
expression at the population level, and particularly with respect to minor variant populations.
Additionally, although transcriptomics potentially provides the ability to overcome the resolu-
tion limitations of manually cloning and sequencing transcripts, the application of RNAseq to
VSG expression from in vivo samples has long been deemed challenging, due to the require-
ment for assembling multiple closely related gene variants from a mixed population using
short reads of 100-200 base pairs (e.g. Illumina)-this has similarly been an issue when
attempting to resolve, for example, the diversity of the mammalian immunoglobulin gene rep-
ertoire underpinning the antibody response (e.g. [22]). However, a recent study subjected in
vivo samples to Illumina sequencing (100bp, single-end reads) and demonstrated the utility of
transcriptomics in terms of increased resolution [23], and were able to detect minor variants
(0.1% of population) and up to 79 variants at a time point, although they were not able to iden-
tify significant mosaic gene expression.

Long read sequencing potentially provides the ability to further increase our resolution,
particularly as the length of reads commonly reached with such technologies (average read
length in Pacbio, for example, is quoted as 10,000-20,000 bp; http://www.pacb.com/smrt-
science/smrt-sequencing/read-lengths/) far exceeds the length of the VSG transcript (approxi-
mately 1600 bp), meaning that the issue of assembly of closely related VSGs from multiple
reads should be bypassed. Here, we present analysis of VSG expression from replicate in vivo
T. brucei TREU927 infections in mice at 4 time points over 12 days using almost 500,000 Pac-
bio Sequencing reads. We demonstrate that long read technologies provide significant advan-
tages for analysing the diversity of VSG expression. Our data suggest that the VSG population
comprises significantly more variants even at an early stage of infection (up to 190 variants at
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Table 1. Summary of data per sample.

Sample* | Reads of

3.1
3.2
3.3
3.4
3.5
6.1
6.2
6.3
6.4
6.5
10.1
10.2
10.3
10.4
10.5
12.1
12.2
12.3
12.4
12.5

TOTAL | 486343

Insert
5560

15244
10500
18245
17716
21453
24101
22451
19513
23063
35071
28168
21462
41434
38637
34765
27774
31753
9291

40142

Mean Read Length of
Insert

1443
1689
1688
1532
1521
1586
1634
1647
1603
1453
1483
1572
1631
1562
1591
1531
1541
1576
1619
1496
1569.9

day 10 post-infection), that the pattern of VSG expression is surprisingly reproducible (using
the novel application of ecological diversity indices), and that mosaic gene expression can be
detected much earlier in infection than has been possible previously. Our data also provide
insights into the nature of mutations introduced by Pacbio long-read sequencing technology,
as the dataset includes significant coverage of one sequence (>140,000 reads).

Results

Long read sequencing maps the VSG transcriptome at unprecedented
resolution

Using PacBio long read RNA sequencing of 20 blood samples enriched for VSG transcripts
from replicate in vivo T. brucei TREU927 infections in mice at 3, 6, 10 and 12 days post infec-
tion, we obtained 486,343 reads with an average read length of insert of 1,569 bp (Table 1, Fig
1B). Reads were filtered by length (1400-2000bp) based upon both literature on VSG genes
[21, 24] and the read distribution in our dataset (Fig 1B) to remove reads resulting from
sequencing artefacts and shorter fragments (i.e. partial reads), and on the basis of similarity to
known VSGs (blastn >60% alignment against TriTrypDB-v26 [25]-note that the reads include
both N-Terminal and C-Terminal domain sequences) (Fig 1C), resulting in a dataset of
296,937 ‘VSG’ reads. Of the reads that were of the appropriate length (1400-2000bp) but did
not have >60% match to VSGs in the reference database (n = 102,940), 90,810 (88.2%)
mapped partially to VSGs, 3,513 (3.4%) mapped to non-VSGs, and 8,617 (8.3%) did not pro-
duce any match to the TREU927 reference genome. Within the dataset of 296,937 VSG reads,

Mean Read Quality of | Mean Number of Number of filtered Mean Number of Passes for filtered

Insert Passes reads reads
0.9875 10.74 3744 7.45
0.9824 8.06 13471 6.92
0.9802 7.95 9015 6.79
0.9816 8.79 11842 6.73
0.9774 7.91 11814 6.30
0.9803 8.49 13881 7.40
0.9751 7.21 16719 6.05
0.9753 7.26 16527 6.18
0.978 7.41 12732 5.77
0.9751 8.03 11493 6.09
0.9739 7.48 18893 6.47
0.9721 6.87 14077 6.04
0.9788 7.35 12829 6.43
0.9761 7.41 17230 6.60
0.9772 7.5 19240 6.48
0.9766 7.69 23332 6.38
0.972 6.88 18659 5.87
0.9766 7.29 22634 6.25
0.9846 8.04 6908 7.05
0.9735 7.46 21897 6.76
0.9777 7.79 296937 6.50

*data available at GEO accession number GSE114843.

https://doi.org/10.1371/journal.pntd.0007262.t001
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Fig 1. (A) Parasitaemia measurements for the batches of mice sacrificed at days 3, 6, 10 and 12 days post-
infection. A summary of analysis of Pacbio data generated from these samples is shown, including main decision steps
(black boxes represent data filtering steps; data within black boxes was included), (B) read length distribution, (C)
alignment of reads to VSG, (D) correlation of read number with number of VSGs identified.

https://doi.org/10.1371/journal.pntd.0007262.9g001

each read on average represented the consensus sequence from 6.50 passes of the full length
fragment by the DNA polymerase (‘full passes per read’; summarised in Table 1; full data in S1
Table), and for each of these reads there was robust identification of a donor gene for the
N-Terminal domain (NTD); therefore, for these 296,937 reads we have high confidence that
they contain all of the features necessary to be consistent with being full length VSG tran-
scripts. The 296,937 reads represent a total of 449 VSGs (74.77% of VSG a-type and 25.22%
VSG b-type [24]) across 20 samples, with the number of reads per VSG following a power-law
distribution (Fig 1D), and provide a unique insight into the in vivo VSG transcriptome across
time and animal replicate.

PacBio sequences contain random errors even at high number of full passes

OREFs were identified in the 296,937 reads with a conservative minimum nucleotide size of
1200 nucleotides (reported size ranges of VSG NTDs and C-Terminal domains [CTDs] are
approximately 300-350 and 100 amino acids, respectively [5, 21, 24]). Surprisingly, only
33,234 reads (11%) resulted in predicted ORFs. Although the percentage of reads with pre-
dicted ORF increased with increasing number of full passes, it remained well below 50% even
for reads having 10 full passes or more (Fig 2A). Since the distribution of the number of reads
with a detectable ORF over all VSGs was similar to total expression level distribution (Table 2),
we hypothesize that the lack of identified ORFs was due to random sequencing errors rather
than any systematic biases in the data, despite PacBio claiming an accuracy of more than 99%
for reads with 15-fold coverage [26]. To investigate this hypothesis in more detail, we focused
on the most abundant VSG (Tb08.27P2.380, 1551bp, 141,822 high-confidence reads) and
annotated each discrepant base pair of each aligned read as either an insertion, deletion or mis-
match with respect to the Tb08.27P2.380 reference genome sequence. All reads had an
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Fig 2. Analysis of Pacbio sequence data: (A) Number of reads aligning to VSGs per number of full passes, with proportion
of those reads comprising predicted ORF in yellow; red line shows percentage of reads at each threshold of full pass
number that contained a predicted VSG ORF. (B) Percentage of reads at each position in the N-Terminal domain that
contained a mutation with respect to the reference genome sequence for VSG Tb08.27P2.380; alignment coverage is shown by
the black line, insertions by green dot, deletions by red dot and mismatch by blue dot. (C) Focused representation of data in 2B,
with only mutations with respect to the genome reference sequence <2% at each position in the N-Terminal domain VSG
Tb08.27P2.380 shown; insertions shown by green dot, deletions by red dot and mismatch by blue dot. (D) Percentage error rate
plotted against number of full passes; red line indicates number of nucleotide positions for those aligning to VSG Tb08.27P2.380
that contained an error with respect to genome reference sequence against number of full passes.

https://doi.org/10.1371/journal.pntd.0007262.9g002

alignment score greater than 90% over the first 1266bp (the N-Terminal domain) (Fig 2B).
The distribution of sequence errors showed a clear bimodal pattern across the N-Terminal
domain, with 145 nucleotide positions having a consistent mismatch (131), deletion (10) or
insertion (4) across more than 80% of the reads, and 1,112 nucleotide positions having errors
in at least one but fewer than 2% of reads (Fig 2B). This suggests that the former represent
genuine mutations already present in our inoculum (with respect to the reference genome
sequence), whereas the latter represent either random sequencing errors introduced by Pacbio
or low level genuine mutations that we cannot currently distinguish from Pacbio error. Previ-
ous studies have indicated accumulation of mutations over time in expressed VSGs, and we
examined this in our data for reads aligning to Tb08.27P2.380 (for the N-terminal domain) by
assessing the error rate for mismatches, insertions and deletions (S1 Fig). While these data
indicated statistical support for differences in the data distribution across time points for all 3
mutation classes, due to the skewed nature of the data distribution (most bases have an error
rate close to zero) this conclusion must be treated with a degree of caution. The assertion that
the errors present in >80% of reads were ‘genuine’ mutations was further supported by these
145 mutations being consistently present in PCR amplicons sequenced by Sanger sequencing.
These PCR amplicons had been generated from cDNA extracted from multiple samples (n =7
for Tb08.27P2.380; representing sequences independently cloned and sequenced from 4 mice
on days 3 and 10, S2 Fig). Insertions were the most common Pacbio-introduced error (average
per-base error rate of 0.79% across the N-terminal domain sequence), followed by deletions
(0.73%) and mismatches (0.33%) (Fig 2C), in agreement with what has been reported before
[27]. Consistent with the ORF prediction pattern (Fig 2A), the overall error percentage was
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Table 2. Top 20 variants; number of reads across dataset as measured by (i) mapping to reference VSG database and by (ii) sequence clustering; the relevant

TREU927 reference VSG is indicated in the first column.

VSG reference gene

Total
Tb08.27P2.380
Tb09.v4.0077
Tb927.4.5730
Tb927.10.10
Tb11.v5.0932
Tb927.9.300
Tb09.v4.0088
Tb05.5K5.330
Tb927.9.16490
Tb927.3.480
Tb11.57.0047
Tb927.11.20300
Tb927.1.05
Tb927.4.5570
Tb10.v4.0061
Tb11.v5.0599
Tb927.9.580
Tb927.5.4700
Tb09.v4.0075
Tb11.1451

* The subset of reads with predicted ORFs was used for the clustering algorithm analysis.

https://doi.org/10.1371/journal.pntd.0007262.t002

Reads by mapping to VSGs

296937 100
141822 47.76
46264 15.58
23643 7.96
13167 4.43
10187 3.43
8751 2.94
7947 2.67
7865 2.64
3669 1.23
2984 1
2783 0.93
2353 0.79
1990 0.67
1622 0.54
1414 0.47
1400 0.47
1276 0.42
1168 0.39
1133 0.38
1126 0.37

Percentage of total

Reads by sequence clustering*
33205
14543
5951
2499
1294
1435
913
1223
874
413
368
379
247
280
200
181

175
140
121

Percentage of total
100
43.80
17.92
7.53
3.90
4.32
2.75
3.68
2.63
1.24
1.11
1.14
0.74
0.84
0.60
0.55

0.53
0.42
0.36

Hall Sets

Set_23
Set_08

Set_36
Set_22

Set_04

Set_35

lower for reads with higher number of passes, but introduced sequencing errors (i.e. inter-

preted as mutations not present in the genome of the inoculated trypanosomes) remained

present at more than 1000 nucleotide positions even for reads with 10 passes (Fig 2D). The
nature of our data, comprising >141,000 reads of the same sequence, therefore provides an
unusually robust insight into the nature of Pacbio errors and the caveats that must be placed
upon interpretation of such data, as most studies involve much less coverage per single base

pair.

VSG population comprises more variants than expected and the pattern of
expression is highly reproducible across replicates

Our data demonstrate that we can detect multiple VSGs in each sample, and that we can iden-
tify changes in VSG expression and diversity over time. We identified a median of 27 unique
VSGs per sample at day 3 post infection (p.i.), which progressed to 82 VSGs at day 6 p.i., peak-
ing at 187 VSGs at day 10 p.i. and reducing to 132 VSGs by day 12 p.i. (Fig 3A). When identi-
fied VSGs that mapped to single reads from single samples were removed, this resulted in an
identification of 334 VSGs (median of 27, 81, 170 and 126 VSGs per sample at 3, 6, 10, and 12

days p.i., respectively).

Not only were the number of distinct VSGs consistent across samples for the same time
point, but the expression pattern (proportion of reads per sample mapping to particular VSGs)
was also highly reproducible between samples and over time (Fig 3B), albeit bearing in mind
that these analyses are of batches of mice at four different time points rather than longitudinal
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Fig 3. VSGs per sample. (A) Average number of donor VSGs mapped at each time point, plotted with and without VSGs identified
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samples of the same mice. The VSG that is dominant at day 3 (Tb08.27P2.380), presumably
introduced as the dominant VSG in the inoculum, remains dominant in all mice at day 6, but
is the single VSG with the most reads aligned in only two of five mice at day 10. Interestingly,
by day 12, the VSG with the most reads per sample is the same in all five mice (Tb09.v4.0077)
and this VSG was also most common at similar timepoints in previous analyses [21]. Addi-
tionally, the other eight VSGs that reads map to in mice at days 10 and 12 (Tb927.4.5730,
Tb927.10.10, Tb11.v5.0932, Tb927.9.300, Tb09.v4.0088, Tb05.5K5.330, Tb927.9.16490 and
Tb927.3.480; Fig 3B) are present in all ten mice suggesting a degree of conservation in the
sequential expression of VSGs in independent infections, consistent with previous observa-
tions [21, 28, 29]. However, in all mice there were reads that mapped to VSGs distinct to these
most favoured 10 VSGs (‘others’ in Fig 3B, which account for 10.36% of all VSG-mapped
reads), and in some mice this proportion was particularly high (e.g. mice 3.5, 6.1 and 10.4; Fig
3B). This is particularly evident at day 6, where although the dominant VSG (Tb08.27P2.380)
makes up most reads, the majority of reads that do not map to Tb08.27P2.380 map to VSGs
other than the other top 9 VSGs in all mice. Additionally, at Day 10 we observe both the great-
est number of VSGs and the least domination by any single VSG, but the proportion of ‘others’
either reduces or remains stable. These analyses combine to indicate that while there is a broad
predictability in expression, with dominant VSGs at the beginning and end of infections, in
between these timepoints there is a degree of stochasticity in the system-although eight VSGs
comprise the majority of reads that do not map to either of the two dominant VSGs, the rela-
tive proportion of these ‘minority’ VSGs is not consistent, and there are furthermore many
VSGs that are expressed at very low levels in all mice.

The analysis described thus far (Fig 3) has not taken into account any sequence similarity
between VSGs, but relied on mapping reads to identified VSGs in the reference database. To
analyse the population diversity of VSGs within and across samples using a method that is
independent of mapping to existing databases (which are likely to be incomplete), we applied
information theoretic measures more commonly used to quantify the biodiversity of
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ecosystems [30]. This approach initially applied a clustering algorithm to a proportion of reads
(n = 33,205; comprising reads with predicted ORF) in order to enable identification of the
reads that clustered on the basis of sequence similarity, as putatively distinct VSGs (Fig 4A).
These data showed significant congruity with those described for the VSG mapping approach
described above (Table 2). The top 10 clusters comprised 89.34% of all reads, compared to
89.68% for the VSG mapping approach, and the relative proportion of reads that either map to
VSGs or cluster by sequence similarity is very comparable for the 10 most abundant VSGs
(Table 2). These data indicate that the clustering algorithm applied was robust in terms of
identifying individual VSGs, and therefore indicated a very similar pattern of a dominant early
VSG, followed by an intermediate period of significant greater VSG diversity, ending up with
a second dominant VSG by day 12.

The sequence similarity data also allowed the analysis of variability between mice using a
new measure of population differentiation called normalised beta diversity [30] (Fig 4B).
When looking at a single day, beta diversity is the effective number of distinct VSG profiles
present on that day, giving information on the differentiation between the animals. This analy-
sis indicates (similar to the VSG mapping data) the greatest beta diversity across individuals is
at day 10 (Fig 4B solid line).

Further exploring each time point and variation between mice (Fig 4B dots), we can see
that although the mice at day 3 show some distinct VSG profiles (albeit with overexpressed
VSGs in individual mice common to all mice, SI Fig 3), at day 6 most mice (except for mouse
6.5) are broadly consistent with respect to which VSGs are present and how common they are.
The effective number of VSG profiles increases further on day 10 with maximal divergence
between mice at any time point, (Fig 4B, solid line). This value then decreases on day 12
(though mouse 12.2 is distinct), as the mice begin to express similar profiles again. These anal-
yses again indicate that there is stochasticity in the process of VSG expression considered as a
progression over 12 days, and there is semi-predictability rather than strict hierarchical pro-
gression through VSG expression, as has been described previously [21, 29, 31, 32]

Mosaic VSG genes are present early in infection

Mosaic genes were considered identified where BLAST hits for a particular read demonstrated
non-overlapping homology to more than one distinct VSG in the reference database. This was
commonly seen in the C-Terminal domain, where the same N-Terminal domain was in many
instances observed with different C-Terminal domains (“3’ donation” in [21]). Using pairwise
alignments of all reads that mapped to Tb08.27P2.380, based on the alignment coverage over
the gene, donors were filtered based on the region representing the C-Terminal domain (the 3’
region approximating to 30% of the gene shown in Fig 5A). Donors were selected based on at
least 80% alignment coverage to the CTD. These data show that the reads aligning to
Tb08.27P2.380 consists of three subgroups based on their CTD donors, which are derived
from either the reference gene Tb08.27P2.380 (43% of all reads), but also from Tb10.v4.0158
(29%) or Tb927.6.5210 (28%). The proportion of the three donor CTDs varies across time
points, with the proportion of reads deriving from the donor Tb08.27P2.380 gene decreasing
by days 10 and 12 (reducing from 46.55% at day 3 to day 26.19% at day 12, although the num-
ber of reads in total aligning to Tb08.27P2.380 is low by days 10 and 12). The frequent nature
of this recombination has been observed previously [21]. We detected N-Terminal domain
mosaics (within the constraints of our stringent selection criteria) at a much lower frequency
(n =45 over all 20 mice; three sequences at day 3, five at day 6, 13 at day 10 and 23 and day 12
-S2 Table), and in most cases these are single read examples, and so must be treated with some
caution (albeit 12 of the putative mosaic reads have coverage of at least 7 full passes, a coverage
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indicate the profiles of individual mice, while coloured lines indicate the average for that particular cluster, coloured according to the cluster. (B)
Diversity analysis showing the effective number of distinct VSG profiles found on day 3, 6, 10 and 12 for each mouse (dots) on that day, with the
average across the days represented by the solid line.

https://doi.org/10.1371/journal.pntd.0007262.g004

level at which our analysis-Fig 2D-suggests should effectively remove sequencing-derived
error). However, we have two examples where we have more than one read indicating N-Ter-
minal domain mosaicism, with the additional support for one of these sequences that it is only
detected in one mouse-given the complex nature of previously identified mosaic N-Terminal
domains [5, 21], it is unlikely that identical mosaics would emerge in separate individual infec-
tions. Nevertheless, we do also have one putative mosaic sequence that occurs in two separate
mice (balbc_6_0/100673/ccs5 and balbc_12_1/30571/ccs9 in mice 6.1 and 12.1, respectively;
S2 Table)-this may either represent a gene currently not annotated in the TREU927 genome
or be a true mosaic gene that was present in the initial inoculum and has remained at low levels
throughout infection. The N-Terminal domain mosaic examples we have detected are mostly
relatively simple mosaic genes (e.g. Fig 5B). Although we cannot formally rule out that at least
a proportion of these mosaic genes were present in the original inoculum, the increased fre-
quency over time is consistent with expectations that this process is rarest early in infection
but becomes more prevalent as infections progress.

Discussion

The results illustrate the power of long read sequencing when applied to expressed gene diver-
sity-we identified 449 VSGs across 20 individual samples, covering four time points post-
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infection (3, 6, 10 and 12 days). The identification of the VSGs was achieved by two
approaches; mapping reads to a reference VSG database, and secondly clustering read
sequences to identify distinct variants-importantly without reliance upon a reference genome
or sequence database. These independent approaches were highly congruent in the number of
VSGs and the proportion of reads that were attributed to individual VSGs (Table 2), meaning
that the clustering approach may be particularly valuable for analysis of long read data gener-
ated from infections with trypanosome strains (or species) where a genome is either not avail-
able or is incomplete. When compared with previous approaches, such as manual cloning (801
VSG sequences that comprised 93 distinct VSGs or ‘sets’ across 11 mice across 19 days of sam-
pling each [21]) or short read Illumina sequencing (289 VSGs for 4 mice- 3 mice sampled 9
times over 30 days and one mouse sampled 13 times over 105 days [23]), the Pacbio approach
gives significantly higher resolution per sample. It must be acknowledged that in the present
study the starting volume of infected blood for each sample was higher (200 pl versus 50-

100 pl in [23] and approximately 15 ul in [21]), and additionally the inoculum in the current
study was significantly greater and not clonal, meaning the study design may predispose to
more expressed variants being detectable. The TREU927 clone used was also highly virulent,
giving rise to a high parasitaemia early that was maintained for the 12 days of infection. This is
not representative of the classical fluctuating profile of less virulent strains (or clones of this
strain, e.g. [33]); however, for the purposes of assessing the utility of Pacbio this was advanta-
geous. A proportion of the identified VSGs (115/449; 25.6%) derive from single reads in single
samples, and therefore a degree of caution must be employed with these variants. However,
when the singleton VSGs are removed, we can confidently conclude that we have identified
334 VSGs across our datasets—this ranges from a median of 27 VSGs in day 3 samples to 170 in
day 10 samples. Therefore, despite these caveats, we can still conclude that the resolution in
terms of diversity is significant for the long read approach, and likely to be of great utility for
studies incorporating VSG diversity going forward.

Despite the limitations of the study design, where we have analysed batches of mice at four
time points rather than longitudinal surveys of individual mice, our data across 20 mice and
four time points are very consistent with a highly reproducible pattern of VSG expression over
time (Fig 3 & Table 2). There was a remarkable degree of consistency in identity of dominant
VSGs across independent infections—particularly as the inoculum used was not a single cell or
a cloned inoculum (this is very distinct from, for example, Borrelia, where Pacbio analysis has
indicated very little overlap in expressed antigen diversity across replicates from the same start-
ing inoculum [34]). The data demonstrated a consistent emergence of the two sequentially
dominant variants at the beginning and end of the infection period (Tb08.27P2.380 and Tb09.
v4.0077), although during the period in between the dominant VSGs there was significant
diversity in expressed VSGs that was consistent with an inherent degree of stochasticity in the
system. This was reinforced by the application of biodiversity analysis (Fig 4), which illustrated
the semi-predictable nature of the variant progression across the mice and timepoints. This
chimes with previous work that described the semi-predictable expression of VSGs in T. brucei
[21, 28, 29], and modelling approaches that have also reflected semi-predictable use of the
VSG repertoire [31, 32, 35].

When analysing our data set and comparing with that of Hall et al, 2013, who used the
same TREU927 strain, we have significant overlap in detected expressed variants. 90% of our
reads correspond with a VSG detected in Hall et al. The dominant early VSG is different (cor-
responding to ‘Set_23’ in the Hall data, Table 2), although the Tb09.v4.0077 which becomes
dominant by day 12 was similarly dominant by ~day 20 in Hall et al; differences are presum-
ably due to the use of either a stabilate with a distinct passage history, or the use of a larger
inoculum rather than single trypanosomes (i.e. inoculation of a population from a previous
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infection presumably expressing the dominant VSG at that particular stage). The dominant
VSG in our dataset (Tb08.27P2.380) was annotated as a pseudogene in the reference genome
(predicted to be truncated due to insertion of a stop codon). The annotation as a pseudogene
is not consistent with our data as a dominant early VSG, as it would suggest mosaic gene for-
mation providing a dominant early gene-indeed, recent reannotation has classified this gene
as intact, which would be more in keeping with early expression favouring intact over pseudo-
gene or mosaic VSGs [5, 21]. However, given the 1 x 10° inoculum used in this study, it is also
feasible that the transfer of Tb08.27P2.380 as the dominant expressed VSG from the donor
mouse infection may have given rise to it being the dominant expressed VSG in the infections
analysed.

We have identified mosaic genes (classified as reads demonstrated non-overlapping homol-
ogy to more than one distinct VSG N-Terminal domain in the reference database) earlier in
infection than has previously been identified, although we cannot formally rule out that at
least some of these were introduced in the original inoculum. The rate of mosaic gene detec-
tion was very low in our study, mostly either single or very few reads, which probably reflects
our timeframe being only 12 days post-infection; this also pertains if the trypanosomes
expressing mosaic VSGs derived from the inoculum, which was also generated over a short
duration (5-7 days) in the donor mouse. However, these data do indicate that the nature of the
long read sequencing is highly beneficial in terms of mosaic gene identification; even low fre-
quency expressed genes (within the limitation of the four orders of magnitude of coverage that
the read number per sample provides) can be identified with some confidence due to the
acquisition of the whole gene sequence-in order to achieve this with short read approaches a
reasonable degree of read coverage would be required to identify and confirm putative mosaic
genes. This has potential implications for the application of long read sequencing to signifi-
cantly further our understanding of infection dynamics and the role of mosaic genes as infec-
tions progress. This is likely to be important in terms of ability to gain insights into the
mechanisms of mosaic gene formation because of consequent increased ability to resolve
defects in switching rate (e.g. analysis of DNA recombination gene mutants such as RAD51
that have been implicated in DNA recombination-based VSG switching [15])-at present it is
not known if mosaic gene formation involves a mechanistic switch in terms of pathways; the
ability to detect low frequency mosaic gene expression should provide the ability to study this.
Additionally, detection of low frequency VSGs would enhance the ability overall to more fully
analyse the temporal kinetics of VSG switching—providing an avenue for improved quality of
inputs into modelling dynamics of VSG expression. The clustering approach developed in this
study that does not rely upon a reference database would also make analysing expressed VSG
diversity in the animal trypanosomes, T. congolense & T. vivax, feasible—the reference genome
(and therefore genomic VSG repertoire) is less well annotated in these species than in T. bru-
cei. One challenge for taking a similar approach in these species is the lack of conserved 3’
UTR sequence in expressed VSGs to enrich transcripts. However, such analyses may be partic-
ularly enlightening given the different structure and content of VSG repertoires recently
described between the three genomes [36, 37], as well as the strikingly different arrangement
of VSG expression sites in T. congolense compared to T. brucei [38].

We detected indels consistently when comparing Pacbio transcripts to the reference gene
(Fig 2). While these differences may indeed be real, with our protocol we have somewhat lim-
ited resolution for conclusively differentiating indels introduced by the trypanosome from
those potentially introduced by PCR. However, PCR is unlikely to be the sole cause of the
observed mutations, because in the dominant VSG in our dataset (Tb08.27P2.380), which rep-
resents 141,822 reads across all 20 samples—therefore, 20 independent PCR reactions—we
observe a consistent set of variations from the reference genome sequence (145 nucleotide
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positions across the NTD having a consistent mismatch (131), deletion (10) or insertion (4)
across more than 80% of reads with respect to the reference sequence) across all reads-these
are consistently present across all reads for this variant, including those reads with high fold
coverage (i.e. greater than 10 full passes per read) (Fig 2). These data, across technical and bio-
logical replicates, lead us to conclude that these differences were present in most likely the
genome copy, but also potentially a distinct BES-resident copy of this VSG that has accumu-
lated mutations distinct to the genome basic copy of the gene, and mutations were not intro-
duced by PCR. One possible explanation for this is that there is very likely a significant (and
unknown) divergence in passage history between the sequenced reference genome TREU927
trypanosomes and those used in this experiment. This would be consistent with data from
many pathogens of the increased mutability of telomeric/subtelomeric gene families [39]. Pre-
vious data indicated accumulation of point mutations in expressed VSGs over time within
infections [5, 21], and in our data we saw some support for this process, but the skewed nature
of the data distribution limits our ability to conclude increased mutations over time as an
important aspect of VSG expression (it should be noted that a timeframe of 12 days is relatively
short and will have limited our resolution). However, our data indicate that application of long
read analysis over longer infection timeframes is likely to be a useful means of characterising
the nature and role of this mechanism.

However, the multiple mutations that were present across multiple VSG sequences in our
data, did enable detailed analysis of the nature of mutations detected in Pacbio sequencing
(Fig 2). Ideally, to enable clear differentiation of PCR bias and artefact, errors introduced by
Pacbio, and mutations introduced by the trypanosome, unique molecular identifiers (UMIs)
would be added prior to PCR amplification (e.g. [22, 40]). While we did not incorporate this
step, we can draw some conclusions from analysis of our data. When data for Tb08.27P2.380,
which represents 141,822 reads, is analysed across the range of fold coverage per read, it is
clear that most of these mutations are removed as the coverage increases (Fig 2)-although
notably even at a high number of passes some introduced mutations remain. This strongly sug-
gests that most of these are errors that are introduced by the Pacbio process, and the propor-
tion we observed across the dataset (insertion 0.79%, deletion 0.73%, mismatches 0.33% per
base pair) is consistent with that reported in other studies (e.g. [41]). The mutations also
directly influenced the ability to predict open reading frames in our data—ORFs only being
detected in 11.22% of VSG reads (33,234 of 296,937). Clearly, with these reads being generated
from cDNA one would have expected most if not all to have identifiable ORFs. Therefore,
these data indicate some of the limitations when using Pacbio, even with data that comprises
multiple passes—the introduction of mutations does provide a layer of complexity to the analy-
sis that must be addressed with care. This is particularly pertinent when trying to analyse mul-
tiple closely related genes, as in the case of VSGs. We were able to draw conclusions on the
basis of sufficient coverage of a highly expressed dominant gene, combined with the inclusion
of multiple biological replicates; without these elements interpretation would have been very
difficult without parallel short read sequencing to correct errors introduced by the technology.

A further issue for consideration for the application of long read technologies to the analysis
of expressed gene diversity is the number of reads per sample. Our data provided coverage
over four orders of magnitude—although significantly greater in resolution than previous
manual and laborious methods, this contrasts relatively poorly with the numbers of reads that
short read applications deliver (millions). However, it should be noted that with the short read
approach many reads will be required to robustly identify full length single variants (in partic-
ular to enable differentiation of closely related transcripts, either similar genome-encoded vari-
ants or related lineages of mosaic genes [5, 21]), whereas in theory at least a single pacbio read
should provide the ability to robustly identify a particular VSG transcript. While the coverage
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is being improved with the newer platforms (e.g. the Pacbio Sequel potentially delivers a fur-
ther tenfold increase in data per run), this may limit resolution in terms of detecting minor
variants, for example. We did detect significant expressed diversity, and this is partly explained
by our use of a relatively large inoculum, which was not cloned, of a virulent isolate that
resulted in high and sustained parasitaemia. Therefore, we started with what was probably a
relatively diverse population (albeit dominated by expression of Tb08.27P2.380), reflected in
the diversity of VSGs detected at day 3 post-infection, which would be significantly lower in
the event of a clonal or smaller initial inoculum.

While our data indicate that long read sequencing provides increased resolution in terms of
identifying VSG diversity, clearly questions still remain. For example, why the VSG repertoire
is so evolved and large? Our data suggest an increased proportion of repertoire is involved,
even at early stages, compared to previous studies, which indicates a bigger proportion of the
repertoire may be utilised during the lifetime of an infection (which in cattle can be many hun-
dreds of days) than previous data suggests. This is consistent with the data of Mugnier et al
[23], where multiple minor variants were observed using an Illumina sequencing approach.
However, that study and ours both have limitations, one with relatively few biological repli-
cates (albeit one mouse was followed for ~120 days) and one that only ventured to 12 days
post-infection. Therefore, assessing antigen dynamics in the chronic phase of infections with
tools that give significant resolution of expressed antigen diversity will be critical to furthering
our understanding of the mechanisms of trypanosome antigenic variation. Key to studying
this will be analysing the picture in the truly chronic stages of infection (as was done by Mug-
nier et al in the context of mouse infections), but particularly doing so in relevant hosts (e.g.
cattle [42]) where the total population of trypanosomes in the animal will be potentially 1,000
times greater at peak parasitaemia and where infections may last for 100s of days-this will
have a profound influence on the usage of the repertoire (our data, for example, was represen-
tative of a total population of approximately 1 x 10°® parasites per mouse). Additionally, recent
studies indicates T. brucei populations inhabit different niches in the mammalian host (e.g.
skin and adipose [43, 44]), to the extent that some show evidence of local adaptation with
respect to metabolism ([44])-how this population compartmentalisation interacts with anti-
genic variation and immunity is likely to be important for parasite maintenance and transmis-
sion. Therefore, understanding the dynamics in both the chronic stages of infection and in
clinically relevant hosts will potentially provide ideas on the selective pressures that maintain
such an elaborate system. Additionally, given the significant advantages described above in
terms of identifying low frequency variants (including mosaic VSGs), it may be that a com-
bined long and short read approach is likely to be the optimal way of holistically and accurately
identifying expressed VSG diversity; the increased read number of short read technologies in
combination with the better resolution of long read technologies would provide significant
power to examine the complexity of VSG expression in trypanosomes.

Materials and methods
Ethics statement

Animal experiments were carried out at the University of Glasgow under the auspices of
Home Office Project License number 60/3760. Care and maintenance of animals complied
with University regulations and the Animals (Scientific Procedures) Act (1986; revised 2013).

Trypanosomes and mouse infections

All mice were infected with Trypanosoma brucei brucei TREU927, the genome reference strain
[19, 45]. A cryostabilate from liquid nitrogen was thawed and inoculated into BALB/c mice in
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order to amplify a viable in vivo population. Donor mice were euthanased at first peak parasi-
taemia (approximately 1 x 10” trypanosomes/ml), and blood extracted. Trypanosomes were
counted in triplicate under an improved Neubauer haemocytometer, diluted to inocula of

1 x 10° trypanosomes in 200 pl Carter’s Balanced Salt Solution, which were then inoculated via
the intraperitoneal route into 20 recipient BALB/c mice. Mice were maintained for 12 days
post-infection, and groups of 5 mice were euthanased at 3, 6, 10 and 12 days post-infection.
Parasitaemia was monitored daily by venesection of the lateral tail veins using the rapid match-
ing technique [46], and was counted in triplicate under an improved Neubauer haemocyt-
ometer on the sampling days.

RNA extraction, cDNA generation & PCR amplification of VSG transcripts

At each sampling day, RNA was extracted from 200 pl infected blood using the Qiagen RNeasy
kit (Qiagen), according to the manufacturer’s instructions. Approximately 1 ug RNA was
treated with DNase Turbo (Ambion), according to manufacturer’s instructions, and cDNA
was generated as in Hall et al, 2013 [21], including a column purification step on generated
cDNA using the PCR Purification kit, according to the manufacturer’s instructions (Qiagen).
VSG transcripts were enriched by carrying out PCR with proof reading Herculase II Fusion
polymerase (Agilent) on the cDNA template with oligonucleotide primers specific to the T.
brucei spliced leader sequence (TbSL) and a reverse primers complementary to a 13 base pair
conserved region in VSG 3’ untranslated regions (3UTR); primer sequences and PCR condi-
tions were as previously described [21, 23]. A subset of PCR transcripts was subjected to clon-
ing and sequencing; PCR products were ligated into pGEMT-Easy vectors, transfected into
One Shot TOP10 cells, bacteria were grown up and cloned under suitable antibiotic selection
(all using the TOPO cloning kit, Invitrogen), and plasmid DNA extracted using a Miniprep kit
(Qiagen); these procedures were all carried out according to manufacturer’s instructions.
Extracted plasmid DNA of appropriate concentration was sent for sequencing (Eurofins
MWG).

Pacbio sequencing

1 pg of PCR amplicon template as measured by Nanodrop (ThermoScientific) and Bioanalyser
(Agilent) was submitted to the Centre for Genomic Research, University of Liverpool for
sequencing using the Pacbio RSII platform (Pacific Biosciences). DNA was purified with 1x
cleaned Ampure beads (Agencourt) and the quantity and quality was assessed using Nanodrop
and Qubit assay. Fragment Analyser (using a high sensitivity genomic kit) was used to deter-
mine the average size of the DNA and the extent of degradation. DNA was treated with Exonu-
clease V11 at 37°C for 15 minutes. The ends of the DNA were repaired as described by the
Pacific Biosciences protocol. Samples were incubated for 20 minutes at 37°C with damage
repair mix supplied in the SMRTbell library kit (Pacific Biosciences). This was followed by a 5
minute incubation at 25°C with end repair mix. DNA was cleaned using 0.5x Ampure beads
and 70% ethanol washes. DNA was ligated to adapter overnight at 25°C. Ligation was termi-
nated by incubation at 65°C for 10 minutes followed by exonuclease treatment for 1 hour at
37°C. The SMRThbell libraries were purified with 0.5x Ampure beads. The quantity of library
and therefore the recovery was determined by Qubit assay and the average fragment size deter-
mined by Fragment Analyser. SMRTbell libraries were then annealed to the sequencing primer
at values predetermined by the Binding Calculator (Pacific Biosciences) and a complex made
with the DNA Polymerase (P4/C2chemistry). The complex was bound to Magbeads and this
was used to set up 3 SMRT cells for sequencing. Sequencing was done using 180 minute movie
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times. Data (raw sequencing files) is available through Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/ - accession number GSE114843).

Pacbio sequencing analysis

Raw data processing. Pacbio raw data was initially processed using the Pacbio SMRT
analysis protocol (v2.3), to convert the data into a fasta file using the following parameter selec-
tions: minimum 1 full pass, minimum predicted accuracy of 90%. Based on the read length dis-
tribution, a range of 1400-2000bp was used to filter the sequenced reads for downstream VSG
analysis.

VSG read analysis. Preliminary VSG variant distribution was determined by locally align-
ing the reads to TREU927 reference transcripts. We generated a local database of TREU927
VSGs, by downloading all transcripts annotated as ‘VSG’ from the most recent version of the
TREU927 genome (v26) on www.tritrypdb.org [25]. This resulted in a reference library of
1,557 VSG sequences (including all gene fragments and pseudogenes annotated as VSG-avail-
able through GEO accession number GSE114843). This reference set was used to set up a local
BLAST+ [47] database to create files of curated protein and nucleotide sequences. Reads were
blasted (BLASTn) against the reference VSG database to identify the donor gene. A minimum
alignment coverage of 60% or above to the sequence read was used to identify the dominant
donor transcript, and to generate a variant distribution chart for each sequenced sample. The
60% threshold was selected based on the distribution of percentage alignment across all reads
(see Fig 1C); it should be noted that this was based upon the whole read, i.e. including the N-
and C-Terminal domains. We also locally aligned the sequenced VSG reads to a blast database
of 515 previously identified cloned reads from T. brucei TREU927 infections [5, 21](available
through GEO accession number GSE114843). Open reading frames were identified using
‘getorf in EMBOSS [48] (v6.6.0.0), using the following parameters: minimum size 1200 nucle-
otides, all 3 reading frames and only forward strand.

Mosaic gene identification. We reasoned that putative mosaic genes could be identified
as PacBio sequences with partial, non-overlapping alignments to multiple VSG genes. We
therefore undertook full pairwise alignment using local blast of the 296,937 reads that align to
VSGs at a 60% identity threshold post size-selection filtering (see above) against the curated
VSG database described above. This resulted in all possible donors and their alignment regions
for any specific read being identified.

To distinguish mosaics where the same N'TD region occurs with multiple CTD regions
(which happens frequently) from mosaics with multiple NTD donors (which are rare), we
plotted the number of donor alignments per nucleotide across all reads, with read (VSG)
scaled to 100 to enable comparison across multiple variant lengths-this also enabled analysis
of the number of donor VSGs across the scaled VSG representatives of our 296,937 VSG data-
set. A distinctive increase in the number of alignments was observed at approximately 75% of
the sequence length (consistent with the start of the CTD), and we conservatively defined the
NTD region of each sequence as the first 70% of its nucleotides (see Fig 5A). This allowed us to
define approximate NTD regions of all sequences, including those without ORF.

Pairwise alignments were then filtered based on the criteria that the start of the alignment
should be within the NTD region, and the remaining alignments were used to generate param-
eters for each read, including NTD length, alignment coverage start and stop sites, NTD align-
ment coverage percentage, number of donor sequences, alignment coverage of the longest
donors, and difference (expressed as percentage non-identity) between the total aligned region
and the top donor alignment. Most sequenced NTD regions resulted in full length or partial
match to the known VSG database. In order to confidently identify putative mosaic genes,
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data were further filtered based upon the following criteria; (1) number of donor VSGs is
more than one, (2) alignment coverage of the largest donor is less than 80%, and (3) the differ-
ence in alignment regions between donors is greater than 10% of the sequence. The remaining
sequences were then inspected manually to select mosaic genes.

Software. All scripts for raw data processing, VSG read analysis and mosaic gene identifi-
cation -are available through GitHub (https://github.com/siddharthjayaraman/longread-
application).

Clustering analysis. We used similarity-based clustering to identify VSG clusters among
the sequences. Since, as described above, PacBio reads are prone to introduction of insertion
and deletion indels, to reduce the impact of these errors on the quantification of variants
detected, we proceeded with only those reads which generated an ORF longer than 400 amino
acid residues. We pooled all of these sequences from each day and each mouse. We used Clus-
tal Omega to calculate genetic distances between each pair of sequences [49] and clustered
sequences using a 6% threshold (employed in many clustering algorithms, e.g. UClust) for
intra-cluster dissimilarity. To resolve the problems surrounding cluster identification a novel
dynamically resizing clustering algorithm was implemented (full details are given in S1
Appendix).

Diversity analysis. For a de-novo approach to quantify the observed variation in VSG
variants in our samples over time we used novel diversity metrics [30], that have been devel-
oped in theoretical ecology in order to measure biodiversity across scales. We regard VSGs as
the ‘ecological species’ in this setting, so in the very simplest case biodiversity would simply be
how many species or VSGs we observe. The measures go a step further than this and weight
for the relative abundance of the VSGs via a parameter q (in the main text we use q = 1, for
other values of q and a discussion of this see S1 Appendix). In addition, the measures account
for the similarity of the sequences in such a way that if two sequences differed in only one base
pair they would be essentially regarded as the same “species” or VSG, as they would have close
to 100% similarity.

Within the diversity framework, normalised beta diversity [30] quantifies population differ-
entiation. We consider the VSGs from all mice on a given day as our population (the metacom-
munity level) and normalised beta diversity measures the number of distinct mouse (the
subcommunity level) VSG profiles that are present on that day (see S1 Appendix, S3 and S4
Figs).

Supporting information

S1 Table. Amplicon read count per sample for each identified VSG transcript.
(XLSX)

S2 Table. Putative VSG mosaic transcripts.
(DOCX)

S1 Fig. Error (mutation) rate distribution over time (day 3, 6, 10 and 12 post-infection)
for reads aligning to VSG Tb08.27P2.380 for (A) mismatches, (B) insertions and (C) dele-
tions; each defined as differences relative to the reference genome sequence of
Tb08.27P2.380. For each mutation class and timepoint, the boxplot shows median values and
25" and 75™ percentiles, whiskers extend to data extremes, and data outliers are plotted indi-
vidually (red plus symbols).

(TIF)

$2 Fig. Alignment of Sanger sequence data from PCR amplicons of VSG cDNA transcripts
(n = 7 independent clones; representing sequences independently cloned and sequenced
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from three mice on day 3 and one mouse on day 10, sequences aligned to the reference
genome sequence of Tb08.27P2.380).
(PDF)

S3 Fig. Diversity analysis (A) Structuring of the data for diversity analysis. The combined
VSG profile from all mice on a given day form the metacommunity, which is the unit of analy-
sis; the VSG profile from each individual mouse form a single subcommunity of reads within
that metacommunity. So each metacommunity (day) is made up of 5 subcommunities (mice).
(B) Normalised beta diversity analysis for varying weightings (q) of VSG proportional abun-
dance. The y-axis shows the effective number of distinct VSG profiles found on a given day
seen from the perspective of each mouse (coloured lines) on that day, with the average across
the day given by the dashed line. The x-axis indicates how much relative proportions of VSGs
rather than just the presence-absence of the VSG is weighted in the assessment of diversity.
When q = 0 only the presence or absence of the VSG is considered when comparing an indi-
vidual mouse’s VSG profile to the profile obtained from pooling all the mice from that day.
For large q, we compare not only the presence and absence of VSGs but also their relative pro-
portions. The larger the value of q the less importance is placed on rare VSGs in a profile. The
more a mouse differs from the pooled data the higher the value of normed beta diversity.
(TIF)

$4 Fig. Clustering analysis of reads from each mouse. The y-axis indicates how common the
cluster is in that mouse and the x-axis indicates how many sequences fall within that cluster.
Clusters are colour coded such that a red cluster in mouse 3.1 is defined by the same centroid
and clustering threshold as the red cluster in mouse 10.5 etc.

(PDF)

S1 Appendix. Clustering algorithm and Diversity analysis detailed methods.
(DOCX)
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