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Abstract

Background

Robust protocols for the isolation of extracellular vesicles (EVs) from the rest of their excre-

tory-secretory products are necessary for downstream studies and application develop-

ment. The most widely used purification method of EVs for helminth pathogens is currently

differential centrifugation (DC). In contrast, size exclusion chromatography (SEC) has been

included in the purification pipeline for EVs from other pathogens, highlighting there is not an

agreed research community ‘gold standard’ for EV isolation. In this case study, Fasciola

hepatica from natural populations were cultured in order to collect EVs from culture media

and evaluate a SEC or DC approach to pathogen helminth EV purification.

Methodology/Principal findings

Transmission electron and atomic force microscopy demonstrated that EVs prepared by

SEC were both smaller in size and less diverse than EV resolved by DC. Protein quantifica-

tion and Western blotting further demonstrated that SEC purification realised a higher EV

purity to free excretory-secretory protein (ESP) yield ratio compared to DC approaches as

evident by the reduction of soluble free cathepsin L proteases in SEC EV preparations.

Proteomic analysis further highlighted DC contamination from ESP as shown by an

increased diversity of protein identifications and unique peptide hits in DC EVs as compared

to SEC EVs. In addition, SEC purified EVs contained less tegumental based proteins than

DC purified EVs.
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Conclusions/Significance

The data suggests that DC and SEC purification methods do not isolate equivalent EV popu-

lation profiles and caution should be taken in the choice of EV purification utilised, with cer-

tain protocols for DC preparations including more free ES proteins and tegumental

artefacts. We propose that SEC methods should be used for EV purification prior to down-

stream studies.

Author summary

Recent pathogen research has identified extracellular vesicle (EV) release from many

organisms. EVs are small membrane bound organelles, which have different origins, sizes

and composition. It is important that the optimal EV purification method is realised in

order to obtain high quality EVs to have confidence in understanding EV biology and

function. In this study, the zoonotic parasite, Fasciola hepatica, was cultured as a case

study to investigate the importance of EV purification from helminth culture media.

Investigating two purification methods, it was found that size exclusion chromatography

EV isolation led to a reduction of contaminating excretory-secretory and tegumental pro-

teins. This research highlighted that purification methods do not isolate equivalent EV

population profiles with similar EV purities and that size exclusion chromatography

methods are likely better suited for downstream helminth EV studies and application

development, compared to a differential centrifugation method.

Introduction

Extracellular vesicle (EV) purification is challenging to standardise due to the diversity of sam-

ple composition producing EVs (cell cultures and body fluids), the need for high recovery of

functional EVs, the quality of EV preparation and the simplicity of isolation [1–5]. Therefore,

there is no current gold standard for EV isolation [6].

The most widely accepted method to isolate EVs involves differential centrifugation (DC).

This method encompasses sequential centrifugations, increasing in speed and time, to pellet

particles decreasing in size [1,2,4–11]. DC is highly reliable, yet it is a labour-intensive proce-

dure, requiring large sample volumes to obtain low EV yields [2,4,12]. Furthermore, EV yield

and purity is dependent upon DC parameters such as the rotor type, centrifugal force, centrifu-

gation period and temperature [4,11,13]. Consequently, protocol standardisation is difficult,

leading to incomparable EV characterisation and functional investigations [4,5]. To overcome

EV purification challenges, many downstream EV investigations require further isolation pro-

cedures to accommodate DC, to improve sample purity and validate research analysis.

Recently, size exclusion chromatography (SEC) has been used to successfully purify EVs.

SEC has been observed to separate protein aggregates and lipoproteins from EV samples as

well as preclude EV or protein aggregation [1,3,4,9,14–16]. However, elution fractions con-

taining a high yield of protein, also contain small EVs (<75 nm), meaning SEC can be selective

upon EV size collection. In addition, the purest vesicle elution fraction post SEC produces low

yields, so the quantity of fraction collection is dependent upon the EV purity needed for exper-

imental investigation [14]. However, research has observed that SEC EV isolation produces

greater sample purity, compared to DC and precipitating agents (Polyethylene glycol and
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PRotein Organic Solvent PRecipitation, PROSPR) as evidenced by EV markers (Alix and

CD9) in greater concentration intensity in EV samples [2,15,17]. Potentially, SEC could be

reproducible in all research settings, as it is easy to use, removes most contaminating proteins

and maintains EV morphology.

Many studies in independent laboratories confirm both pathogenic flatworm and nema-

tode helminths produce EVs, albeit during in vitro ex-host experimentation. Of note is the

recent expansion of information on the EVs of the liver fluke Fasciola hepatica. Fascioliasis,

infection with either F. hepatica or F. gigantica, is a major neglected zoonotic disease that

infects humans and ruminant species worldwide [18,19]. At least 2.4 million people are cur-

rently infected in over seventy countries, with millions more at risk of this food borne disease

[20]. Furthermore, the disease is a significant animal health and food security issue, costing the

global livestock industry an excess of $3 billion per annum [21]. In the absence of protective

vaccines, control is usually via anthelmintics, with triclabendazole (TCBZ) being the drug of

choice, especially for acute disease caused by pathogenic juvenile F. hepatica. F. hepatica resis-

tance towards TCBZ has spread widely, threatening future chemotherapeutic based control

[22]. Therefore, the development of novel approaches and options for F. hepatica control must

be considered a research and government priority.

The recent discovery of F. hepatica EVs identified in excretory-secretory products (ESP)

has led to us re-evaluating the host-pathogen interface [23,24]. EVs of pathogen origin are

enriched with pathogen molecules, thus they could potentially be utilised for improved con-

trol. In pathogens, EVs have been found to function to either promote or inhibit host immu-

nity with recognised EV immunogenic properties highlighting EVs as vaccine preparations

[25]. Furthermore, EVs have the ability to transport molecules to recipient cells, which could

be utilised for drug delivery [26]. Therefore, EVs have a major role in pathogen infection and

could be exploited to develop novel therapeutic approaches. Thus, it is important that the opti-

mal EV purification method is utilised to obtain high purity EVs, which represent the whole

biological EV population that would likely interact with the host environment.

Furthermore, given that all parasitic helminth EV studies completed to date have utilised

DC without further EV enrichment, it is vital for the field to look at alternative EV isolation

strategies [23,24,27–35]. This is particularly pertinent given the need for more functional stud-

ies into EV biology thus requiring EVs of high purity. Literature suggests that SEC is a suitable

EV purification method to compare against DC purification methodology, which has been pri-

marily used in helminthology, for the aim of investigating the most advantageous method for

purifying helminth EVs from culture media for further downstream analysis, where EVs iso-

lated are a biological representation of the helminth EV population. Therefore, in the current

study, the EVs from adult F. hepatica, as a model pathogenic helminth, have been purified

allowing the comparison of SEC EV purification, to the widely accepted method of DC EV

preparation.

This study has discovered that SEC EV isolation leads to smaller sized and lower diversity

EV populations, with importantly a higher EV purity to free ESP yield, a less diverse EV prote-

ome and different EV gene enrichment profiles compared to DC purified EVs. Therefore, the

data suggests that DC and SEC purification methods do not isolate equivalent EV population

profiles and caution should be taken in the choice of EV purification utilised with functional

assays incorporated into the isolation pipeline. This research has highlighted SEC methods

with functional assays as the methodology of choice for helminth pathogen EV studies and

application development in the absence of a gold standard purification method.
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Methods

F. hepatica collection and culture

A local collaborating abattoir (Wales, U.K.), where animals were processed as part of the nor-

mal work of the abattoir, gave consent for the collection of live adult F. hepatica from naturally

infected ovine livers of animals immediately post-slaughter, where F. hepatica were maintained

as previously described [36]. Briefly, F. hepatica were thoroughly washed in phosphate buff-

ered saline (PBS) at 37˚C to remove host material. F. hepatica were then transported to the lab-

oratory in Fasciola saline (Dulbecco’s modified Eagle’s medium (DMEM) (w/o NaHPO3 and

PO4) plus 2.2 mM Ca (C2H3O2), 2.7 mM MgSO4, 61.1 mM glucose, 1 μM serotonin, 5 μg/mL

gentamycin, 15 mM N-2-hydroxyethylpiperazine-N0-2-ethanesulfonic acid (HEPES), pH7.4)

at 37˚C for 1 hour. Following incubation, F. hepatica were maintained in fresh Fasciola saline

(1 ml/ F. hepatica) at 37˚C for 5 hours. All F. hepatica remained alive after in vitro culture incu-

bations. Both F. hepatica and the culture media was immediately frozen and stored at -80˚C,

until further experimentation.

EV purification: differential centrifugation (DC)

EVs were purified from the culture media based on the method according to Thery et al. [37]

with slight modifications. In brief, culture media was centrifuged at 300 x g for 10 minutes at

4˚C and then at 700 x g for 30 minutes at 4˚C, removing any large particulates. The superna-

tant was ultracentrifuged at 100,000 x g for 80 minutes at 4˚C (Optima L-100 XP ultracentri-

fuge (Beckman Coulter, High Wycombe, UK) using a Type 50.2 Ti rotor) and the EV depleted

culture media was removed and stored at -80˚C. Of note, the 10,000 x g centrifugation step for

30 minutes carried out by Thery et al. [37] was not undertaken within the current methodol-

ogy to ensure isolation of the whole biological EV population. Therefore, it should be acknowl-

edged that debris may be still present in the EV enriched sample. The pellet was washed in PBS

and vortexed until the pellet had been suspended in solution. The ultracentrifugation step was

repeated and the supernatant was discarded. The pellet was then re-suspended in 200 μl PBS

by vortexing and stored at -80˚C until further experimentation.

EV purification: Size exclusion chromatography (SEC)

Culture media was centrifuged at 300 x g for 10 minutes at 4˚C and then at 700 x g for 30 min-

utes at 4˚C, removing any large particulates. The sample was then concentrated using 10 KDa

MWCO Amicon Ultra-15 Centrifugal Filter Units (Merck Millipore), following the manufac-

turer’s guidelines. Briefly, the sample was centrifuged at 4000 x g for 20 minutes at 4˚C, until

approximately 500 μl of sample was retained in the filter. Filtration flow through was stored at

-80˚C. The sample was passed through qEVoriginal SEC columns (IZON science), utilising

the manufacturer’s optimised protocol. Briefly, the column was rinsed with 10 ml of filtered

(0.2 μm, Life Sciences) PBS. The sample was then added to the SEC column and the first 2.5 ml

of flow through was discarded. The next 2.5 ml of flow through, containing EVs, was collected

and stored at -80˚C. The column was then washed with 10 ml PBS, which was combined with

the filtration flow through to create EV depleted SEC ESP.

Transmission electron microscopy (TEM)

EV samples and culture media, containing F. hepatica ESP depleted of EVs, were fixed onto

formvar/carbon coated copper grids (agar scientific) by adding 10 μl sample to the grid for 45

minutes on ice. Grids were then placed on the viscous of 4% v/v uranyl acetate for five minutes

on ice. Grids were stored at room temperature for at least 24 hours before being imaged using
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the transmission electron microscope (Jeol JEM1010 microscope at 60 kV). Images were devel-

oped and the size of 200 EVs per purification method were measured (nm) using imageJ

(https://imagej.nih.gov/ij/) and statistically analysed by Mann-Whitney U test in R studio

(https://www.rstudio.com/).

Atomic force microscopy (AFM)

EV samples were diluted 1:10 with deionised water and adsorbed onto freshly cleaved mica

sheets (Agar Scientific AGG250-1) for two minutes and dried under a nitrogen stream. Sam-

ples were then scanned with a Park Systems E100 AFM, using silicon probes (NT-MTD:

NSG-01 & NSG-03PT) in non-contact mode. Topographic height and phase images were

scanned at 512 x 512 pixels at a rate of 0.2 Hz. Images were analysed using Gwyddion software

(www.gwyddion.net/).

Sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) electrophoresis

F. hepatica somatic sample was prepared by homogenising F. hepatica in homogenisation

buffer (20 mM potassium phosphate buffer (pH 7.4), 0.1% (v/v) triton X-100 and protease

inhibitor tablets, EDTA-free) (0.5 ml/ F. hepatica) on ice, before centrifuging at 21,000 x g at

4˚C for 30 minutes. The supernatant was termed the cytosolic fraction, and was stored at

-20˚C until further experimentation.

Culture media, containing F. hepatica ESP depleted from EVs from both purification meth-

ods, was precipitated with an equal volume of ice-cold 20% (w/v) trichloroacetic acid (TCA) in

acetone for one hour at -20˚C. The sample was centrifuged at 21,000 x g, 4˚C for 20 minutes.

The pellet was washed twice in ice-cold acetone with centrifugation 21,000 x g, 4˚C for 20 min-

utes between washes. The pellet was left to air dry at -20˚C for 15 minutes, before being resus-

pended in PBS and stored at -20˚C until further experimentation.

EV samples were centrifuged at 100,000 x g at 4˚C for 30 minutes and the supernatant was

discarded. Lysis buffer (PBS, 0.1% (v/v) triton X-100 and protease inhibitor tablets, EDTA-

free) was added to the pellet and the sample was sonicated for 30 seconds and then rested on

ice for 30 seconds and repeated three times. Following lysis, the sample was centrifuged at

100,000 x g at 4˚C for 30 minutes and the soluble fraction in the supernatant was TCA precipi-

tated as above and stored at -20˚C until further use. The insoluble fraction was washed follow-

ing the protocol of Hart et al. [38]. Briefly, the pellet was re-suspended in sodium carbonate

buffer (0.1 M Na2CO3 (pH 11), 10 mM EDTA, 20 mM DTT and protease inhibitor tablets,

EDTA-free), vortexed and left for one hour at 4˚C. The sample was then centrifuged at

100,000 x g at 4˚C for 30 minutes and the supernatant was discarded. The pellet was washed in

sodium carbonate buffer, vortexed, left for 30 minutes at 4˚C and centrifuged as previously

described. This wash step was repeated before the pellet was re-suspended in solubilisation

buffer (20 mM potassium phosphate (pH 7.4), 4% SDS (w/v) and protease inhibitor tablets,

EDTA-free). The sample was heated to 95˚C for five minutes and then stored at -20˚C until

further experimentation.

Samples were quantified using either the bicinchoninic acid assay (Thermo scientific) or

Bradford assay (Sigma), following the manufacturer’s protocol. Comparisons between sample

protein concentrations were statistically analysed using Kruskal-Wallis test with the Dunn’s

Post-hoc test using Sidak correction in R package (https://www.r-project.org/), where signifi-

cance was considered p<0.05. Laemmli protein 4 x sample buffer (Bio-rad) was added to the

sample (3:1 ratio) and heated to 95˚C for 10 minutes. The samples were then loaded into 7 cm

12.5% Tris/glycine polyacrylamide gels and run using the Protean III system (Bio-Rad). Gels

were run at 70 V, until the dye front passed through the stacking gel, and then the voltage was
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increased to 150 V until completion. Gels were fixed (40% ethanol (v/v), 10% acetic acid (v/v))

and stained with colloidal Coomassie Brilliant blue (Sigma). Gels were imaged using the GS-

800 calibrated densitometer (Bio-rad).

Western blotting

Samples were prepared and run upon SDS-PAGE gels as previously mentioned. Gels were

electrophoretically transferred onto Hybond-C extra nitrocellulose paper (GE Healthcare)

using a Trans-Blot Cell at 40 V for two hours in transfer buffer (192 mM Glycine, 25 mM Tris-

HCL (pH 8.3), 20% (v/v) methanol) according to the method of Towbin et al. [39]. Transfer

efficiency was determined by staining the membrane with amido black (0.1% amido black (w/

v), 10% acetic acid (v/v), 25% isopropanol (v/v)) for one minute. The membrane was then

destained (10% acetic acid (v/v) and 25% isopropanol (v/v)), and washed three times in Tris

buffered saline (100 mM Tris-HCL (pH 7.5), 0.9% sodium chloride (w/v)) with 1% Tween 20

(v/v) (TTBS). The membrane was then blocked overnight in TTBS and 5% skimmed milk

powder (v/v) on a rocker at 4˚C.

Primary antibody, either anti-glutathione transferase sigma class (Anti-FhGST-S1) at

1:20,000 [40], Anti-Fasciola cathepsin L1 at 1:6,000 (Anti-FhCat-L1) which was commercially

made (Lampire) from polyclonal antibodies to a purified recombinant cathepsin L1 from F.

hepatica expressed in yeast and raised in rabbits or Anti-fatty acid binding protein V (Anti-

FhFABP-V) at 1:2,000 which was commercially made (Lampire) from polyclonal antibodies to

a purified recombinant fatty acid binding protein V from F. hepatica expressed in yeast and

raised in rabbits, in TTBS and 1% skimmed milk (v/v) was added to blocked membranes.

Anti-FhGST-S1 and Anti-FhCat-L1 primary antibodies are known to have high specificity

however, Anti-FhFABP-V is known to be reactive to FABP I, FABP II, FABP III and FABP V.

The membrane was rocked for one hour at room temperature. The membrane was then

washed three times for five minutes in TBS. The secondary antibody (IgG, anti-rabbit IgG

(whole molecule) conjugated to alkaline phosphatase (AKP, Sigma) dilution 1: 30,000) in

TTBS was then added to the membrane and rocked for one hour at room temperature. Mem-

brane washing was then repeated as previously described. Recognised proteins were visualised

using 5-bromo-4-chloro-3-indoyl phosphate/nitro blue tetrazolium liquid substrate system. In

brief, 33 μl 5-bromo-4-chloro-3-indoyl phosphate (50 mg/ml) and 330 μl nitro blue tetrazo-

lium (10 mg/ml) was added to 10 ml substrate buffer (0.1 M Tris, 100 mM sodium chloride, 5

mM magnesium chloride, (pH 9.5)). The detection solution was added to the membrane on

the rocker at room temperature until either visualisation of banding occurred or up to five

minutes. The reaction was stopped by water washes. Membranes were scanned using the GS-

800 calibrated densitometer (Bio-rad).

In-gel tryptic digestion, mass spectrometry and protein identification

All protein bands were excised from one dimensional SDS-PAGE electrophoresis and digested

as described in Morphew et al. [41]. Briefly, protein bands were washed in 50% (v/v) acetoni-

trile and 50% (v/v) 50 mM ammonium bicarbonate at 37˚C until destained. Destained bands

were dehydrated in 100% acetonitrile at 37˚C for 15 minutes, before being removed and dried

at 50˚C. Protein bands were then incubated with 10 mM dithiothreitol in 50 mM ammonium

bicarbonate for 30 minutes at 80˚C. The supernatant was discarded before bands were incu-

bated with 55 mM iodoacetamide in 50 mM ammonium bicarbonate for 20 minutes at room

temperature in the dark. The supernatant was discarded and the bands were washed twice for

15 minutes at room temperature with 50% (v/v) acetonitrile and 50% (v/v) 50 mM ammonium

bicarbonate. Excess was removed before 100% acetonitrile was added to the bands at room

Extracellular vesicle purification comparison for helminth pathogens
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temperature for 15 minutes. The supernatant was removed and bands were dried at 50˚C.

Bands were rehydrated and digested using 50 mM ammonium bicarbonate containing trypsin

(modified trypsin sequencing grade, Roche, UK) at 10 ng/μl at 37˚C overnight. The superna-

tant was stored, before 100% acetonitrile was added to the bands at room temperature for 15

minutes, followed by adding 50 mM ammonium bicarbonate to the bands at room tempera-

ture for 15 minutes. This step was repeated and from each step, the supernatant was removed

and pooled for each band. The 100% acetonitrile step was repeated, and supernatant pooled,

before the samples were vacuum dried (Maxi dry plus, Heto) and re-suspended in 20 μl of

0.1% (v/v) formic acid for tandem mass spectrometry.

Liquid Chromatography tandem mass spectrometry (Agilent 6550 iFunnel Q-TOF) cou-

pled to a HPLC-Chip (1200 series, Agilent Technologies, Cheshire, UK) was used for peptide

separations. The HPLC-Chip/Q-TOF system was equipped with a capillary loading pump

(1200 series, Agilent Technologies) and a nano pump (1200 series, Agilent Technologies).

Sample injection was conducted with a micro auto sampler (1100 series, Agilent Technolo-

gies), where 1 μl of sample in 0.1% formic acid was loaded on to the enrichment column at a

flow of 2.5 μL/min followed by separation at a flow of 300 nL/min. A Polaris Chip was used

(G4240-62030, Agilent Technologies), comprising a C18 enrichment/trap column (360 nl)

and a C18 separation column (150 mm x 75 Âμm), where ions were generated at a capillary

voltage of 1950 V. The solvent system was: solvent A (ultra-pure water with 0.1% formic acid),

and solvent B (90% acetonitrile with 0.1% formic acid). The liquid chromatography was per-

formed with a piece-linear gradient using 3–8% of solvent B over 0.1 minutes, 8–35% solvent

B over 14.9 minutes, 35–90% solvent B over five minutes and hold at 90% solvent B for two

minutes. Tandem mass spectrometry was performed in AutoMS2 mode in the 300–1700 Da

range, at a rate of 5 spectra per second, performing MS2 on the 5 most intense ions in the pre-

cursor scan. Masses were excluded for 0.1 minutes after MS/MS was performed. Reference

mass locking was used for internal calibration using the mass of 391.2843 Da.

Peak lists were generated with Mass Hunter Qualitative Analysis software (V B.06, Agilent

Technologies) and exported as Mascot Generic Files. Samples were processed following Mor-

phew et al. [42]. Briefly, samples were submitted to MASCOT daemon (Matrix Science, v2.4.1)

MS/MS ions search against F. hepatica gene sequences, accessed through WormBase ParaSite

(http://parasite.wormbase.org/, accession PRJEB6687, version WBPS9). Search parameters

included setting the enzyme to trypsin with one missed cleavage allowed, setting fixed modifi-

cations to carbamidomethylation with variable modifications set for oxidation of methionine,

fixing monoisotopic masses with unrestricted protein masses with peptide and fragment mass

tolerances at ±1.2 Da and ±0.6 Da respectively (project accession PXD008737). Protein identi-

fications were reported at a false discovery rate of 1%. For the overall list of proteins identified

(data in S1 File), only proteins with at least 2 unique peptides and present in both biological

replicates (n = 2) were selected. Protein sequences were searched using BLAST2GO (https://

www.blast2go.com/) obtaining BLAST descriptions and gene ontology terms (data in S2 File).

Gene ontology enrichment analysis was completed using GOATOOLS python package

(https://github.com/tanghaibao/goatools) (data in S4 File) where the GO terms were not prop-

agated up the hierarchy and p<0.05 identified significance.

Results

EV morphological characteristics

In order to assess EV morphology post DC and SEC purification, both atomic force micros-

copy (AFM) and transmission electron microscopy (TEM) imaging were utilised. AFM and

TEM identified that EV structures were characteristically diverse in size and morphology
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using both DC and SEC purification methods, representing a biological population of EVs

(Fig 1). When comparing EV dimensions following TEM analysis, SEC EVs were significantly

smaller (76 nm ± 44 SD) than DC EVs (95 nm ± 58 SD) (n = 200) (W = 14,726, p< 0.001) and

DC purified EVs displayed a greater range of EV sizes than SEC (DC range = 505 nm, SEC

range = 285 nm). All observed EVs were intact in TEM images for both purification methods.

Aggregation of EVs and contaminants in the image background was observed using both puri-

fication methods in AFM and TEM images.

TEM micrographs produced for the culture media containing F. hepatica ESP depleted of

EVs identified few EVs (data not shown). In addition, EVs were not found within the ultrafil-

tration flow through during the SEC purification method (data not shown). In all non-EV

preparations debris and additional non-EV contaminants were identified.

EV comparative protein concentrations

EV preparations obtained from both DC and SEC purification methods were quantified for

protein content for ESP (protein content for residual ESP after EV purification), whole lysed

EV samples and soluble and insoluble EV fractions (Fig 2). All samples quantified were

Fig 1. Topography profiles and micrographs of extracellular vesicles purified via differential centrifugation and size exclusion chromatography. Representative

atomic force microscopy topography profiles (A and B) and transmission electron microscopy images (C and D) of extracellular vesicles purified from adult F. hepatica
via differential centrifugation (A and C) and size exclusion chromatography (B and D). The central graphs represent individual extracellular vesicle topography from

each purification method as determined by atomic force microscopy. Profiles identified that extracellular vesicle structures were similar using both differential

centrifugation and size exclusion chromatography purification methods although size exclusion chromatography purified extracellular vesicles were significantly smaller

(76 nm ± 44 SD) than differential centrifugation extracellular vesicles (95 nm ± 58 SD) (W = 14,726, p< 0.001) and differential centrifugation purified extracellular

vesicles with a greater range of extracellular vesicle sizes than size exclusion chromatography (differential centrifugation range = 505 nm, size exclusion chromatography

range = 285 nm). Arrows on TEM images highlight different sized EVs where A = 130.5 nm, B = 235.0 nm, C = 111.7 nm and D = 226.4 nm.

https://doi.org/10.1371/journal.pntd.0007191.g001
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unrelated biological replicates. Analysis of the EV preparation via the DC purification method

revealed comparable protein quantities between ESP (average = 30 μg, n = 3) and whole lysed

EV samples (average = 40 μg, n = 3), even though the whole lysed EV samples had greater

quantity variation (ESP range = 20 μg, whole lysed EV range = 140 μg). However, this protein

profile was not replicated for SEC derived EV preparations. Protein quantity of SEC ESP was

nearly threefold that of the lysed EV samples (ESP average = 240 μg, n = 3, whole lysed EV

average = 80 μg, n = 3), even though whole lysed EV samples had a greater quantity variation

(ESP range = 90 μg, whole lysed EV range = 180 μg). Furthermore, SEC purified samples pro-

duced a higher protein yield than DC in both ESP and whole lysed EV samples, with ESP

showing a significant increase (D = -3.13, p = 0.02, n = 3). Similarly, SEC produced a greater

protein yield of soluble and insoluble EV fraction protein (soluble protein average = 170 μg,

n = 9, insoluble protein average = 210 μg, n = 9) than DC (soluble protein average = 30 μg,

n = 9, insoluble protein average = 60 μg, n = 9). Both EV purification methods showed that

there was a greater protein quantity of insoluble EV protein compared to soluble EV protein,

with the SEC soluble fraction containing significantly less protein than insoluble protein frac-

tion (D = -0.43, p = 0, n = 9).

EV comparative proteome analysis

Whole lysed EV and ESP samples displayed different protein profiles as observed by one

dimensional sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) electrophoresis, suggest-

ing that both EV purification methods selectively isolate EVs away from F. hepatica secretions

Fig 2. Protein quantification of extracellular vesicle preparation fractions from differential centrifugation and size exclusion chromatography

purification. Fractions produced from either differential centrifugation or size exclusion chromatography methods (excretory-secretory protein, whole lysed

extracellular vesicle, soluble extracellular vesicle protein and insoluble extracellular vesicle protein) were assayed for protein levels and statistically analysed

(Kruskal-Wallis test, with Dunn’s Post-hoc test using Sidak correction) for differences. Asterisks identify significance where p< 0.05.

https://doi.org/10.1371/journal.pntd.0007191.g002
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or ESP (Fig 3). In addition, biological replication of EV preparations indicated that protein

quantification and preparation was reproducible as all sample replicates produced comparable

protein banding patterns. Comparing lysed EV preparation protein profiles using DC and

SEC purification methods, banding differences were identifiable, especially between 50–100

kDa and 25–37 kDa markers. Differences were less noticeable within the protein profiles of the

soluble and insoluble EV fraction proteins and between the method by which the EVs were

purified.

Following SDS-PAGE, mass spectrometry was employed to identify key differences

between the profiles from a combined analysis of the soluble and insoluble EV protein frac-

tions from SEC and DC isolated EVs. Following analysis, SEC purification revealed 68% pro-

tein matching between the soluble and insoluble SEC EV fractions with a 63% similarity of

proteins for DC purified soluble and insoluble fractions. Following the combination of the

Fig 3. Protein profiles of extracellular vesicle fractions from differential centrifugation and size exclusion chromatography purification.

Biological triplicate protein profiles as observed by one dimensional SDS-PAGE electrophoresis of excretory-secretory protein (10 μg protein),

whole lysed extracellular vesicle (10 μg protein), soluble extracellular vesicle protein (20 μg protein) and insoluble extracellular vesicle protein (20 μg

protein). All proteins were run on 12.5% SDS-PAGE electrophoresis gels and Coomassie blue stained.

https://doi.org/10.1371/journal.pntd.0007191.g003
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soluble and insoluble protein identifications the whole SEC and DC purified EV proteomes

were further analysed to identify key protein differences between the purification methods.

Interestingly, 77% of proteins were comparable between SEC biological replicates and 77%

between DC biological replicates.

In DC purified EVs, 392 proteins were identified, while 321 proteins were observed using

SEC purification across both replicates. Of these proteins, 276 were comparable between puri-

fication methods demonstrating differences and similarities between the two methodologies.

When looking at unique proteins to each method, 116 proteins were found exclusively in DC

purified EVs and 45 proteins were found exclusively in SEC purified EVs (data in S5 File).

Gene ontology analysis identified that EV proteins mostly showed biologically function in

organic substance and primary metabolic processes as well as single-organism cellular pro-

cesses irrespective of EV purification method (S6 File). These categories encompass proteins

such as cathepsin L and GAPDH. However, there were significant differences in gene ontology

terms such as catabolic process and microtubule-based process which were only found in DC

purified EVs, while many more ‘regulatory-cell invasion’ terms (i.e. cellular localisation and

response to stress) were only found in SEC purified EVs. Catabolic process and microtubule-

based process only found in DC purified EVs refers to proteins such as Mov34/MPN/PAD-1

family protein, ubiquitin—protein ligase and alpha-tubulin. While, ‘regulatory-cell invasion’

terms only found in SEC purified EVs includes ADP-ribosylation factor family protein, T-

complex protein 1 zeta subunit and glutathione peroxidase. Considering molecular function,

transmembrane transporter activity and substrate-specific transporter activity gene ontology

terms were only identified in SEC purified EVs including proteins such as IC domain protein

HAD ATPase P-type family and hypothetical proteins. For cellular components, catalytic com-

plex and intrinsic component of the membrane were the only categories found uniquely in

EVs purified from DC including multicatalytic endopeptidase, ATPase family protein and pro-

teasome subunit alpha domain protein and cell periphery, cell projection, plasma membrane,

plasma membrane part and plasma membrane region were the only unique components

found in EVs purified from SEC including IC domain protein, HAD ATPase, P-type family,

ADP-ribosylation factor family protein and hypothetical proteins.

When specifically looking at protein identifications, DC EVs consistently demonstrated a

greater amount of unique peptides hit per protein than SEC. The top 50 proteins found in EVs

purified using SEC were also present in the DC EV purified proteome. However, proteins

relating to gene scaffolds BN1106_s90B000599 (ATPase family protein), BN1106_s1277

B000102 (HSP90 protein), BN1106_s63B000395 (hypothetical protein D915_01544) and

BN1106_s285B000846 (unnamed protein product) were found in the top 50 proteins of DC

purified EVs, but were not present in the SEC isolated EV proteome (highlighted within

Table 1). Common EV markers from ExoCarta database (http://www.exocarta.org/) present in

the top 50 EV proteins using both purification methods included heat shock proteins, glyceral-

dehyde-3-phosphate dehydrogenase, actin, 14-3-3 protein, annexin and tubulin. Unique EV

markers, gelosin and phosphoglycerate kinase were found in the top 50 EV protein hits using

DC purification, while a tetraspanin EV marker was found in the top 50 protein hits using

SEC purified EVs.

EV proteins unique to SEC or DC purification were further investigated to assess the likeli-

hood of non-EV contamination in each preparation likely from F. hepatica ESP or the tegu-

ment using data from recent proteomic studies (data in S5 File) [23,24,43–46]. Of the 45

proteins identified in SEC purified EVs only, 7 proteins were observed previously in ESP with

11 proteins identified previously in tegumental preparations. Looking at the 116 proteins iden-

tified in DC purified EVs only, 11 proteins were previously observed in ESP proteomic studies

with an additional 27 proteins located in tegumental proteomic studies. Of note is the reduced
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Table 1. Top 50 extracellular vesicle protein accessions purified by differential centrifugation and size exclusion chromatography. BLAST descriptions were chosen

upon the lowest E-value hit and top accessions were identified by the highest unique peptide hits. Data analysed using BLAST2GO. Highlighted cells in grey shading signify

proteins identified in the top 50 proteins of DC or SEC purified EVs, but were not present in the full EV proteome of the opposite purification methodology. Full protein

identifications can be found in S3 File.

Size Exclusion Chromatography Differential Centrifugation

Rank Sequence ID Description Unique

Peptide

Hits

Total

Peptide

Hits

Rank Sequence ID Description Unique

Peptide

Hits

Total

Peptide

Hits

1 BN1106_s3182B000117 myosin heavy chain 115 437 1 BN1106_s3182B000117 myosin heavy chain 135 605

2 BN1106_s309B000234 heat shock protein 70 109 1659 2 BN1106_s309B000234 heat shock protein 70 120 1906

3 BN1106_s1300B000145 SJCHGC06288 protein 100 1994 3 BN1106_s1300B000145 SJCHGC06288 protein 107 2046

4 BN1106_s175B000200 hexokinase 97 1440 4 BN1106_s1320B000236 heat shock protein 90 104 843

5 BN1106_s819B000364 annexin A7 96 1480 5 BN1106_s819B000364 annexin A7 99 1812

6 BN1106_s3585B000136 myoferlin 95 669 6 BN1106_s4069B000247 alpha-actinin 98 880

7 BN1106_s617B000566 leucine amino peptidase 94 1528 7 BN1106_s617B000566 leucine amino peptidase 97 1460

8 BN1106_s4069B000247 alpha-actinin 87 633 8 BN1106_s1403B000129 hypothetical protein 94 1627

9 BN1106_s2907B000133 hypothetical protein 86 1441 9 BN1106_s1871B000313 programmed cell death

6-interacting protein

93 902

10 BN1106_s1403B000129 hypothetical protein 82 964 10 BN1106_s2907B000133 hypothetical protein 92 1777

11 BN1106_s274B000296 Adenosine Triphosphate

binding cassette subfamily

82 749 11 BN1106_s175B000200 hexokinase 92 1344

12 BN1106_s945B000218 Annexin 81 663 12 BN1106_s3585B000136 myoferlin 90 736

13 BN1106_s3227B000227 phosphopyruvate

hydratase

78 567 13 BN1106_s90B000599 Adenosine Triphosphase

family protein

89 200

14 BN1106_s2471B000098 PREDICTED:

phosphatidylcholine

translocator ABCB4

77 635 14 BN1106_s2471B000098 PREDICTED:

phosphatidylcholine

translocator ABCB4

86 572

15 BN1106_s1320B000236 heat shock protein 90 77 521 15 BN1106_s3904B000042 14-3-3 protein 83 1029

16 BN1106_s1871B000313 programmed cell death

6-interacting protein

76 851 16 BN1106_s606B000246 alpha-tubulin 83 787

17 BN1106_s233B000262 hypothetical protein 74 527 17 BN1106_s3227B000227 phosphopyruvate

hydratase

82 598

18 BN1106_s246B000252 phosphoenolpyruvate

carboxykinase

69 602 18 BN1106_s246B000252 phosphoenolpyruvate

carboxykinase

81 909

19 BN1106_s204B000249 calpain 69 546 19 BN1106_s945B000218 Annexin 80 712

20 BN1106_s2349B000188 severin 69 462 20 BN1106_s7079B000034 hypothetical protein 80 615

21 BN1106_s3261B000048 otoferlin 65 360 21 BN1106_s2697B000090 leucine Rich repeat-

containing domain

protein

80 500

22 BN1106_s1081B000242 chain A, Sigma class

glutathione S-transferase

64 472 22 BN1106_s274B000296 Adenosine Triphosphate

binding cassette

subfamily

78 669

23 BN1106_s500B000161 annexin 63 413 23 BN1106_s233B000262 hypothetical protein 76 484

24 BN1106_s3904B000042 14-3-3 protein 62 846 24 BN1106_s2907B000132 actin 75 805

25 BN1106_s2615B000090 dysferlin 61 449 25 BN1106_s1153B000359 tubulin beta-4 71 619

26 BN1106_s468B000343 xaa-pro dipeptidase 60 851 26 BN1106_s2349B000188 severin 70 1062

27 BN1106_s3747B000112 hypothetical protein 60 529 27 BN1106_s4469B000065 fructose-bisphosphate

aldolase class I

68 622

28 BN1106_s4252B000085 uncharacterized protein 60 475 28 BN1106_s5174B000030 glyceraldehyde-

3-phosphate

dehydrogenase

68 408

29 BN1106_s658B000223 hypothetical protein 58 825 29 BN1106_s3261B000048 otoferlin 68 386

30 BN1106_s7079B000034 hypothetical protein 58 531 30 BN1106_s658B000223 hypothetical protein 67 929

31 BN1106_s686B000273 14-3-3 protein 54 480 31 BN1106_s500B000161 Annexin 67 544

(Continued)
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abundance of the potential tegumental proteins in the SEC preparation in comparison to DC

EV preparations. Based on the number of unique or total peptides for each protein as an rela-

tive assessment of abundance, potential tegument identifications from DC prepared EVs were

in greater quantities (Average of 14 unique peptides and 47 total peptides per protein) com-

pared to EVs from SEC preparations (Average of 9 unique peptides and 15 total peptides per

protein).

Of interest in the DC prepared EVs was the identification of 5 proteins that have previously

been well documented in the proteome of F. hepatica eggs. Specifically, two ferritin-like pro-

teins (BN1106_s709B000642 & BN1106_s709B000627), heat shock protein-35a

(BN1106_s7572B000046), oxidoreductase (BN1106_s3715B000086) and an omega class gluta-

thione S-transferase (BN1106_s1029B000154) which were all identified within DC EVs only.

Comparative gene enrichment

Gene enrichment was undertaken to determine significant over-representation of biological

characteristics within the DC and SEC purified proteomes, compared to the F. hepatica
genome set. Gene enrichment analysis revealed enriched gene ontology terms for both purifi-

cation methods in biological process, molecular function and cellular component categories

Table 1. (Continued)

Size Exclusion Chromatography Differential Centrifugation

Rank Sequence ID Description Unique

Peptide

Hits

Total

Peptide

Hits

Rank Sequence ID Description Unique

Peptide

Hits

Total

Peptide

Hits

32 BN1106_s3266B000046 annexin 54 381 32 BN1106_s4860B000047 Tubulin beta chain 66 748

33 BN1106_s2091B000373 DnaK family protein 54 278 33 BN1106_s2615B000090 Dysferlin 66 534

34 BN1106_s1515B000336 filamin-C 52 139 34 BN1106_s1277B000102 Heat shock protein 90 65 148

35 BN1106_s5174B000030 glyceraldehyde-

3-phosphate

dehydrogenase

51 243 35 BN1106_s468B000343 Xaa-Pro dipeptidase 64 766

36 BN1106_s2907B000132 actin 50 441 36 BN1106_s204B000249 calpain 64 431

37 BN1106_s3172B000053 14-3-3 protein 49 513 37 BN1106_s4413B000122 hypothetical protein 64 421

38 BN1106_s4469B000065 fructose-bisphosphate

aldolase class I

49 431 38 BN1106_s63B000395 hypothetical protein 63 184

39 BN1106_s617B000567 leucyl aminopeptidase 48 507 39 BN1106_s3172B000053 14-3-3 protein 62 545

40 BN1106_s2100B000128 hypothetical protein 48 301 40 BN1106_s4252B000085 uncharacterized protein 61 524

41 BN1106_s1191B000313 hypothetical protein 48 183 41 BN1106_s3747B000112 hypothetical protein 60 584

42 BN1106_s3001B000132. hypothetical protein 47 255 42 BN1106_s1081B000242 chain A, Sigma class

glutathione S-transferase

59 369

43 BN1106_s6821B000024 hypothetical protein 45 351 43 BN1106_s617B000567 leucyl aminopeptidase 58 457

44 BN1106_s55B000373 hypothetical protein 44 97 44 BN1106_s686B000273 14-3-3 protein 57 468

45 BN1106_s584B000346 glucose transporter-2

protein

43 260 45 BN1106_s2091B000373 DnaK family protein 57 283

46 BN1106_s4860B000047 tubulin beta chain 42 235 46 BN1106_s3033B000087 phosphoglycerate kinase 57 231

47 BN1106_s584B000350 glucose transporter-2

protein

41 320 47 BN1106_s285B000846 unnamed protein

product

56 442

48 BN1106_s4560B000072 tetraspanin family protein 41 223 48 BN1106_s6821B000024 hypothetical protein 55 437

49 BN1106_s1614B000280 alkyl hydroperoxide

reductase/ Thiol specific

antioxidant family

41 204 49 BN1106_s2349B000191 gelsolin repeat protein 54 286

50 BN1106_s487B000135 hypothetical protein 41 180 50 BN1106_s487B000135 hypothetical protein 52 177

https://doi.org/10.1371/journal.pntd.0007191.t001
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against the F. hepatica genome (S7 File). Several gene ontology terms were enriched, which

were not represented in EVs from both purification methods. For example, in biological pro-

cesses, ATP synthesis coupled proton transport, carbohydrate metabolic process, cellular iron

ion homeostasis, DNA replication, gluconeogenesis, iron ion transport, protein transport,

proton transport, regulation of protein phosphorylation, DNA templated transcription and

transmembrane transport were enriched in DC purified EVs only, where categories included

proteins such as ATP synthase F1 beta subunit and peptidase T1 family. While nucleocyto-

plasmic transport, nucleosome assembly, oxidation-reduction process, phosphatidylinositol

metabolic process, protein dephosphorylation, proteolysis, regulation of actin filament poly-

merization, small GTPase mediated signal transduction and translation including proteins

such as Ras family protein and aldehyde dehydrogenase family protein were not enriched in

DC purified EVs. Pairwise comparisons of DC purified EVs compared to SEC purified EVs

demonstrated that, when considering biological processes, there were significantly less transla-

tion gene ontology terms (p = 0.02) and significantly more DNA-templated regulation of tran-

scription gene ontology terms (p = 0.04), when considering cellular components there were

significantly less ribosome gene ontology terms (p = 0.04) and when considering molecular

function, structural constituents of the ribosome gene ontology terms (p = 0.02) were signifi-

cantly less enriched.

Comparative Western blotting

The relative abundances of three proteins, which are well recognised to be located in F. hepat-
ica ESP, EVs and somatic fractions, were compared utilising Western blotting. Somatic, ESP,

soluble and insoluble EV fraction samples were assessed using both DC and SEC EV purifica-

tion approaches (Fig 4). Equal concentrations of each protein sample was assayed for each EV

purification Western blot. Anti-fatty acid binding protein V (Anti-FhFABP-V) antibody rec-

ognition was observed within somatic, ESP and soluble EV fractions using both purification

methods but not within the insoluble EV fraction yet, DC EV purification demonstrated a

marginally higher anti-FABP V recognition in EV soluble protein concentrations than SEC

methods. Recognition with anti-glutathione transferase sigma class (Anti-FhGST-S1), identi-

fied in all fractions (somatic, ESP, insoluble and soluble EV), was notably observed to a greater

extent within the insoluble EV fraction using SEC purification rather than DC purification.

Anti-Fasciola cathepsin L1 (Anti-FhCat-L1) antibody recognition was identified in all frac-

tions (somatic, ESP and soluble EV) with the exception of insoluble EV preparations. Of note

is the increased recognition of Fasciola cathepsin L1 observed in the soluble EV fraction of DC

purified EVs when compared to SEC EVs. Furthermore, there was greater recognition by

Anti-FhCat-L1 in the ESP following SEC purification rather than DC. To further investigate

the abundance of cathepsin L proteases in DC and SEC EVs the proteomic data sets generated

in the current work were examined to reveal which cathepsin L proteases were identified in

the respective EV preparations (Table 2). Cathepsin L protease identifications revealed a

greater number of CL1 clade (CL1A and CL1D) identified in EVs purified by SEC, rather than

EVs purified by DC. In addition, DC purified EVs contained a greater number of the CL5

clade members.

Discussion

Given recent discoveries that EVs function in host-pathogen communication promoting or

inhibiting host immunity, it is vital that reliable protocols for EV isolation, away from ESP, are

conducted for downstream studies and application development. Therefore, the current work

aimed to assess the current standard procedure for helminth pathogen EV analysis, DC, with a
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SEC approach well-established outside of the pathogen field when purifying EVs from culture

media.

EV morphological characteristics assessed after both DC and SEC purification methods,

identified that SEC purified EVs on average were smaller (76 nm ± 44 SD) and less diverse in

size than DC purified EVs (95 nm ± 58 SD), indicating different EV populations were likely

isolated by each method. DC purified EV size and diversity (27 nm and above) were similar to

Fig 4. Extracellular vesicle protein preparation Western blot profiles purified using differential centrifugation

and size exclusion chromatography. Extracellular vesicle preparation western blot profiles of somatic (10 μg protein),

excretory-secretory protein (10 μg protein), soluble extracellular vesicle protein (20 μg protein) and insoluble

extracellular vesicle protein (20 μg protein). Biological triplicates were analysed on 12.5% SDS-PAGE electrophoresis

gels and transferred to nitrocellulose membranes for immune recognition. Samples of extracellular vesicle preparations

purified using either the differential centrifugation method or size exclusion chromatography method were probed

with anti-glutathione transferase sigma class (Anti-FhGST-S1), Anti-Fasciola cathepsin L1 (Anti-FhCat-L1) or anti-

fatty acid binding protein V (Anti-FhFABP-V).

https://doi.org/10.1371/journal.pntd.0007191.g004
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EV size predictions made by the centrifugation calculator [49]. Centrifugation calculators fur-

ther predict that 38% of free protein will be purified in solution using DC purification meth-

ods. Furthermore, DC of EVs is more successful when sedimentation coefficients of the

particles to be distinguished differ significantly [49]. For example, different centrifugation

forces are required to obtain optimal EV to protein yield for different cell lines [50]. Thus, the

difficulty of DC based standardisation across laboratory settings and sample types is becoming

clearer.

During the current analysis, EVs were observed to aggregate together and contaminants co-

purified were visible utilising both purification methods. However, Nordin et al. [2] demon-

strated that DC purified EVs were fused, disrupted (62%) and aggregated when compared to

SEC purified EVs yet, in the current investigation, EVs from either purification method were

not damaged. It has been noted that forced filtration of samples can cause EV rupture and

deformity, so sample preparation and SEC methods are advised to be performed using gravity

only methods [1,6,11]. Aggregates are more likely to occur when high concentrations of EVs

are present in a small volume with non-vesicular material; circumstances which are more likely

within DC purification strategies rather than SEC purification of EVs [8]. However, EV aggre-

gates may be overestimated by TEM and AFM methodology whereby surfaces capture EVs.

Furthermore, vesicle morphology can be influenced by TEM and AFM methodology processes

[6,51,52]. Both methods exhibited EV loss as demonstrated by the presence of EVs in the flow

through (ESP), confirming that both purification methods are selective upon EV isolation.

When analysing the protein composition of purified EVs, it was apparent that SEC methods

purified a greater protein yield within the EV samples (whole lysed, soluble protein fraction

and insoluble protein fraction) when compared to DC preparations. These findings compare

well with research identifying a greater number of particles to protein yield via SEC methods

compared to DC methods and other commercial EV purification systems [2,14,15,53,54]. SEC

has further been found to remove contaminating proteins from difficult sample types com-

pared to DC such as albumin, cholesterol and apolipoprotein AI from blood plasma EVs and

lipopolysaccharide binding protein from prokaryote EVs [14,55,56]. Conversely, Mol et al.,
[57] observed no significant differences in EV protein or particle yield between both purifica-

tion methods. There is an inverse relationship between EV purity and the protein yield, where

the lower the ratio the more impure the sample [1,10]. Therefore, sample purity may have

Table 2. Cathepsin L proteases identified in extracellular vesicles purified by differential centrifugation and size exclusion chromatography. Protein accession num-

bers were chosen upon the lowest E-value hit and top accessions were identified by the highest unique peptide hits. Protein clades were identified from references

[24,41,47,48].

Size Exclusion Chromatography Differential Centrifugation

Sequence ID Protein

Accession

Description [species] Unique Peptide

Hits

Total Peptide

Hits

Unique Peptide

Hits

Total Peptide

Hits

BN1106_s8490B000026 AAB41670.2 secreted cathepsin L1A [Fasciola
hepatica]

29 109 23 91

BN1106_s4636B000039 AAF44676.1 cathepsin L5 [Fasciola gigantica] - - 9 13

BN1106_s10332B000011 ACJ12893.1 cathepsin L1D [Fasciola hepatica] 14 43 8 22

BN1106_s7289B000014 AAB41670.2 secreted cathepsin L1A [Fasciola
hepatica]

12 19 - -

BN1106_s8098B000020 ASK40163 ProCathepsin L2 [Fasciola hepatica] 10 21 9 22

BN1106_s7456B000012 ABV90502.1 cathepsin L1D, partial [Fasciola
gigantica]

6 12 - -

BN1106_s6354B000017 ATW63990.1 Pro cathepsin L5 [Fasciola hepatica] 5 10 6 14

BN1106_s10332B000010 ACJ12894.1 cathepsin L1D [Fasciola hepatica] 5 8 - -

https://doi.org/10.1371/journal.pntd.0007191.t002
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consequent effects on experimental investigations [10]. Similar protein levels were observed

between whole lysed EV and ESP samples purified by DC, yet the protein concentration of

ESP was nearly threefold that of the whole lysed EV samples during SEC purification. This sug-

gests again that SEC purification methods have an increased EV purity to protein yield ratio

than DC based methods. This significant variation in ESP protein yield is most likely a direct

result from sample wash steps involved with DC purification of EVs. Therefore, multiple wash

steps are likely to increase EV loss and, as Webber and Clayton [10] acknowledged, are ineffec-

tive at removing protein contaminants, where there was only a 2-fold increase in particle to

protein yield, compared to the crude pellet. Furthermore, there is the possibility that protein

will sediment along with EVs during DC rather than be separated from EVs. Thus, in the cur-

rent work SEC EV purification delivered a higher yield EV preparation in addition to higher

yields of EV depleted ESP.

Whole lysed EV and ESP samples displayed different protein profiles as observed by one

dimensional SDS-PAGE electrophoresis, suggesting that both EV purification methods isolate

EVs from remaining F. hepatica secretions or ESP to varying degrees of purity. Following mass

spectrometry analysis, we identified a greater total number of proteins associated with DC

purified EVs than SEC purified EVs. However, SEC purified EV samples showed a greater

diversity of EV functions in biological process, molecular function and cellular component

gene ontology categories than DC purified EVs. The most common gene ontology terms iden-

tified in biological process, molecular function and cellular component were present in EVs

from both purification methods. A comparable result was found investigating cell culture EVs,

where fewer proteins (388 proteins) were identified in SEC purified EVs than in DC purified

EVs (421 proteins), although fewer proteins (147 proteins) overlapped between SEC and DC

EVs compared to the current study [53]. This result further suggests that DC purification alters

EV protein composition to a greater extent than SEC purification, possibly isolating different

EV subpopulations, as well as purifying greater amounts of contaminant. Thus, supporting

SEC purification methods for an increased EV purity to protein yield ratio than DC based

methods.

The most abundant proteins found in F. hepatica EVs, per rank, showed DC consistently

had a greater amount of unique peptides hit per protein than SEC. Cwiklinski et al. [24] simi-

larly analysed F. hepatica EV proteome where all 180 proteins identified were also found in the

current investigation. However, the top unique peptide hits (where soluble and insoluble frac-

tion data was combined) from Cwiklinski et al. [24] were not comparable to the current exper-

imental results. Cwiklinski et al. [24] did not investigate a biological representation of the

whole F. hepatica EV proteome, but instead EVs isolated from 120,000 x g ultracentrifugation

spin only. In addition, a different mass spectrometry methodology and analysis was performed

likely explaining DC EV differences. The top 50 proteins observed in EVs purified using SEC

were also present in the DC EV purified proteome. However, three proteins were identified in

the top 50 proteins of DC purified EVs, but were not present in the full SEC isolated EV prote-

ome. Common EV markers were present in the top 50 EV proteins using both purification

methods although tetraspanin was identified in the top 50 EV protein hits using SEC purifica-

tion only and gelosin and phosphoglycerate kinase EV markers were observed in the top 50

protein hit using DC purification only. This may indicate that SEC and DC purification meth-

ods also purify different EV sub-populations, or that EV sub-populations are purified in differ-

ing quantities within each method.

Further investigation discovered that there was a 2.6 fold greater number of protein identi-

fications in DC purified EVs only, compared to SEC purified proteins. Of these DC EV unique

proteins many have been identified previously in ESP and tegument proteomic studies. With

pathogens, the separation of EVs from additional pathogen components such as the

Extracellular vesicle purification comparison for helminth pathogens

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007191 February 27, 2019 17 / 26

https://doi.org/10.1371/journal.pntd.0007191


platyhelminth tegument is vital to fully assess the role of the pathogen EV. The recognised

increase of tegumental proteins found within the DC purified EVs further supports that SEC

purified EVs have a greater EV purity to protein yield than DC purified EVs. Furthermore,

current international EV purification methods report that chromatographic methods, includ-

ing SEC, produce less contamination by non-vesicular proteins and macromolecule structures

than ultracentrifugation, thus is likely to account for the reduction of tegumental proteins in

SEC EVs [58].

Akin to the work of Benedikter et al. [53] gene enrichment analysis demonstrated compara-

ble enriched gene ontology terms for both purification methods in biological process, molecu-

lar function and cellular component categories against the F. hepatica genome. Interestingly,

only GO terms for translation biological process ribosome cellular component and structural

constituent of the ribosome were significantly less enriched in DC purified EVs compared to

SEC purified EVs, while DNA-templated regulation of transcription was enriched significantly

in DC purified EVs compared to SEC purified EVs. This further suggests that DC and SEC

purification methods isolate differing EV populations with altered functions. Cwiklinski et al.
[24] previously discovered that EV sub-populations secreted from F. hepatica, contained dif-

ferent relative peptidase activities. A range of other studies have also identified that nucleic

acids [59–64] and proteins [60,64–67] are selectively packed into EV subtypes. It has further

been found that purification methodologies have differential affinity for protein EV markers

and by extension for different EV sub-population using human urine samples [68]. This

research further supports the current work in that DC and SEC purification methods isolated

EVs of different function and different levels of purity.

An increased EV purity to protein yield ratio demonstrated in SEC purification over DC

based methods was further reinforced by Western blotting revealing higher recognition by

Anti-FhFABP V, Anti-FhGST-S1 and Anti-FhCat-L1 in the EV soluble fraction using DC

purification rather than SEC. Only protein fragments from FABP III were identified within

the mass spectrometry peptide analysis from the FABP protein family. Importantly, compara-

ble levels of recognition by Anti-FhFABP V and Anti-FhGST-S1 were seen in DC and SEC

ESP depleted of EVs, yet a greater recognition from Anti-FhCat-L1 was observed in SEC EV

depleted ESP demonstrating increased separation of ESP from EVs in SEC methods. Baranyai

et al. [55], also using Western blotting, demonstrated that SEC produced a greater EV purity

to protein yield ratio, as higher albumin concentrations were seen in DC methods than SEC

methods in mouse blood plasma. Correspondingly, vesicle markers have been found at greater

concentrations in EV samples using SEC methods than DC [2]. Interestingly, there were a

greater variety of cathepsin L protease isoforms identified in EVs purified by SEC, rather than

EVs purified by DC. Of these proteins, there was a greater number of cathepsin L1A and

cathepsin L1D, but a lower abundance of cathepsin L5 in SEC purified EVs, compared to DC

purified EVs. Cathepsin L proteases have functional roles within immune evasion, nutrition

and migration. In particular, cathepsin L1 and L2 proteases degrade host haemoglobin, immu-

noglobulin and interstitial matrix proteins such as fibronectin, laminin, and native collagen

[69,70]. Different cathepsin L protease clades, have distinct substrate abilities, indicating that

they have different roles in parasite biology. In the case of cathepsin L5, these roles are yet to

still be determined [47,71]. In previous proteomic studies investigating the surface and mem-

brane fractions of F. hepatica EVs [24], members of the CL1 clade (1A,1B and 1D) have all

been identified to be membrane associated, yet members of CL5 have not. Therefore, the SEC

approach identified more membrane associated cathepsin L in comparison to DC, identifying

increased soluble cathepsin L derived from the EV contents or from contamination from ESP.

Interestingly, Anti-FhGST-S1 recognition was strongly observed in the insoluble EV frac-

tion and a higher protein abundance of FhGST-S1 was suggested using SEC purification.
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Therefore, FhGST-S1 could potentially act as a novel marker for F. hepatica EVs given its iden-

tification in the insoluble EV fraction. The function of FhGST-S1 in F. hepatica includes pros-

taglandin synthesis which establishes host infection, egg development and embryogenesis,

host immune modulation and potential triclabendazole drug response in phase III sequestra-

tion based detoxification [40]. Recent studies have found that parasite EVs can communicate

with host cells therefore, the function FhGST-S1 in F. hepatica EVs could involve host infec-

tion establishment and host immune modulation [23,28,29,72–82]. However, further investi-

gation upon this proposal is required to determine the role and location of FhGST-S1 in EVs.

This finding indicates the importance of EV purification methodology upon accurately identi-

fying the abundance of pathogen markers and vaccine candidates in EVs.

To claim that SEC should be used as a gold standard method for isolating EVs from parasite

culture media, additional isolation methodologies (density gradient, sucrose cushion, precipi-

tation methods and immunoaffinity isolation) will need to be compared with SEC methodol-

ogy. It is acknowledged that within any purification method, many variables, such as the

number of wash steps, will affect the purity and functionality of purified EVs. Given that all

EV helminth studies to date have used DC purification for downstream analysis, the present

study findings suggest a change in approach may be required with SEC providing a promising

purification method for isolating EVs from in vitro helminth cultures for downstream func-

tional analysis in terms of minimising non-EV contaminants.

There is a strong demand for an established uniform protocol for EV purification. How-

ever, instead of finding the ultimate ‘gold standard’ for EV purification, from this investigation

it appears to be of more importance that EV purity is standardised, rather than the purification

protocol. Possibly, rather than the helminth EV field aiming to isolate EVs using a ‘gold stan-

dard’ method, there should be a ‘gold standard’ of purity assessment of EV samples used for

experimentation, dependent upon the sample type (e.g. plasma, urine, cell culture media and

parasite culture media). EV specific markers are also likely to be important to identify EV sam-

ple purity. Specific EV markers would add value to the assessment of EV sample purity and

thus could be species specific. This is especially pertinent given that current EV markers are

based on mammalian work [83]. In the current study, differential abundance of protein fami-

lies (CAT L clades and egg based proteins) were noted during proteomic analysis that could be

utilised for Fasciola specific EV purity markers. This would improve the standardisation of

protocols and the comparability of results from scientific research.

Thorough proteomic investigation on EV protein composition from EVs purified by DC and

SEC methodology identified that SEC purified EVs contained proteins with more functional

properties than DC purified EVs. However, in order to confirm increased EV functionality and

the improved functional benefit of using SEC for EV purification compared to other methodolo-

gies, additional functional studies comparing the isolation methodologies by independent host-

parasite interaction groups would be required. For example, SEC and DC purified EVs could be

cultured with host cells in vitro and host cell transcriptome data could be compared between the

two isolation conditions, following the methodology undertaken using DC purified O. viverrini
EVs [76]. However, as the findings from the current study support that SEC purified EVs con-

tained proteins with more functional properties than DC purified EVs, speculation upon the

validity of other EV functional studies which have purified EVs from parasite culture media using

DC methodology is necessary. Therefore, more comparative research is required to understand

the influence of EV purification methodologies upon functional studies.

In summary, the current study has challenged whether the most accepted EV purification

technique in helminth research is optimal for functional studies, in comparison to SEC meth-

ods. Our discoveries using F. hepatica as a pathogen case study, suggest that SEC purification

has a higher EV purity to protein yield ratio than DC purified EVs evidenced by reduced
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contamination from ESP and tegumental components, whilst still maintaining EV morpholog-

ical characteristics. Furthermore, gene ontology terminology proposed that DC and SEC puri-

fication methods isolate differential EV sub-populations. Given the demonstrated variation in

purification methodologies and the importance of understanding the function of EVs for

potential downstream studies and application development, the authors suggest that for EV

functional assays the purification methodology used should be of importance when designing

experiments. This research has highlighted SEC EV isolation as a potential key methodology

for functional EV research.
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