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Abstract

Seemingly innocuous nontuberculous mycobacteria (NTM) species, classified by their slow

or rapid growth rates, can cause a wide range of illnesses, from skin ulceration to severe pul-

monary and disseminated disease. Despite their worldwide prevalence and significant dis-

ease burden, NTM do not garner the same financial or research focus as Mycobacterium

tuberculosis. In this review, we outline the most abundant of over 170 NTM species and

inadequacies of diagnostics and treatments and weigh the advantages and disadvantages

of currently available in vivo animal models of NTM. In order to effectively combat this group

of mycobacteria, more research focused on appropriate animal models of infection, screen-

ing of chemotherapeutic compounds, and development of anti-NTM vaccines and diagnos-

tics is urgently needed.

Key learning points

• Pulmonary diseases due to NTM are an increasing global health concern.

• Prevalence of NTM is increasing in the US and has surpassed pulmonary tuberculosis

(TB).

• Successful treatment for NTM infection is complicated by the large number of NTM

species (>170), difficulties with diagnosis, and few therapeutic options once

diagnosed.

• Mycobacterium avium complex (MAC) lung disease treatment is costly, lengthy, and

often results in toxic side effects.
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Introduction

The nontuberculous mycobacteria (NTM), defined as any mycobacterial pathogen other than

Mycobacterium tuberculosis (Mtb) or M. leprae, include over 170 different species varying in

their ability to cause disease [1]. While some species are implicated worldwide (for example,

M. avium complex [MAC], M. abscessus), others (for example, M. malmoense) are regionally

significant [2]. NTM are geographically heterogeneous and cause a spectrum of diseases that

include tuberculosis (TB)-like pulmonary and extrapulmonary disease, cervical lymphadenitis

in young children, and visceral and disseminated disease (Fig 1). Pulmonary NTM infections

are most commonly due to MAC, M. kansasii, and M. abscessus, which cause a substantive,

often unappreciated, worldwide burden of illness. Although NTM may cause disease similar to

Mtb, they generally do not respond to classic TB drug regimens, and therefore a misdiagnosis

of Mtb can lead to poor treatment, particularly in resource-poor settings lacking diagnostic

infrastructure. NTM-associated disease is more abundant than previously believed and is a

quietly unfolding disease epidemic, even overtaking TB prevalence in some areas [3, 4]. A

recent nationwide study in a low-TB–incidence country was performed on over half a million
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• New therapeutic strategies are urgently needed, including more efficacious drugs with

fewer adverse side effects and novel treatment options that could reduce treatment

time and toxicity.

• Prioritizing funding and research using NTM animal models to dissect NTM patho-

genesis and host-directed responses and test novel therapeutic regimens against these

infections may help combat these widespread pathogens.
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mycobacterial cultures to determine the annual incidence of culture-verified NTM disease

from 1991 to 2015 [5]. Higher than anticipated incidence rates of disease caused by NTM in

the study by Hermansen and colleagues were observed in very young children 0–4 years of age

(5.36/105/year) and in older individuals (those aged 65–69; 2.39/105/year) [5]. In the United

States, an increased prevalence of NTM-associated lung disease cases in people above 65 years

of age has also been observed [6]. This bimodal age association with NTM incidence eludes to

the significant contribution of an insufficient immune response in susceptibility. Along with

this overall increase in burden from NTM disease is the increase in direct medical costs associ-

ated with it, which are also staggeringly high. In 2010 alone, 815 million dollars were used to

Fig 1. Body sites affected by NTM species. Pulmonary infections are generally due to inhalation from environmental sources.

Disseminated infections are most prevalent in immunocompromised persons, such as those on anti-TNF antibody therapy or suffering

from HIV. Cervical lymphadenitis presents most commonly in children. Bone and joint infections by NTM are usually introduced via

trauma. Lastly, skin and soft tissue infections are initiated via surgery, trauma, or broken skin barriers contacting contaminated water.

Figure represents more commonly encountered species; some less-common species are not depicted. HIV, human immunodeficiency

virus; MAC, M. avium complex; NTM, nontuberculous mycobacteria; TNF, tumor necrosis factor.

https://doi.org/10.1371/journal.pntd.0007083.g001
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treat 86,244 cases of NTM in the United States [7]. Furthermore, NTM infection often leads to

chronic disease that requires lengthy, complex, and sometimes poorly tolerated drug regimens

over many months to years, and following treatment, patients can experience relapse from

incomplete treatment or reinfection [8–13]. These studies and intricacies underscore the need

to develop effective vaccines and drug treatments for use in highly susceptible populations and

settings of emerging drug resistance [14].

Unfortunately, NTM infection and disease is not a reportable condition across much of the

United States, and identification of NTM to the species level is not routinely done. Despite this

variance in methodology and reporting across geographical areas, NTM prevalence has

steadily risen since 1950 and is likely an underestimate [15]. The most common NTM species

to cause lung disease belong to the MAC—composed primarily of M. avium and M. intracellu-
lare. With high-throughput gene sequencing, several more related species have been identified

that are under the MAC umbrella, including M. chimaera [16]. MAC species are most abun-

dant across the Americas (85%–35.4%), Australia (83%–67.3%), Europe (82%–22.4%), and

regions of Asia (71.4%–39.7%) compared to other species causing pulmonary disease [17].

Other frequently cultured NTM include M. kansasii and M. abscessus, whereas less frequent

infections can occur with M. xenopi, M. fortuitum, and M. chelonae [18]. Whole-genome

sequencing (WGS) of M. abscessus isolates is advancing our understanding of epidemiology,

geographical diversity, and transmissibility [19, 20], and this process could be applied to other

clinical NTM isolates. Despite an already large prevalence, species of the Mycobacterium genus

are destined to increase further in the coming years; in fact, isolates not fitting any known spe-

cies are frequently encountered in reference laboratories. This review will specifically highlight

MAC and M. abscessus because they represent a significant proportion of disease worldwide.

See the excellent reviews highlighting issues surrounding the diagnosis of NTM [21, 22],

including this diverse representation of species in any given infection. Importantly, species-

level identification of NTM has a large impact on treatment selection and success.

NTM organisms from environmental sources, including drinking and natural water, as well

as soil and dust, can colonize human epithelia [23]. Furthermore, the steady increase of NTM

infections is likely due to a wide contribution of factors, including an individual’s overall

greater exposure to large-volume aerosols, a modernization of plumbing away from antibacte-

rial copper pipes, and lower hot water temperatures, which may promote environmental colo-

nization and NTM persistence. A comparative epidemiologic study evaluated water-aerosol–

generating activities and found that these activities were not associated with MAC lung disease

in human immunodeficiency virus (HIV)-negative adults; however, colonization of virulent

isolates of MAC on faucets or associations in immunocompromised people, etc., were not

ruled out by the authors as disease associations [24]. Indirect transmission is also an important

epidemiological consideration, particularly for immunosuppressed individuals. Indeed, there

is evidence that aerosolized NTM can also survive on fomites, providing another mechanism

for spread, particularly for susceptible cystic fibrosis (CF) patients [25]. This nearly ubiquitous

presence of NTM in the environment makes them ideal candidates for opportunistic infections

and therefore warrants specific and detailed diagnostics and further evaluation for interven-

tion against disease.

Host–pathogen interactions

It is unclear whether the increase in NTM disease is in part due to a change in pathogen viru-

lence over time. Development of preventive and treatment strategies against NTM will require

a more comprehensive understanding of these dynamic host–pathogen interactions. While

several host and pathogen factors are known to increase risk of NTM infection, greater
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knowledge pertaining to the molecular mechanisms underlying these factors will be required

to develop more targeted therapy and also to develop assays that may be used in clinical and

preclinical studies. Certain body morphotypes, gender, and the use of immunomodulatory

drugs, such as steroids and tumor necrosis factor (TNF)-α blockers, are associated with a

higher risk of NTM infection. Impaired ciliary function also predisposes individuals to NTM

disease, and further research into the role of defects in airway clearance in mycobacterial inva-

sion needs to be conducted [26]. The prescription and practice of mechanical airway clearance

or airway clearance therapy has been observed to play an important role in reducing negative

disease associations in bronchiectasis patients [27] but has not yet been evaluated for a larger

role in preventing NTM reinfection. Specific genetic and treatment-induced host factors that

increase risk of NTM infection are discussed below.

Increased risk

Disease caused by NTM is influenced by a complex interplay between exposure and host-

related factors. A matched case-control study demonstrated positive associations between

MAC disease status and chronic obstructive pulmonary disease (COPD), severe pneumonia,

steroids, and immunomodulatory drug use [24]. Other host factors contributing to NTM pul-

monary disease (NTM-PD) include thoracic skeletal abnormalities and genetic disorders that

predispose the patient to bronchiectasis and/or lung infections (for example, CF). While some

host risk factors do overlap with those for Mtb infection, others starkly do not; for instance, TB

is a relatively rare diagnosis in individuals with CF [28]. Similar to TB, a prominent risk factor

for acquiring NTM disease is the immunocompromised status of an individual—due to either

an inherited or acquired immunodeficiency—including those with HIV infection, cancer,

organ transplants, and inflammatory diseases, such as rheumatoid arthritis treated with anti-

TNFα therapy [26, 29, 30]. A recent case-control study revealed several compounding risk fac-

tors for NTM disease in rheumatoid arthritis patients in a TB-endemic area, including a his-

tory of TB, hypertension, diabetes, interstitial lung disease, COPD, and corticosteroid

treatment [31]. Indeed, certain medications can also influence NTM infections, for example,

inhaled corticosteroids causing immunosuppression increases the risk of acquiring NTM

infections [24, 32, 33]. Although there is a greater incidence of both NTM and TB infections in

immunocompromised HIV patients, there is an important dichotomy in the onset of myco-

bacterial disease with respect to HIV progression. There is great difficulty diagnosing TB in

HIV-infected individuals; however, because of the high rates of extrapulmonary TB and fre-

quency of smear-negative disease, it is evident that TB occurs relatively early in HIV infection

[34]. Conversely, a recent US study observed NTM-disseminated disease in HIV patients, pri-

marily due to MAC, with the highest incidence in those with cluster of differentiation 4

(CD4+) T-cell counts less than 50 cells/mm3 [35].

Clustering of disease within families suggests a heritable genetic predisposition to disease

susceptibility [17, 36–38]. These heritable factors largely align with host immune responses to

infection, which are also well documented for Mtb infections. For example, interferon-γ (IFN-

γ) is an important host response against NTM in both mice and humans; disseminated NTM

disease occurs in mice deficient in either IFN-γ receptor (IFNγR) or IFN-γ [39]. Additional

immune deficiencies such as polymorphisms in interleukin 12 (IL-12) (IL-12p40 [40], IL-12

receptorβ1 [41], IFN-γ receptor [IFNγR1] [42] and IFNγR2 [43]) genes and natural-resis-

tance–associated macrophage protein 1 gene (NRAMP1) are risk factors for NTM infection

[26]. Interestingly, levels of anti-IFN-γ and anti-granulocyte–macrophage colony-stimulating

factor (GM-CSF) autoantibodies are higher in patients with NTM-PD [44]. As previously dis-

cussed, host age is also an important and significant factor for acquiring NTM disease. A
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retrospective cohort study of NTM disease in Denmark showed a relative risk of a positive

NTM culture in the elderly (>65 years) greater than 10 times that of adolescents (aged 15–19

years) [5]. Pulmonary NTM infection in the US occurs mostly in tall, thin, nonsmoking post-

menopausal white women who have a complex condition involving additive genetic variants

in immune, ciliary, connective tissue, and CF transmembrane conductance regulator (CFTR)

genes [38]. The disease in this population, sometimes referred to as “Lady Windermere syn-

drome,” presents with nodular bronchiectasis frequently involving the right middle lobe or left

lingula and tends to have a much slower progression than cavitary disease, such that long-term

follow-up (months to years) may be necessary [45, 46]. Affected host immune status, genetic

polymorphisms, and age thus all play prominent roles in NTM susceptibility.

Beyond host factors, the distinct phenotypes and variability between NTM species can also

influence disease states. The ability of NTM to form different morphotypes and robust biofilms

[47–52] may play a role in pathogenesis by enabling bronchial epithelial attachment and respi-

ratory infection [53], whereas Mtb biofilms may be involved in the formation of caseous necro-

sis and cavitation within the lung [47, 49, 50]. Specifically for M. abscessus, the in vitro

zebrafish model has revealed smooth (expressing glycopepidolipid [GPL]) and rough (loss of

GPL) phenotypes have divergent effects on infected macrophages that induce either protective

granulomas and chronic infection or abscess formation and acute infection, respectively [48].

The recognition and characterization of different NTM morphotypes were established in the

1950s, but the mechanism(s) underlying colony phenotype and relationships to pathogenicity

is incompletely understood for many NTM species [53, 54].

Other NTM species of clinical importance

Other clinically important species of NTM include, but are not limited to, M. kansasii, M. hae-
mophilum, M. marinum, and M. ulcerans (Fig 1). Some of these NTM infect the skin, often

occurring following procedures such as tattooing, liposuction, surgical procedures, or trauma,

all of which introduce the mycobacteria into the disrupted skin barrier. M. ulcerans infection

(Buruli ulcer) is prevalent in sub-Saharan Africa and some parts of Australia and is usually

introduced by trauma from contaminated surfaces and water. Increased risk of mycobacterial

infections (including NTM infection) can be attributed to antirheumatic medications, such as

anti-TNF therapy [55]. Specifically, monoclonal antibody therapy with TNF inhibitors used

for the treatment of psoriasis can be a risk factor for skin infections with M. fortuitum [56].

Anti-TNF therapy can also enhance risk of infection with M. intracellulare and M. avium path-

ogens [57]. M. kansasii causes lung disease that is clinically indistinguishable from TB and is

inherently resistant to standard first-line drugs, such as pyrazinamide [58], used against Mtb.

Many of the 170 and counting NTM species have variable but relevant clinical impact and

should be identified for successful treatment.

Clinical diagnosis of adult pulmonary NTM infections

Humans encounter environmental mycobacteria with variable clinical disease relevance on a

daily basis. Therefore, a single positive culture from nonsterile sources including the respira-

tory or digestive tract does not necessarily indicate infection or disease and makes treatment

decisions less straightforward. Further complicating diagnosis are the nonspecific symptoms

of NTM-PD, including a chronic cough, with or without sputum production or hemoptysis,

and progressive fatigue or malaise. Weight loss, fever, and night sweats are less frequent—

occurring in 30% to 50% of patients—and often indicate advanced disease [59]. Clinical diag-

nosis of NTM-PD involves the presentation of cough, fatigue, and often weight-loss symptoms,

accompanied by positive radiographs and isolation of an NTM from clinical specimens such
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as sputum [22]. Often, 2 positive microbiological cultures are needed to differentiate NTM dis-

ease versus colonization [21, 60]; however, these criteria have not been validated with respect

to progression to disease [61, 62]. The exclusion of other infectious (for example, TB, nocar-

diosis, and fungal infection) and noninfectious diseases (for example, sarcoidosis) is also criti-

cal when diagnosing NTM. Clinical, radiographic, and microbiologic criteria are equally

important, and all must be met to make a diagnosis of NTM disease.

Microbiology and molecular identification of NTM

Early control of mycobacterial infections is dependent on methods for rapid identification of

complex NTM and Mtb infections from a clinical sample and can reduce both morbidity and

mortality through implementing the best course of drug treatment. The method for detection

of NTM typically involves smear microscopy and culturing specimens, such as sputum, on

solid and/or liquid media [63], while the preferred staining procedure is fluorochrome micros-

copy [64]. To the extent that it is possible, NTM should be identified to the species level using

tools such as commonly employed line-probe assays, which can also be used to amplify drug-

resistance–determining regions [63]. The GenoType NTM-DR line-probe assay (Hain Life-

science, Nehren, Germany) is one such tool recently described for the identification of clinical

M. abscessus subspecies (subsp.) and drug resistance [65]. Rapid species identification can also

be determined using commercial DNA probes (MAC, M. kansasii, and M. gordonae), while

group- or complex-level identification can be accomplished with high-performance liquid

chromatography (HPLC). For some NTM isolates, especially rapidly growing mycobacteria

(RGM; M. fortuitum, M abscessus, and M. chelonae), extended antibiotic in vitro susceptibility

testing, DNA sequencing, or polymerase chain reaction (PCR) restriction endonuclease assay

(PRA) may be necessary. Another assay available for the detection of Mycobacterium species

from clinical samples is a PCR-reverse blot hybridization assay (REBA) Myco-ID assay (YD

Diagnostics, Yongin, South Korea), in which multiple targeted oligonucleotide specific probes

(Mycobacterium-species specific) are bound to a nitrocellulose membrane strip, then hybrid-

ized with biotinylated PCR products and subsequently visualized by colorimetric hybridization

signals [66, 67].

Molecular identification of different NTM species can also be accomplished via genomic

DNA comparison, though this process is labor intensive. A dramatic shift and update in myco-

bacterial taxonomy came with the ease of DNA sequencing. Early investigations demonstrated

that the mycobacterial 16S rRNA gene is highly conserved [68], that it is more accurate than

phenotypic methods for species identification [69], and that differences in the sequence of 1%

or greater can generally define a new species [70]. Furthermore, in a large study, molecular-

based PCR methods were 84.7% sensitive at detecting NTM species from clinical samples,

while phenotypic-culture–based methods only reached 78.0% and required significantly more

time to complete [71]. For these reasons, 16S rRNA can be used as a standard reference when

comparing detection techniques. Recently, Rodrı́guez-Sánchez and colleagues assessed 125

NTM isolates using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)

mass spectrometry, the GenoType common mycobacteria (CM)/additional species (AS) assay,

and a 16S rRNA/hsp65 gene sequencing reference assay to determine the alignment of these

different techniques [72]. The MALDI-TOF assay was in agreement with the reference assay in

118/125 cases (94.4%), and the GenoType CM/AS assay was in agreement in 105/125 cases

(84%), showing some limitations in loss of sensitivity of the GenoType CM/AS assay [72].

Conversely, while the MALDI-TOF assay requires a mass spectrometer, the GenoType CM/AS

assay can be performed using either manual or automated processing, making it more accessi-

ble in resource-limited settings. Besides the aforementioned assays, another innovative
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molecular assay, the Quantamatrix multiplexed assay platform (QMAP) system recently

described by Wang and colleagues [73], allows clinicians to discriminate between mycobacte-

rial species. This assay utilizes an automated magnetic-bead–based assay following similar

PCR steps as used in the PCR-REBA assay, except denatured biotinylated PCR products are

added to species-specific oligonucleotide probes coupled to carboxylated microdisks, followed

by the addition of streptavidin R-phycoerythrin conjugate and automated reading of fluores-

cence intensity. The specificity of the QMAP system was assessed from 295 mycobacterial

respiratory clinical isolates, several Mycobacterium reference strains (including Mtb H37Rv

and NTM strains), and non-Mycobacterium strains. This process yielded high specificity and

sensitivity in a short period (3 hours). The overall percentage agreement between the QMAP

system and PRA Myco-ID and REBA Myco-ID was 92.8% and 100%, respectively. Molecular

typing methods of Mtb and NTM species have been thoroughly described in a recent review

[74], including assay expense, requirement of specialized equipment and trained staff, repro-

ducibility, specificity and sensitivity, and the time required for an accurate diagnosis. Correct

identification of NTM species is dependent on an extensive and routinely updated molecular

database and is critical for successful treatment of NTM infection.

Pulmonary NTM infection and treatment

The treatment and outcomes of NTM diseases differ depending on the NTM species, and

therefore species-level NTM identification is clinically important. Standard treatment of infec-

tion with slow-growing NTM (such as MAC-PD) in immunocompetent patients involves the

combination of macrolides (azithromycin [AZM], chemically considered an azalide, or clari-

thromycin [CLR]), ethambutol (EMB), and rifampin (RIF) [21]. Macrolides act by binding to

the peptide exit tunnel of the ribosome, thus preventing the peptide chain from exiting the

peptidyl transferase center of the ribosome. MAC species are notorious for developing drug

resistance to many antibiotics through modifications of the drug-binding site to reduce bind-

ing of the agents, as described in a recent review [75], making infections exceedingly difficult

to treat. The most important risk factors for developing macrolide-resistant MAC are macro-

lide monotherapy and the combination of macrolide and fluoroquinolone without a third

companion drug. For patients with fibrocavitary MAC lung disease or severe nodular/bronch-

iectatic disease, regimens that include both macrolides, streptomycin, and aminoglycosides

such as kanamycin and amikacin that bind to the bacterial 30S ribosomal subunit and induce

cell death are recommended [21].

The American Thoracic Society provides drug guidelines and recommended regimens for

NTM, including those based on the severity and disease status of NTM infections [21]. The

British Thoracic Society has also recently published guidelines for the management of

NTM-PD [60]. A recent review outlines dosages and common adverse events attributed to sev-

eral drugs used for treatment of NTM-PD [76]. There are a number of toxicities and side

effects noted for drugs typically used to treat MAC that could affect treatment compliance,

such as CLR-induced headache, nausea, and vomiting or rifamycin-induced anemia, hepato-

toxicity, lymphocytopenia, rash, and/or thrombocytopenia [76]. The genetic predisposition to

antimicrobial resistance as well as the poor tolerability of the current standard regimens makes

the discovery and development of novel drugs for NTM-PD, including both M. abscessus and

MAC infections, a research priority. Furthermore, classifying and standardizing treatment

success and outcome reporting for comparative assessments may help better identify positive

versus negative treatment regimens [14].

Clinicians also have to consider whether a positive culture in the absence of overt symptoms

may suggest colonization versus infection, and the significant extent of side effects from
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prolonged treatment is important when evaluating the need to treat. Indeed, over half (63%) of

patients with MAC-PD in a recent study progressed, and these cases correlated with a higher

bacterial load and pulmonary destruction. The remaining 47% of MAC-PD patients remained

stable [77], and in some cases, those who are untreated revert back to negative cultures sponta-

neously. Treatment decisions rely on evaluating whether the patient is symptomatic, whether

they present with background genetic or pharmacologic factors that would enhance suscepti-

bility, and the extent of radiographic abnormalities, which suggest evidence of disease progres-

sion. Further assessment of specific biomarkers that correlate with progression to disease is

critical and an active area of research.

Pulmonary MAC and M. abscessus subsp. in the CF patient

The rapidly growing M. abscessus subsp. (including M. abscessus subsp. abscessus, M. abscessus
subsp. massiliense, and M. abscessus subsp. bolletii) are emerging pathogens, with outbreaks in

surgical patients in Brazil and in CF patients in the United Kingdom [25, 78, 79]. The preva-

lence of NTM in CF patients, a major health threat, has been steadily increasing since the early

1980s and is estimated to be 7%–13% in this population [28]. Recommendations to enable bet-

ter NTM-centric healthcare for CF patients have been put forth by the CF Society and the CF

Foundation [80]. These recommendations, although not exhaustively listed here, include

using sputum but not oropharyngeal swabs for NTM screening, using both solid and liquid

cultures for a minimum of 6 weeks for respiratory samples, using molecular identification of

NTM isolates, testing susceptibility of MAC to CLR prior to treatment, testing sputum samples

for NTM culture every 4–8 weeks throughout the course of treatment, and prescribing NTM

antibiotic therapy for 12 months beyond culture conversion [80]. Additional treatment strate-

gies that are relevant for CF patients should be investigated, such as identifying immune path-

ways that may be leveraged to help those with this disease.

Treatment for M. abscessus subsp. infection

RGM infections can present as an asymptomatic, inert disease with minimal clinical symptoms

to severe bronchiectasis and cavitary pulmonary disease with substantial morbidity and mor-

tality. The many subsp. of M. abscessus [81] are a classic example of how species and subsp.

identification in an NTM infection can dramatically affect treatment selection and outcomes

[12]. Molecular classification can help inform researchers and clinicians about variations in

transmissibility, pathogenesis, and drug sensitivity, all within a single species such as M. absces-
sus. Generally, M. abscessus subsp. abscessus infections are more severe and difficult to treat.

CLR and AZM are the standard therapeutic agents for M. abscessus subsp. massiliense, which

lacks a functional, active, inducible-macrolide–resistance gene, erythromycin ribosomal meth-

ylase (erm) gene [82]. The erm gene—dominant in M. abscessus subsp. abscessus, M. abscessus
subsp. bollotii, and M. fortuitum strains (but not in M. chelonae)—promotes methylation of

the 23S rRNA, rendering the bacteria resistant against macrolides, lincosamides, and strepto-

gramins. Induction of this gene is not detected by conventional susceptibility testing, however,

since this requires extended culture incubation observation for up to 2 weeks. Once samples

are cultured for susceptibility over 2 weeks, species and subsp. can be identified as well as help-

ing dictate decisions about the makeup and length of treatment [60]. Mutational resistance is

also observed in the ribosomal L4 protein (rrl) encoding gene of some M. abscessus subsp. The

high propensity for macrolide resistance underscores why the use of monotherapy for infec-

tions caused by RGM is not recommended [21]. There is active research to develop rapid diag-

nostic tests for these inducible and mutational-based mechanisms of drug resistance [83],

which is severely needed to replace lengthy, extended-culture–based methods. Furthermore,
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species and subsp. identification of NTM can help predict whether there is a higher propensity

for recurrence, relapse, or reinfections [8, 84–86], which will also play a part in determining

treatment courses.

Experimental animal models for NTM

As discussed above, there are diverse factors that affect NTM disease, including host factors

and innate mycobacteria phenotypes and antibiotic resistance. Preclinical animal models can

be leveraged to study the influence of these factors and evaluate novel therapeutic drugs and

regimens for treatment of NTM infections. Two major categories of NTM disease to consider

for animal model development include pulmonary disease and extrapulmonary-disseminated

disease (typically presenting in those who are immunocompromised). NTM are generally less

virulent than Mtb, and therefore the capacity to induce a sustained progressive infection in a

mouse strain is an important criterion and current hurdle for the development of an experi-

mental mouse model. Previous studies have shown that most immunocompetent mouse

strains serve as outstanding models for the more virulent MAC species but demonstrate rapid

clearance when infected with the less virulent M. abscessus isolate [87], making model develop-

ment and selection challenging (Tables 1 and 2). Many different mouse strains have been used

to screen different drug compounds against MAC, including CLR, RIF, rifapentine (RPT),

moxifloxacin (MXF), EMB, and amikacin (AMK) (Table 1). Other diverse preclinical models

are available for testing M. abscessus pathogenesis and in vivo activity of drug compounds

against M. abscessus, including amoebae, Drosophila melanogaster, and zebrafish embryo mod-

els [48]. Exploiting the host-specific conditions required for the successful growth and patho-

genicity outcome of each NTM organism will enable the testing and development of treatment

strategies in an appropriate preclinical model.

Table 1. Mouse strains/models used for MAC infection.

Mouse strain M. avium route of infection and dose Productive infection

(organ)

Compound screening Reference

C57BL/6 aerosolization; approximately 105/mouse lung and spleen CLR [100]

C57BL/6 (modified Cornell-

like model)

M. avium complex strains; aerosolization (500–

104 CFU/ mouse)

lung CLR-RIF [103]

C57BL/6 M. avium subsp. hominissuis; intranasal

2.25 × 107 CFU/mouse

lung LAI [150]

C57BL/10 intranasal; 105 CFU/mouse lung, spleen, and liver N/A [101]

129Sv IV; 106 CFU/mouse lung, spleen, and liver N/A [96]

BALB/c aerosolization; approximately 105 CFU/mouse lung and spleen CLR, CLR-EMB-RIF, MXF-EMB-RIF,

CLR-MXF-EMB-RIF

[100]

iNOS-/- IV; 106 CFU/mouse liver N/A [151]

iNOS-/- IV; 106 CFU/mouse lung, spleen, and liver N/A [96]

TNFα p55 receptor-/- IV; 106 CFU/mouse lung and spleen N/A [152]

Beige aerosolization; approximately 105 CFU/mouse lung and spleen CLR [100]

Beige IV; 106 CFU/mouse lung, spleen, liver, and

gut

N/A [90]

Nude aerosolization; approximately 105 CFU/mouse lung and spleen CLR, CLR-EMB-RIF, MXF-EMB-RIF,

CLR-MXF-EMB-RIF

[100]

Abbreviations: CFU, colony-forming units; CLR, clarithromycin; EMB, ethambutol; iNOS, inducible NO synthase; IV, intravenous; LAI, liposomal amikacin for

inhalation; MXF, moxifloxacin; N/A, not applicable; NO, nitric oxide; RIF, rifampin; TNF, tumor necrosis factor.

https://doi.org/10.1371/journal.pntd.0007083.t001
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Animal models for slow-growing mycobacteria

The Beige mouse is used as a standard model for MAC disease [88]. This mouse model was

developed in the mid-1990s because of the increasing numbers of HIV-seropositive patients

becoming coinfected with M. avium [89]. Beige mice display many immune deficiencies simi-

lar to those occurring in AIDS patients [88], as well as a susceptibility to infection with NTM

following either intravenous or aerosol infection, providing a unique opportunity for the study

of MAC infections in this model [88–92] (Table 1). Additionally, Beige mice exhibit a defi-

ciency of neutrophil influx at the site of infection that increases their susceptibility to M.

avium, which is rescued by the adoptive transfer of neutrophils from wild-type mice [90]. Cor-

responding neutrophil-depletion studies with C57BL/6 mice show increased susceptibility to

M. avium [90]. The initial discovery and further confirmation of MAC disease in the Beige

mouse model have encouraged many investigators to use this model to screen the chemothera-

peutic potential of promising compounds for the treatment of MAC disease. Importantly,

many chemotherapeutic compounds against MAC disease and other NTM that have shown

Table 2. Mouse strains used for M. abscessus infections and drug screening.

Mouse strain NTM used and route of infection Productive infection (organ) Compound screening Reference

C57BL/6 M. abscessus; aerosolization (HDA and LDA) HDA (lungs and spleens), LDA

(no)

N/A [94]

C57BL/6 M. abscessus and M. massiliense; IV (4 × 106 to 107) lung CLR, MXF, CLR/MXF, AZM, AZM/

MXF

[153]

BALB/c M. abscessus-R; IV (104/mouse) lungs and spleen N/A [87]

Ob/Ob M. abscessus; aerosolization (HDA and LDA) HDA (lungs and spleen), LDA (no) N/A [94]

CF mouse M. abscessus-R and -S morphotype; IT (1.6 × 106/

mouse)

yes N/A [154]

iNOS-/- M. abscessus; IV (106/mouse) lungs, spleen, and liver N/A [87]

Cybb-/- M. abscessus; IV (106/mouse) lungs, spleen, and liver N/A [87]

TNFα
receptor-/-

M. abscessus; IV (106/mouse) lungs, spleen, and Liver N/A [87]

MyD88-/- M. abscessus; IV (106/mouse) lungs, spleen, and liver N/A [87]

C3HeB/FeJ M. abscessus; IV (106/mouse) lungs, spleen, and liver N/A [87]

Beige M. abscessus; IV (106/mouse) lungs, spleen, and liver N/A [87]

GKO M. abscessus; aerosolization LDA or HDA lungs and spleen N/A [94]

GKO M. abscessus; IV (106/mouse) lungs, spleen, and Liver CLR, CLF, BDQ, CLF/BDQ, CIP, AMK [87]

GKO M. abscessus subsp. massiliense lungs and spleen N/A [155]

GM-CSF-/- M. abscessus; aerosolization (106/mouse) lungs and spleen AZM [156]

GM-CSF-/- M. abscessus; IV (106/mouse) lungs, spleen, and liver N/A [87]

Nude M. abscessus; IV (106–108/mouse) lungs, spleen, liver, and kidneys FOX, AMK, CLR, FOX/AMK/CLR,

TGC

[157]

Nude M. abscessus; IV (106/mouse) lungs, spleen, and liver N/A [87]

SCID M. abscessus-R; IT (104/mouse) lungs and spleen N/A [158]

SCID M. abscessus; IV (106/mouse) lungs, spleen, and liver CLR, BDQ, CLF, BDQ/CLF [87]

HDA = approximately 1,000 bacilli/mouse, and LDA = approximately 100 bacilli/mouse. Abbreviations: AMK, amikacin; AZM, azithromycin; BDQ, bedaquiline; CF,

cystic fibrosis; CIP, ciprofloxacin; CLF, clofazimine; CLR, clarithromycin; FOX, cefoxitin; GKO, IFN-γ knockout; GM-CSF, granulocyte-macrophage colony-

stimulating factor; HDA, high-dose aerosol; IFN-γ, interferon-γ; iNOS, inducible NO synthase; IT, intratracheal; IV, intravenous; LDA, low-dose aerosol; MXF,

moxifloxacin; N/A, not applicable; NTM, nontuberculous mycobacteria; R, rough morphotype of M. abscessus; S, smooth morphotype of M. abscessus; SCID, severe

combined immunodeficiency; TGC, tigecycline; TNF, tumor necrosis factor.

https://doi.org/10.1371/journal.pntd.0007083.t002
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activity in the Beige mouse model have been successfully translated into clinical application

[93, 94]. Therefore, the Beige mouse is an excellent immunocompromised model for NTM

infections and compound screening.

Preclinical models can also be used to study mechanisms of host immunity against myco-

bacterial infections. For example, the effects of nitric oxide (NO) on Mtb and M. avium infec-

tion in mice have been well studied. Through these investigations, it has been demonstrated

that NO contributes to protective host responses against Mtb in the murine model, both in

vitro (in macrophages) and in vivo [95]. However, interesting differences are present in terms

of NO and NTM infections. Studies using mice devoid of inducible NO synthase (iNOS-/-)

show improved control of M. avium, denoted by reduced mycobacterial burden in multiple

organs compared to wild-type 129Sv mice [96]. Furthermore, treatment of bone-marrow–

derived macrophages with IFN-γ and TNFα from either wild-type or iNOS-/- mice leads to

reduced intracellular M. avium burden. These results suggest that the protective effects of IFN-

γ and TNFα against NTM are not mediated by the production of NO. NO has also been sug-

gested to have a regulatory role on IFN-γ–expressing T helper 1 (TH1) CD4+ T cells because

iNOS-/- mice show greater IFN-γ production and increased CD4+ T-cell numbers [97]. The

mechanism by which NO is protective against Mtb and not against NTM in mouse models of

infection remains poorly understood [98]. One study using an intratracheal infection with M.

avium showed similar kinetics of cytokine gene expression between TNFα and iNOS, in which

expression levels in the lung were low early in infection when bacterial load was higher and

cytokine expression was higher late in infection when bacterial levels were lower, suggesting a

possible role of NO against M. avium [99].

Evaluating multiple strains of mice can also provide valuable insight into host immune

responses and NTM pathogenesis. For example, several mouse strains were compared to eval-

uate responses following an M. avium aerosol challenge, including 2 immunocompetent

mouse strains (BALB/c, and C57BL/6) and 2 immunodeficient mouse strains (Nude and Beige

mice). Not surprisingly, Nude mice showed the greatest susceptibility to M. avium infection

compared to the other mouse strains, whereas drug treatment efficacy was determined to be

most successful in BALB/c mice [100]. In the same study, C57BL/6 mice showed the greatest

resistance to M. avium 8 weeks postchallenge. C57BL/10 mice depleted of CD4+ T cells and

infected using an intranasal infection of M. avium clearly support a role for CD4+ T cells [101].

Furthermore, IFN-γ depletion before and during M. avium infection leads to increased bacte-

rial burden in the lung, spleen, and liver, suggesting a protective role for IFN-γ against this

pathogen [101].

Like Mtb [102], NTM exposure can result in acute and chronic infections, as well as reacti-

vation post-treatment [8]. Preclinical modeling of these different disease states may help isolate

treatment options, including harnessing host immunity. NTM infection reactivation has been

studied using a modified Cornell-like murine model (typically used to study reactivation of

latent Mtb) and has successfully been developed for experimental reactivation of pulmonary

MAC infection (Table 1), [103]. In this model, C57BL/6 mice are infected by the aerosol route

with MAC strains and are treated with CLR and rifampicin for 6 weeks, and then treatment is

stopped. Twelve weeks following drug treatment, mice are given immunosuppressants (dexa-

methasone or sulfasalazine) for 5 weeks to expose any remaining bacteria post-treatment. Bac-

terial burden is assessed in the organs at different times after immunosuppression to measure

reactivation. This model could also be useful for determining the potential efficacy of com-

bined drug and immunotherapy regimens by quantifying the numbers of bacilli remaining

after treatment.
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Animal models for RGM

The most clinically important RGM to cause human lung disease belongs to M. abscessus. M.

abscessus subsp. abscessus and M. abscessus subsp. bollettii have a functional erm41 gene; there-

fore, resistance to macrolides may be identified. It has been challenging to develop an animal

model for screening compounds against RGMs because of gaps in fully understanding their

pathogenesis of infection and relative avirulence. One study [94] has shown, for example, that

C57BL/6 and leptin-deficient (Ob/Ob) mice challenged with a low-dose aerosol (LDA, approx-

imately 100 bacilli per mouse) of M. abscessus did not develop a progressive infection. Addi-

tional studies using a high-dose aerosol (HDA, approximately 1,000 bacilli per mouse) in

C57BL/6 and Ob/Ob mice have resulted in an established infection and an early pulmonary

influx of IFN-γ+ CD4+ T cells. This early influx of CD4+ T cells producing IFN-γ resulted in

clearance of M. abscessus in both mouse strains. It is important to note that mycobacterial

elimination was delayed in the Ob/Ob mice, demonstrating an increase in susceptibility to

infection in this mouse model. Conversely, IFN-γ knockout (GKO) mice challenged with a

LDA or HDA of M. abscessus showed progressive lung infection, associated with the influx of

T cells, macrophages, and dendritic cells and subsequent granuloma development, despite a

lower bacterial load [94]. In addition, HDA challenge of the GKO mice induced IL-4 and IL-

10, producing CD4+ and CD8+ T cells within the lungs, capable of suppressing of protective

immunity. The thorough and systematic evaluation of host immune factors influencing NTM

infection progression and disease can be achieved with selective mouse modeling and compar-

isons across strains.

A progressive aerosol infection model has proven elusive since most mouse models with

significant deficits in innate or acquired immunity are still able to clear an infection with a

high level of RGM. This highlights the need for improved understanding of the NTM patho-

genesis of infection [87]. Importantly, even some mouse strains with specific defects in innate

or acquired immunity infected with 1 × 106 M. abscessus intravenously were able to control

the infection [87]. Mouse strains capable of bacterial clearance include Beige (dominant TH2

immunity), iNOS-/-, Cybb-/- (devoid of superoxide generating enzyme), TNFα receptor (R)-/-,

C3HeB/FeJ, GKO, and MyD88-/- mice. During chronic infection (40 days), M. abscessus was

still present at levels below the initial inoculum in the lungs of the C3HeB/FeJ, GKO, and

MyD88-/- mice. Moreover, the GKO and MyD88-/- mice maintained viable but reduced levels

of M. abscessus in the spleen and liver after 40 days. SCID, Nude, and GM-CSF-/- mice infected

intravenously with M. abscessus demonstrated sustained or progressive bacterial burden [87],

which supports an important role for T cells and GM-CSF–dependent cell phenotypes in pro-

tective immunity against M. abscessus and other rapid growing subsp.

Acute and chronic compound efficacy have been tested in the M. abscessus-infected SCID

mice (Table 2), [87]. Single and combination treatment studies using standard anti-NTM com-

pounds (CLR, clofazimine [CLF], AMK, ciprofloxacin [CIP], bedaquiline [BDQ], and

CLF-BDQ) have been completed. An advantage of using severely immunocompromised mice

(SCID, Nude, and GM-CSF-/-) for modeling M. abscessus infection is the presence of foamy

cells in the lungs after 40 days of infection, a cellular phenotype commonly seen in the histo-

pathologic specimens of human NTM lung disease [87]. Murine models of NTM infection are

capable of developing non-necrotic and necrotizing granulomas, mimicking diverse pulmo-

nary pathology in NTM patients. Additional models such as the embryonic zebrafish have

been developed to assay M. abscessus [104] for rapid compound screening, while a hollow-

fiber model has been utilized for RGM compound screening [87]. The biggest challenge that

remains to advance our knowledge in NTM pathogenesis and protection is to fully understand

the process of human NTM infections (environmental, nosocomial, and endogenous/
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exogenous reinfection), which would allow us to better emulate these processes in our animal

models.

Vaccines for NTM

Despite the significant global impact of opportunistic NTM and the need to stop subsequent

reinfection from the environment in susceptible hosts [105, 106], there are no vaccines cur-

rently available against these pathogens. However, various approaches may be exploited to

develop and advance vaccines against NTM [107–110]. For example, similar virulence factors

are expressed during infection with other pathogens, and cross-reactive antigens may afford

induction of protective immunity against NTM [108]. This important gap in healthcare can be

closed with the appropriate tools (models) and experience to develop a candidate vaccine tar-

geting mycobacterial infections [111]. A therapeutic vaccine could also help overcome issues

with acquired drug resistance to drugs such as CLR, following treatment against both slow-

growing mycobacteria (SGM) including MAC [112] and RGM such as M. abscessus [113, 114].

For immunotherapeutic vaccine development, the NTM field can borrow strategies currently

being used and evaluated for efficacy against Mtb. For example, our group has engineered a

vaccine against Mtb, ID93 (a clinical TB antigen) + glucopyranosyl lipid adjuvant (GLA) for-

mulated in an oil-in-water stable nanoemulsion (SE), which is currently being tested in a

Phase 2a trial in South Africa for safety, immunogenicity, and dose selection in 60 TB patients

administered post-treatment [115]. Escalating preclinical studies with ID93 + GLA-SE have

demonstrated protective and therapeutic efficacy [116–122], and clinical results suggest the

vaccine is safe and immunogenic [120, 122]. This strategy hinges on optimizing mycobacterial

antigen selection and an immune-stimulating adjuvant, the synthetic Toll-like receptor 4

(TLR4) GLA-SE, capable of enhancing adaptive immune responses to many infectious patho-

gens [123]. Numerous preclinical and clinical vaccine studies for infectious diseases, allergy,

and cancer [117, 124–141] have used a protein/adjuvant strategy that could be emulated for

the development of vaccines targeted against NTM infections. Although correlates of protec-

tion have been elusive for mycobacterial diseases, more and more recent success has emerged

from the TB vaccine community. This includes a cutting-edge correlate of risk RNA blood sig-

nature that predicts treatment outcomes and relapse in certain populations [142], providing a

new benchmark for other vaccine candidates to reach, as well as recently published data dem-

onstrating a protein antigen with immune-stimulating adjuvant (M72/AS01E) candidate vac-

cine produced 54% efficacy of preventing active TB in adults in a Phase 2b clinical trial [143].

As the TB research community continues to make strides in developing and testing vaccine

candidates, these successes and tools should and could be cross-applied to the NTM field.

Variable host factors and mycobacterial experience are particularly important consider-

ations for rational anti-NTM vaccine design. It has long been hypothesized that NTM-based

preexisting immunity could lead to variability and/or lack of Bacillus Calmette–Guérin (BCG)

vaccine efficacy [144]. Conversely, if BCG is given prior to NTM exposure in a mouse model,

there is some protection against M. avium and M. kansasii [145]. BCG was ineffective against

M. intracellulare and M. simiae, perhaps because BCG lacks cross-reactive antigens against

these NTM [145]. Fraga and colleagues demonstrated transient protection (delayed onset of

bacterial growth and foot swelling) against M. ulcerans, including increased CD4+ TH1

responses, following vaccination with BCG [146]. Recently, unexpected cross-reactivity of

NTM/Mtb-specific chemokine (C-X-C motif) (CXCR3+ and CCR6+, respectively) memory T

cells in non-TB–exposed healthy control (HC) donors has been observed [147]. The possibility

of “boosting” NTM T-cell responses in NTM-exposed individuals with protein/adjuvant vac-

cines, either alone or as an adjunct to drug treatment, is currently being explored by our team.
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Adjuvant is likely to play a role in a robust vaccine response against several NTM, including

the well-characterized TH1-inducing adjuvant GLA-SE [123]. For example, early IFN-γ induc-

tion has been shown to be critical for immunity against M. ulcerans infection, as shown by

delayed progression of infection and reduced bacterial burden in wild-type compared to GKO

mice [148]. Other data demonstrate promising protective responses in mice, including

increased survival, decreased pathology, and reduced bacterial load compared to BCG, using a

recombinant BCG-expressing M. ulcerans Ag85A in the Buruli ulcer mouse model [149].

Progress towards an effective NTM vaccine strategy will require careful consideration of the

influence(s) of historical NTM exposure in addition to BCG or Mtb experience for possible

immune interference or boosting effects and should be a major priority for the research

community.

Conclusion

Challenges facing the prevention and treatment of NTM disease include inadequate

research—in part no doubt due to insufficient funding—the lack of knowledge of factors lead-

ing to susceptibility in mouse strains with different genetic backgrounds, and a poor under-

standing of the mechanisms utilized by NTM that allow for the evasion of host immunity

resulting in bacterial persistence. By addressing these challenges, more effective prophylactic

and therapeutic approaches for the prevention and treatment of NTM will likely emerge.

Use of the current minimum inhibitory and minimum bactericidal concentration (MIC/

MBC) method in the clinic may need to be updated and/or complemented with newer tech-

niques, and there is continued debate over an optimal animal model for compound screening

ongoing in the research community [87]. Nevertheless, new and more effective drug treat-

ments are unlikely to eliminate NTM infection and disease in NTM-susceptible individuals

who are frequently reinfected with clinical NTM. Vaccination has the potential to protect

patients from primary exposure to clinical NTM and could be used as immunotherapy treat-

ment in combination with standard drugs. Furthermore, vaccines may represent the only real-

istic way of preventing the significant issue of reinfection. The call to action now lies with the

urgent need to stimulate development of and advance effective vaccines and targeted immuno-

therapy against NTM.
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