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Abstract

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus linked to devastating neurologic

diseases. Immune responses to flaviviruses may be pathogenic or protective. Our under-

standing of human immune responses to ZIKV in vivo remains limited. Therefore, we per-

formed a longitudinal molecular and phenotypic characterization of innate and adaptive

immune responses during an acute ZIKV infection. We found that innate immune transcrip-

tional and genomic responses were both cell type- and time-dependent. While interferon

stimulated gene induction was common to all innate immune cells, the upregulation of

important inflammatory cytokine genes was primarily limited to monocyte subsets. Addition-

ally, genomic analysis revealed substantial chromatin remodeling at sites containing cell-

type specific transcription factor binding motifs that may explain the observed changes in

gene expression. In this dengue virus-experienced individual, adaptive immune responses

were rapidly mobilized with T cell transcriptional activity and ZIKV neutralizing antibody

responses peaking 6 days after the onset of symptoms. Collectively this study characterizes

the development and resolution of an in vivo human immune response to acute ZIKV infec-

tion in an individual with pre-existing flavivirus immunity.

Author summary

Zika virus (ZIKV) is an emerging flaviviral infection that causes significant clinical disease.

It is estimated that approximately one half of the world’s population is at risk for ZIKV

infection. There are only a limited number of studies describing the human immune
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response to ZIKV infection. Carlin et al. combined conventional and genomic approaches

to longitudinally analyze the innate and adaptive immune responses to acute ZIKV infection

and its resolution in a person who was infected while traveling in Venezuela during the

2016 ZIKV epidemic year. Genome-wide sequencing in individual cell types revealed that

although many populations respond to interferon stimulation, only specific cell populations

within peripheral blood mononuclear cells upregulate important inflammatory cytokine

gene expression. Additionally, analysis of open chromatin using ATAC-seq suggests that

chromatin remodeling at sites containing cell-type specific transcription factor binding

motifs may help us understand changes in gene expression. Consistent with previous

reports, this individual with prior exposure to dengue virus (DENV), rapidly developed neu-

tralizing anti-ZIKV responses that were cross-reactive with multiple DENV serotypes. Col-

lectively this study combines traditional and genomic approaches to characterize the cell-

type specific development of an in vivo human immune response to acute ZIKV infection.

Introduction

Zika virus (ZIKV) is an emerging arthropod-borne flavivirus. It is primarily transmitted by

Aedes sp. mosquitos but can also be transmitted person to person vertically from mother to

child, sexually and in blood during transfusions [1]. Clinical manifestations occur in approxi-

mately 20% of infections and can include an acute onset low grade fever, pruritic erythematous

macular papular rash, arthralgias and conjunctivitis [2]. Clinically these symptoms can be con-

fused with dengue virus (DENV) or chikungunya virus (CHIKV) infections that are transmit-

ted by the same mosquito vectors and can co-circulate with ZIKV [3]. During pregnancy,

ZIKV can cause congenital Zika syndrome and other severe birth defects in fetuses [2]. In

adults, ZIKV is associated with life-threatening Guillain-Barré Syndrome (GBS) [4, 5]. The

details of how ZIKV bypasses immune restriction to cause disease are still under investigation.

The relationship between flaviviruses and the immune system is complex [6]. On one hand,

the immune system can exacerbate viral pathogenesis. For example, ZIKV, like DENV and West

Nile virus (WNV), infect innate immune white blood cells early in infection [7–11]. Studies in

ZIKV infected children identified monocytes, in particular CD14+CD16+ intermediate mono-

cytes, and myeloid dendritic cells as the main targets of ZIKV infection in peripheral blood

mononuclear cells (PBMCs) [9]. These infected cells may act like a “Trojan horse” to increase

spread of the virus to different tissue compartments. Antibody (Ab) responses to flaviviruses are

often cross-reactive and have the potential to mediate antibody-dependent enhancement (ADE).

While there is no evidence that ADE alters ZIKV pathogenesis in humans, in a mouse model of

ZIKV infection, administration of DENV or WNV convalescent plasma increased ZIKV morbid-

ity and mortality through ADE [12]. On the other hand, the development of protective adaptive

immune responses is thought to be critical to clear ZIKV infection [6]. Therefore, increasing our

understanding of human immune responses to ZIKV infection can lead to better understanding

of ZIKV clinical manifestations and pathogenesis and inform the development of vaccines.

Only a small number of studies have examined human responses to ZIKV infection in vivo.

Analysis of serum inflammatory markers during acute ZIKV infection identified some poten-

tial biomarkers associated with neurologic complications [13] and viremia plus moderate

symptoms [14]. Monoclonal Abs isolated from four donors infected with ZIKV demonstrated

that neutralizing Abs primarily recognized the envelope protein domain III of ZIKV and that

Abs recognizing different ZIKV epitopes could alternatively protect against ZIKV challenge or

enhance subsequent DENV infection in mice [15]. Another study tracking the development of
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Ab responses to ZIKV in three DENV-experienced and one DENV-naïve individual found

that acute-phase Abs developing during ZIKV infection in DENV-experienced individuals

were highly cross-reactive but poorly neutralizing [16]. In a single flavivirus naïve individual,

anti-ZIKV B-cell plasma neutralization activity and T-cell responses peaked later between day

15 and day 21 [17]. A large study examining T cell responses to ZIKV in DENV-naïve and

DENV-immune patients revealed that DENV exposure prior to ZIKV infection influences the

timing, magnitude, and quality of the T cell response [18]. In another study that examined

both innate and adaptive immune responses in 5 individuals infected with ZIKV, Lai et. al.

observed that flavivirus-experienced individuals developed rapid cross-reactive antibody

responses against both DENV and ZIKV as well as activated CD8+ T cell responses, albeit few

ZIKV-specific CD8+ T cells were identified [19].

These studies provide insight into human ZIKV infection, but our understanding

remains limited due to the small number of reported cases. Additionally, published reports

have utilized conventional approaches to study the in vivo immune responses to ZIKV.

Combining these approaches with genome-wide next-generation sequencing (NGS) analy-

ses could bring new insight into human ZIKV responses and inform direction and design of

future studies of immune responses during infection in larger cohorts. As a step towards

improving our understanding of human immune responses to acute ZIKV infection

through new approaches, we present a detailed immunologic characterization of the innate

and adaptive temporal and cell type-specific responses to an acute ZIKV infection in a

DENV-experienced patient.

Methods

Ethics statement

This research study was approved by the UCSD IRB with Human Research Protections Pro-

gram # 161060. Written informed consent was obtained from the adult human subject

described in this report.

Sample Collection

After obtaining written informed consent, blood was collected on five occasions d3, d6, d17,

d48, and d240 post-onset of symptoms (POS). Urine was collected on d3 and d6 only. Serum

was isolated by collecting blood into a plain tube containing no anticoagulant, allowed to clot

at room temperature for 20 minutes followed by centrifugation at 1500xg for 10 minutes in a

refrigerated centrifuge. Serum was frozen in single use aliquots at -80˚C. Peripheral blood

mononuclear cells (PBMCs) were isolated from heparinized blood using Histopaque-1077 per

manufacturer’s instructions and subjected to flow activated cell sorting (FACS) or cryopre-

served in 5 million cell aliquots in 90% FBS + 10% DMSO (Hybri-max Sigma) using a Nalgene

Mr. Frosty at -80˚C for 24 hours before transfer to liquid nitrogen. Cryopreserved cells were

thawed rapidly to 37˚C and slowly diluted with pre-warmed growth media, followed by gentle

pelleting and resuspension in cold FACS staining buffer.

Virus isolation

Five microliters of d3 POS serum or blood was inoculated into a T25 flask of C6/36 mosquito

(Aedes albopictus) cells. Supernatants (5 mL) were harvested seven days after culture and

titrated via BHK-21 cell-based focus forming assay (FFA) and anti-Flavivirus envelope (E) pro-

tein antibody clone 4G2. The urine culture supernatant had a titer of 2.0 x 104 focus forming

units (FFU)/mL. Infectious virus in the serum culture supernatant was undetectable.
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Viral sequencing and phylogenetic analysis

Viral RNA from 0.2ml of C6/36 supernatant that was inoculated with d3 POS urine was

extracted using the Roche High Pure Viral RNA Kit (Roche) and reversed transcribed using a

primer specific method for ZikaBr (Forward primer AGTGGAGACGATTGYTGTNGT,

Reverse primer AACATGTCTTCTGTGGTCATCCA) (SuperScript III First-Strand Synthesis

System for RT-PCR, Invitrogen). cDNA was amplified using Taq polymerase (Roche), cleaned

using QIAquick PCR Purification Kit (Qiagen) and sequenced using BDT v3.1 on the ABI

3130xl Genetic Analyzer. Forward and reverse sequences were used to make a contig and man-

ually edited using Bioedit [ref http://www.mbio.ncsu.edu/BioEdit/bioedit.html]. The Basic

Alignment Search Tool (BLAST) [ref:] was then used with the resultant sequence [ref: https://

blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_

LOC=blasthome] which most closely aligned with other ZIKV NS5 sequences. For phyloge-

netic analyses, RNA from ZIKV SD001 infected primary human macrophages were aligned to

the human hg19 genome using STAR [PMID: 23104886]. Any unmapped reads were used as

input for strand-specific de novo transcriptome assembly with Trinity [PMID: 21572440]. The

longest assembled transcripts were approximately 9 kb, and corresponded to near full-length

viral genomes. The resulting alignment from ZIKV SD001 and 435 publicly available ZIKV

sequences from NCBI viral genomes resource [20] were used to perform an approximate max-

imum likelihood phylogenetic tree with PhyML [21]. The tree was rooted with ZIKV (Gen-

Bank accession number KY241712) isolated in Asia.

Flow cytometry

For innate immune cell sorting ten million PBMCs were stained with antibodies against CD3

PE-Cy7, CD19 PE-Cy7 CD20 PE-Cy7, HLADR BV421, CD11c AF700, CD123 PE, CD14 AF488,

CD16 APC, CD56 APC-Cy7, and Zombie Aqua Fixable viability dye and separated as shown.

For T cell sorting, five million cryopreserved PBMCs were stained with CD16 BV510, CD56

BV510, CD4 APC-eFluor780, CD3 AF700, CD8 BV785, CD45RA BV570, CCR7 PE-Cy7,

CXCR5 BV421, CXCR3 BV605, TCR V_24-J_18 BV711, CD226 BB515, CCR6 PerCP-Cy5.5,

CCR4 PE, CD25 PE-Dazzle 594, and CD127 AF647 and sorted into CD3+ T cell CD4+ and

CD8+ populations. T cells were further analyzed for effector or memory phenotypes, CD4 T

helper (Th) subsets based on the expression of chemokine receptors (Th1: CCR6-CCR4-CXCR3+;

Th2: CCR6-CCR4+CXCR3-; Th1/17: CCR6+CCR4-CXCR3+; and Th17: CCR6+CCR4+CXCR3-)

as well as the cytotoxicity marker CD226. Stained PBMCs were sorted in the La Jolla Institute

(LJI) Flow Cytometry Core Facility on a FACSAria Fusion sorter.

RNA-seq library preparation

Sequencing libraries were prepared using a low input RNA-seq prepared according to the

Smart-seq2 method [22] with some modifications. 5000–15,000 PBMCs (pre-sort) or FACS iso-

lated cell populations were lysed in TRIzol and RNA extracted using Direct-zol RNA Microprep

(Zymo) with on-column DNAseI treatment. 10 μL purified RNA was mixed with 5.5 μL of

SMARTScribe 5X First-Strand Buffer (Clontech), 1 μL polyT-RT primer (2.5 μM, 5’-AAGCAG

TGGTATCAACGCAGAGTAC(T30)VN, 0.5 μL SUPERase-IN (Ambion), 4 μL dNTP mix (10

mM, Invitrogen), 0.5 μL DTT (20 mM, Clontech) and 2 μL Betaine solution (5 M, Sigma), incu-

bated 50˚C 3 min. 3.9 μL of first strand mix, containing 0.2 μL 1% Tween-20, 0.32 μL MgCl2

(500 mM), 0.88 μL Betaine solution (5 M, Sigma), 0.5 μL (5 M, Sigma) SUPERase-IN (Ambion)

and 2 μL SMARTScribe Reverse Transcriptase (100 U/μL Clontech) was added and incubated

one cycle 25˚C 3 min., 42˚C 60 min. 1.62 μL template switch (TS) reaction mix containing

0.8 μL biotin-TS oligo (10 μM, Biotin-5’-AAGCAGTGGTATCAACGCAGAGTACATrGrG
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+G-3’), 0.5 μL SMARTScribe Reverse Transcriptase (100 U/μL Clontech) and 0.32 μL SMART-

Scribe 5X First-Strand Buffer (Clontech) was added, then incubated at 50˚C 2 min., 42˚C 80

min., 70˚C 10 min. 14.8 μL second strand synthesis, pre-amplification mix containing 1 μL pre-

amp oligo (10 μM, 5’AAGCAGTGGTATCAACGCAGAGT-3’), 8.8 μL KAPA HiFi Fidelity

Buffer (5X, KAPA Biosystems), 3.5 μL dNTP mix (10 mM, Invitrogen) and 1.5 μL KAPA HiFi

HotStart DNA Polymerase (1U/μL, KAPA Biosystems), was added, then amplified by PCR:

95˚C 3 min., 5 cycles 98˚C 20 sec, 67˚C 15 sec and 72˚C 6 min, final extension 72˚C 5 min. The

synthesized dsDNA was purified using Sera-Mag Speedbeads (Thermo Fisher Scientific) with

final 8.4% PEG8000, 1.1M NaCl, then eluted with 13 μL UltraPure water (Invitrogen). The prod-

uct was quantified by Qubit dsDNA High Sensitivity Assay Kit (Invitrogen) and libraries were

prepared using the Nextera DNA Sample Preparation kit (Illumina). Tagmentation mix con-

taining 11 μL 2X Tagment DNA Buffer and 1 μL Tagment DNA Enzyme was added to 10 μL

purified DNA, then incubated at 55˚C 15 min. 6 μL Nextera Resuspension Buffer (Illumina) was

added and incubated at room temperature for 5 min. Tagmented DNA was purified using Sera-

Mag Speedbeads (Thermo Fisher Scientific) with final 7.8% PEG8000, 0.98M NaCl, then eluted

with 25 µL UltraPure water (Invitrogen). Final enrichment amplification was performed with

Nextera primers, adding 1 μL Index 1 primers (100 μM, N7xx), 1 μL Index 2 primers (100 μM,

N5xx) and 27 μL NEBNext High-Fidelity 2X PCR Master Mix (New England BioLabs), then

amplified by PCR: 72˚C 5 min., 98˚C 30 sec., 6–12 cycles 98˚C 10 seconds, 63˚C 30 sec., and

72˚C 1 min. Libraries were size selected, quantified using the Qubit dsDNA HS Assay Kit

(Thermo Fisher Scientific), pooled and sequenced on a Hi-Seq 2000 sequencer using single-end

50bp reads at a depth of 25 to 30 million single end reads per sample.

Assay for transposase-accessible chromatin-sequencing (ATAC-seq)

50,000 FACS isolated classical monocytes or NK cells were lysed in 50 μl lysis buffer (10 mM

Tris-HCl ph 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL, CA-630, in water) on ice and

nuclei were pelleted by centrifugation at 500 RCF for 10 min. Nuclei were then resuspended in

50 μl transposase reaction mix (1x Tagment DNA buffer (Illumina 15027866), 2.5 μl Tagment

DNA enzyme I (Illumina 15027865), in water) and incubated at 37˚C for 30 min on a PCR

cycler. DNA was then purified with Zymo ChIP DNA concentrator columns (Zymo Research

D5205) and eluted with 10 μl of elution buffer. DNA was then amplified with PCR mix

(1.25 μM Nextera primer 1, 1.25 μM Nextera index primer 2-bar code, 0.6x SYBR Green I (Life

Technologies, S7563), 1x NEBNext High-Fidelity 2x PCR MasterMix, (NEBM0541)) for 8–12

cycles, size selected for fragments (160–290 bp) by gel extraction (10% TBE gels, Life Technolo-

gies EC62752BOX) and single-end sequenced for 51 cycles on a HiSeq 4000 or NextSeq 500.

Sequencing analysis

RNA-seq reads were aligned to the GRCh38/hg38 assembly of the human genome using STAR

(version 2.5.2a) using default parameters [23]. Gene expression values were calculated as fragments

per kilobase per million mapped reads (FPKM) across GENCODE transcript exons (release 24)

[24] using HOMER [25]. To remove possible contamination from genomic DNA in the RNA-seq

samples, FPKM measurements were calculated for long introns (>10 kb) and the median intron

FPKM per experiment was subtracted from each exon FPKM values to remove background signal.

Gene expression FPKM values across all samples set to a minimum of zero and then quantile nor-

malized. Only GENCODE transcripts with length greater than 300 bp were considered. Log2 fold

change ratios were calculated using a pseudo count by adding a FPKM of 4 to both numerator (i.e.

day 3, 6, 17) and denominator (i.e. day 48/convalescent) to reduce the impact of low expression

noise and contamination on the lists of regulated genes. Functional enrichment was performed
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using HOMER using pathway definitions from Gene Ontology and HALLMARK pathways from

MSigDB [26]. Promoter known motif enrichment was calculated using HOMER using sequence

from -300 bp to +50 bp relative to annotated transcription start sites. Hierarchical clustering of cor-

related gene expression profiles, motif enrichment, and GO/pathway function enrichment values

were performed using Cluster 3.0 [27] and visualized using Java TreeView [28]. For ATAC-seq,

fastq files were trimmed and aligned to hg38 using bowtie2. Reads mapping to Mitochondrial

DNA were removed and PCR duplicates were removed. Peaks were called using a standardized

peak size using HOMER (300 bp). To compare classical monocytes and NK cells the appropriate

peak files were merged and differential peaks identified using getDifferentialPeaks command

(HOMER) with threshold of fold change>3 and P-value< 0.001. Motif analysis was performed

on differential peak files using findMotifsGenome.pl (HOMER). All human RNA-seq and ATAC-

seq data described in this manuscript are available at the National Center for Biotechnology Infor-

mation (NCBI) Gene Expression Omnibus (GEO) accession number GSE123541.

Comparison to published microarray data

Affymetrix gene expression microarray CEL files were downloaded from NCBI GEO for longi-

tudinal DENV infection in humans (GSE43777) and ZIKV infection in Rhesus macaques

(GSE93861) and processed into gene expression values using R/Bioconductor using GCRMA

with default options. For the human DENV infection data, only samples performed on whole

genome HG-U133plus2 microarrays were used for the comparison. Samples for the human

DENV study were identified based on their annotated number of days since initial fever (G1,

G2, etc.) and averaged to generate per day expression values. Rhesus macaque ZIKV infection

gene expression values were averaged based on the day post infection, and human orthologues

were assigned using one-to-one orthologues defined by ENSEMBL BIOMART (https://www.

ensembl.org/biomart). For each study, log2 activation ratios were calculated using the average

expression for each day compared to the average of the convalescent samples (human) or pre-

infection samples (Rhesus). Microarray and RNA-seq activation ratios were compared by link-

ing the datasets using gene symbols, using data from the highest expressed isoform in the cases

where multiple isoforms exist per gene.

Serum neutralization assay

Flow cytometry-based neutralization assay was used to evaluate SD001 serum neutralization of

ZIKV (strains FSS13025 and SD001 [29]) and DENV (DENV1 strain West pacific 74 and

DENV4 strain TVP-360) in vitro. 2×104 FFU DENV or ZIKV were incubated with or without

serial 3-fold dilutions (starting at 1:10) of heat-inactivated SD001 serum in 96-well round bot-

tom plates for 1-hour at 37˚C. U937 cells stably expressing DC-SIGN (1x105) were seeded in

each well and incubated for 2 h at 37˚C with occasional rocking. After incubation, the plates

were centrifuged for 5 minutes at 1500 rpm, supernatants aspirated and fresh medium added

followed by incubation for 16 h at 37˚C. U937 cells were then fixed, permeabilized, stained

with anti-CD209 PE and 4G2 FITC (to detect ZIKV) or 2H2 FITC (to detect DENV) and ana-

lyzed using an LSRII. Percent inhibition was calculated by determining the relative infection

in virus incubated with serial diluted patient serum (tests) versus no serum (control). Best fit

curves and neutralizing titer 50 (NT50) were determined using Prism 7.0 (GraphPad).

Cytokines analysis

Serum from 8 months prior to infection (pre-infection) as well as d3, d6, d17, and d48 POS

were prepared in duplicate using the Bio-Plex Pro Human Cytokine 27-plex Assay (Bio-rad

#M500KCAF0Y) per manufacturers protocol and read using a Luminex machine. Cytokine
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concentrations were calculated from standard curves generated using references included in

the kit. The following cytokines were measured FGF basic, Eotaxin, G-CSF, GM-CSF, IFN-γ,

IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, IP-

10, MCP-1 (MCAF), MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α, and VEGF.

Results

A middle-aged, previously healthy, dengue virus (DENV)-experienced woman developed

fatigue, an erythematous pruritic macular rash, and arthralgias six days after traveling to

Fig 1. Clinical time course and sample collection. (A) Time line depicting the clinical presentation, duration of symptoms and timing of sample

collection. Stars indicate days when blood samples were collected with the red star depicting the day of presentation. (B) Photograph of the left

arm demonstrating the erythematous macular rash. (C) Approximate maximum likelihood phylogenetic tree of near full length ZIKV variant

combined with 435 publicly available ZIKV sequences from NCBI viral genomes resource [20]. GenBank accession number are available (S1

Table). Tips are colored according to the sample sequence location. A set of 435 near full length sequence (9,038 bp) from the North America (in

red), Central/South America (in blue), Europe (in green), Asia (in purple) and Oceania (in orange) were combined with the sample ZIKV SD001

(in black) and the phylogeny (midpoint rooted) was obtained using FastTree [32]. Scale bar (substitution/site) is indicated in the center. The tree

topology shows the sample SD001 intermingled with sequences originating from Central/South America. A closeup of ZIKV SD001 and its

nearest neighbors with GenBank accession numbers and country of origin are shown.

https://doi.org/10.1371/journal.pntd.0007053.g001
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Caracas, Venezuela in March 2016 (Fig 1A and 1B). She presented on day 3 (d3) post-onset of

symptoms (POS). A comprehensive metabolic panel and complete blood count were within

normal limits except for slight elevations in ALT (50 U/L, normal range 0–41 U/L) and AST

(44 U/L, normal range 0–40 U/L). Serologic testing was consistent with acute flaviviral infec-

tion but did not differentiate between DENV and ZIKV infection (Table 1) [30]. A research-

use nucleic acid amplification test (NAAT) (Hologic) was positive for ZIKV infection in d3

POS blood and urine samples (Table 1). Blood and urine on d3 and d6 POS were negative for

DENV, as determined via qRT-PCR. Urine, from d3 and d6 POS, inoculated onto C6/36 cells

produced infectious virus as measured by focus forming assay (FFA). Sequence analysis of C6/

36 amplified virus was confirmed to be ZIKV using a validated population-based sequencing

protocol for ZikaBr targeting ZIKV NS5. Phylogenetic analysis of the near complete viral

genome (>9kb) showed the ZIKV San Diego isolate (ZIKV SD001 [29]) was most closely

related to other Latin American ZIKV isolates downloaded from Genbank (Fig 1C) [31].

To characterize the systemic immune response to ZIKV infection, we first measured circulat-

ing serum cytokine levels. Serum was collected on d3, d6, d17 and d48 POS. These samples

were compared to baseline pre-infection serum collected from this individual 8 months prior to

infection. We found that only a small number of cytokines, including IP-10, MCP-1 and IL-

1RA, showed dramatic increases during early infection (Fig 2A). Each of these cytokines peaked

on d3 POS before returning toward baseline. The levels of many inflammatory cytokines,

including IFNγ and TNFα, did not change or minimally changed throughout infection (S1 Fig).

To evaluate the cellular response to infection, we first performed RNA sequencing (RNA-

seq) on PBMCs. To identify induced and repressed genes during infection we compared tran-

scriptomes at d3, d6 and d17 POS with d48 (convalescent) (Fig 2B). Hierarchical clustering of

normalized PBMC transcriptional profiles showed dynamic induction patterns with strong d3

up-regulation of many interferon-stimulated genes (ISGs), which steadily declined at d6 and

d17. Published human PBMC studies during acute DENV infections demonstrated sequential

waves of gene expression with early induction of ISGs and inflammatory chemokines followed

by a switch to induction of genes involved in cell proliferation [34]. During ZIKV infection in

this individual, there was similar strong induction of type I ISGs, exemplified by MX1, OAS3,

RSAD2, and IFI27 genes (Cluster 2), but minimal coincident induction of chemokines

involved in leukocyte chemotaxis (Cluster 1) (Fig 2B). This includes CXCL10 and CCL2, that

encode the chemokines IP-10 and MCP-1, that were elevated at the protein level d3 POS.

Genes associated with cell differentiation and proliferation, such as BUB1, DLGAP5, PBK and

Table 1. Viral diagnostic test results.

ARUP CDC VRDL Hologic

IgG IgM IgM Serum PCR Serum NAAT Urine NAAT

Zika — — >2560 (>3) Negative Positive Positive

Dengue 10.64 (>2.85) 3.55 (>2.85) >2560 (>3) Negative — —

Chikungunya 0.27 (>1.1) 0.32 (>1.1) — Negative — —

ARUP: National Reference Lab

VRDL: California Department of Public Health Viral and Rickettsial Disease Laboratory

CDC: Centers for Disease Control

—: Assay not available or not performed

NAAT: Nucleic acid amplification test

Bracketed values indicate the level at which each test is considered positive.

https://doi.org/10.1371/journal.pntd.0007053.t001
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CEP55 (Cluster 3) were upregulated during DENV infection but not ZIKV, while EGR1,

HBEGF and MAFB (Cluster 4), were up-regulated at d17 POS during ZIKV infection (Fig 2B).

To better understand if low-level cytokine gene induction in PBMCs was characteristic of

ZIKV infection, we analyzed a published study where temporal gene expression profiles were

measured in rhesus macaques following ZIKV infection [33]. PBMCs from our patient and

rhesus macaques showed similar early transcriptional upregulation of ISGs but minimal che-

mokine gene induction with the possible exception of CXCL10 in monkeys (Fig 2C).

Analyzing PBMC transcription and serum cytokines provides important information about

global immune responses but lacks cell population-level resolution. To better understand how

individual cell populations responds to ZIKV infection, we isolated three monocyte subsets;

classical, intermediate, and non-classical; natural killer (NK) cells; two dendritic cell (DC) sub-

sets; myeloid DCs (mDCs) and plasmacytoid DCs (pDCs); as well as CD4+ and CD8+ T cells at

d3, d6, d17 and d48 POS using Fluorescence-activated cell sorting (FACS) (S2 Fig). RNA-seq

transcriptional analysis of individual cell types and PBMCs together identified 1,147 genes

induced at least 2-fold at d3, d6, or d17 when compared to d48 (Fig 3A). A similar analysis of

PBMCs alone identified only 452 induced genes (Fig 3A). Innate immune cells (monocytes and

DCs) induced the highest number of genes on d3 POS (Fig 3B). Genes up-regulated in innate

Fig 2. Systemic immune response to ZIKV infection. (A) Serum IP-10, MCP-1 and IL1RA levels before, during and after acute

ZIKV infection. Cytokines were measured in duplicate with average shown at each time point. (B) Hierarchical clustering of the

top induced genes (compared to convalescent samples) in PBMCs during acute ZIKV or acute DENV (GSE43777) infections at the

indicated days post-onset of symptoms. (C) Heat map of select ISGs and cytokine genes relative expression to convalescent or

baseline respectively of SD001 and rhesus macaque (GSE90868) during acute ZIKV infection [33].

https://doi.org/10.1371/journal.pntd.0007053.g002
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Fig 3. Cell-type specific and temporally regulated transcriptional response to ZIKV infection. (A) Venn diagram of the

number of induced genes (at least 2-fold) determined by RNA-seq of PBMCs alone compared to analysis of PBMCs and
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immune subsets were most enriched for functional annotations associated with interferon

(IFN) and immune responses at d3 and d6 POS (Fig 3C). Additionally, the promoters of genes

induced at d3 and d6 POS in innate immune cells were most significantly enriched for ISRE,

IRF-composite and STAT1 motifs (Fig 3D). Together, this data is consistent with early activa-

tion of type I IFN responses in innate immune populations through activation of interferon reg-

ulatory factors (IRFs) and interferon-stimulated gene factor 3 (ISGF3) transcription factors [35,

36]. In contrast to innate immune cells, the peak of T cell gene up-regulation was delayed (Fig

3B). Genes induced in CD8+ T cells were functionally enriched for terms associated with cell

cycle progression such as E2F and MYC targets and G2M checkpoint (Fig 3C). Additionally,

the promoters of these induced genes were enriched for E2F, NFY and POU binding motifs

where transcription factors involved in controlling cell cycle and cell differentiation can bind

(Fig 3D). Like innate immune populations, NK cells responded rapidly to infection by inducing

IFN pathways (Fig 3C). However, NK cells also activated cell cycle progression pathways like

CD8+ T cells but did so earlier, d3 compared to d6 POS, during infection (Fig 3C and 3D).

Although PBMC analysis identified fewer induced genes, PBMC functional and promoter motif

enrichment analyses captured many core components observed in both individual innate

immune and T cell analyses (Fig 3C and 3D).

An unbiased analysis of gene expression profiles using hierarchical clustering of the top

induced genes in all individual cell types and PBMCs revealed both temporal and cell type spe-

cific patterns of gene expression (Fig 3E). Gene expression at early time points, d3 and d6 POS,

generally cluster together and apart from d17 responses (Fig 3E). The exception is T cells, where

only d6 POS gene expression cluster in the early group. The genes driving this difference are

largely induced in a time dependent manner, with anti-viral genes (Cluster B) being up-regu-

lated early and other immune pathway genes (Cluster D) later in infection (Fig 3E). Additionally,

at d3 and d6 POS, transcriptional responses cluster by cell type suggesting early transcriptional

responses are in part cell type specific (Fig 3E). Population-specific induction of genes is evident

from genes that are up-regulated exclusively in pDCs (Cluster A) or NK and T cells (Cluster C,

Fig 3E). In contrast to all other cell types, classical and intermediate monocytes cluster together

based on day POS suggesting that gene induction in these two cell types is more dependent on

time POS than cell type. Many genes, including AIM2, an ISG involved in inflammasome activa-

tion in macrophages, is induced in both time and cell-type specific manners (Fig 3F and 3G).

Additionally, CXCL10, CCL2, and IL1RN that encode the cytokines, IP-10, MCP-1 and IL1RA,

were upregulated at least 2-fold in certain monocyte populations at d3 POS even though they

were not significantly induced in PBMCs as a whole (S3 Fig).

Chromatin accessibility is a major component of genome regulation. Open regions of chro-

matin are putatively associated with genomic regulatory regions, including both promoters

and enhancers. The Assay for Transposase Accessible Chromatin using sequencing (ATAC-

seq) can be used to identify transcription factors (TFs) involved in regulating important func-

tions, such as differentiation and gene regulation through the analysis of open chromatin. We

did not obtain high quality d3 ATAC-seq data. However, high quality ATAC-seq data were

produced using samples from d6 and d17 POS. Comparing ATAC-seq peaks in classical

monocytes with NK cells on d6 POS we identified 13,792 and 13,200 peaks unique to classical

monocytes and NK cells respectively. De novo motif analysis of these peaks identified PU.1,

individual cell populations. (B) Number of induced genes (at least 2-fold) at d3, d6, or d17 relative to d48 POS in specified cell

populations. Corresponding (C) functional and (D) promoter motif enrichments associated with induced genes at each time

point. (E) Hierarchical clustering of top induced genes in each cell type at each time point relative to d48 POS. (F) Relative

Log2 transformed FPKM RNA-seq counts for AIM2 in monocyte populations at indicated time points compared to d48 POS.

(G) Relative Log2 transformed FPKM RNA-seq counts for AIM2 in denoted cell populations at d3 compared to d48 POS.

https://doi.org/10.1371/journal.pntd.0007053.g003
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Fig 4. Cell-type specific ATAC-seq and gene regulation. (A) De novo motif enrichment at regions of open chromatin as defined

by ATAC-seq in classical monocytes compared to NK cells at d6 POS. (B) Comparative motif enrichment of ATAC-seq peaks
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CEBP and AP-1 in monocytes and ETS1, RUNX and T-box in NK cells as the most enriched

TF binding motifs (Fig 4A). Each of these TFs have been identified as important lineage-deter-

mining transcription factors (LDTFs) in monocytes and NK cells, respectively. To investigate

TFs that may be important during the cellular response to infection we examined dynamic

changes in chromatin accessibility over time. We identified 1,493 and 1,261 ATAC-seq peaks

that were significantly upregulated at d6 POS compared to d17 POS in classical monocytes or

NK cells respectively. In addition to cell type specific LDTFs in monocytes and NK cells, motif

analysis of upregulated ATAC-seq peaks at d6 POS demonstrated increased enrichment of

PU.1:IRF8 and bZIP TF binding motifs in classical monocytes (Fig 4B). In contrast, ISRE/IRF

motifs were equally represented in regulated ATAC-seq peaks in classical monocytes and NK

cells (Fig 4B).

To help illustrate how these data characterize individual gene loci, we considered the open

chromatin landscape at genes with both common and cell-type specific patterns of regulation.

Both classical monocytes and NK cells upregulated the ISGs IFIT2 and IFIT3 early in infection

and ATAC-seq peaks were identified at sites containing ISRE motifs (Fig 4C). Although the

ISRE associated peaks were common at these loci, the other ATAC-seq peaks were monocyte

or NK specific and were associated with TF binding motifs enriched in the corresponding cell-

type. This suggests that although both cell types induce IFIT2 and IFIT3 they may utilize cell

type specific TFs to help regulate gene expression. Another ISG, APOBEC3A, was induced in

monocytes but not in NK cells (Fig 4D). At this gene locus, the ATAC-seq peaks were all

monocyte specific and were associated with monocyte-enriched TF binding motifs (Fig 4D).

The gene MKI67 encodes the protein Ki-67 and is a marker of proliferation. This gene was

induced in NK cells early in infection but was never induced in classical monocytes (Fig 4E).

The ATAC-seq peaks associated with this gene are NK-specific and associated with NK

enriched TF binding motifs except for one common peak associated with an E2F motif (Fig

4E). These examples help illustrate how open chromatin patterns associated with cell-type spe-

cific transcription factors may play a role in defining common and cell-type specific patterns

of gene expression (Fig 4D and 4E).

We next evaluated the temporal development of adaptive immune responses. Prior to the

acute ZIKV infection, this individual had low but detectable neutralizing Abs to both DENV

and ZIKV strains (Fig 5A). Neutralizing Ab titers to ZIKV and DENV rapidly increased after

infection, peaking on d6 POS (Fig 5A–5D). The highest neutralizing titer 50 (NT50) developed

against the patient’s own virus followed by the related ZIKV FSS13025 (Cambodia, 2010) (Fig

5A and 5B) [37]. The NT50 also increased against both DENV1 and DENV4 but to a lesser

degree than either ZIKV strain. These results are consistent with the idea that ZIKV infection

can induce cross-reactive neutralizing Ab responses to DENV especially in individuals with

prior flavivirus experience with faster kinetics relative to naïve people [17, 19].

Lastly, we assessed the T cell response by flow cytometry. Published studies have shown that

the majority of DENV-specific and ZIKV-specific T cells display an effector or memory pheno-

type based on expression of CD45RA and CCR7 [18, 38, 39]. Moreover, in secondary DENV

infections, the T cell response is associated with an expansion of T effector memory RA

(TEMRA) and T effector memory (TEM) cells that can be more vigorous than in primary DENV

infection [39]. Accordingly, our data on bulk populations of unstimulated T cells showed higher

upregulated (Fold change> 3 and P-value< 0.001) at d6 compared to d17 POS in classical monocytes (blue) or NK cells (red).

(C-E) UCSC browser visualization of RNA-seq (first panel) and ATAC-seq (second panel) near (C) IFIT2 and IFIT3, (D)

APOBEC3A and (E) MKI67 gene loci in classical monocytes (blue) and NK cells (red). Potential transcription factor binding motifs

associated with ATAC-seq peaks are denoted. Dashed box in IFIT3 denotes area shown in S4 Fig.

https://doi.org/10.1371/journal.pntd.0007053.g004
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proportions of CD4+ TEMRA cells and lower proportion of naïve CD8+ T cells (TN) at d6 POS as

compared to 3 healthy DENV-naïve and 2 DENV-immune control individuals (Fig 6A and 6B).

We also examined CD4 T helper (Th) subsets based on the expression of chemokine receptors

(Th1: CCR6-CCR4-CXCR3+; Th2: CCR6-CCR4+CXCR3-; Th1/17: CCR6+CCR4-CXCR3+; and

Th17: CCR6+CCR4+CXCR3-). No specific Th profile was observed in this individual (S2 Table),

consistent with the published observation that the majority of DENV-specific CD4+ T cells are

not associated with common Th subsets [39].

Studies of DENV-infected individuals have suggested that expanded CD4+ TEMRA cells can

exhibit a virus-specific cytotoxic phenotype that has been associated with protection against

severe DENV disease [39, 40]. Cytotoxic CD4 T cells are CD45RA+CCR7- (TEMRA) with

increased expression of CD8α, cytotoxic effector molecules such as granzyme B and perforin,

and CD226, a co-stimulatory molecule that enhances CD8 effector and cytotoxic functions. A

CD4+ T cell population with low level CD8 expression (CD4+CD8dim) was detected in our

individual with acute ZIKV patient (Fig 6C). The frequency of this population was between 3.9

and 9.1% of all CD3+ T cells on d3, d6, d17 and d48 POS but decreased to 1.1% by day d240

(Fig 6C and 6D). The CD4+CD8dim population was less than 0.6% in three ZIKV-naïve con-

trols (Fig 6C). In two DENV-immune individuals this population was 0.6% and 2.7% of all T

cells (Fig 6C and 6D). At d3 POS 52.4% of CD4+CD8dim cells were also CD45RA+CD226+ and

negative for three chemokine receptors (CRs) CCR6, CCR4 and CXCR3 (Fig 6E and 6F). By

d240 POS the frequency of CD4+CD8dim cells that were CD45RA+CD226+CR- fell to 0.2%. In

the DENV-immune control with a significant CD4+CD8dim population, 14.5% of this

Fig 5. Temporal development of neutralizing Ab responses during acute ZIKV infection. (A-D) Neutralizing Ab

titers against ZIKV strains (A) SD001 (B) FSS13025 and DENV strains (C) DENV1 West Pacific 74 and (D) DENV4

TVP-360 at indicated time points. Pre-infection and maximum NT50 titers are denoted for each virus.

https://doi.org/10.1371/journal.pntd.0007053.g005
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Fig 6. T cell immune phenotypes during acute ZIKV infection. (A) Flow cytometry analysis of CD4+ and CD8+ T cell T effector memory

(TEM), T effector memory RA (TEMRA), T naïve (TN) and T central memory (TCM) populations on d6 POS. (B) Relative percentages of T cell
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population was CD45RA+CD226+CR- (Fig 6E and 6F). Based on these markers, the

CD4+CD8dimCD45RA+CD226+CRs- subset is likely to be cytotoxic CD4+ T cells.

Discussion

Herein, we combine global PBMC and cell type-specific transcriptional and epigenetic analy-

ses to characterize the development and resolution of an in vivo human immune response to

an acute viral infection. This is a single patient study and therefore broad conclusions cannot

be drawn. However, given the limited number and scope of published ZIKV in vivo response

data, we feel that our study presents a unique and detailed perspective of both the innate and

adaptive immune responses to ZIKV, and provides important considerations for designing

future studies.

Approximately ten years prior to the ZIKV infection reported here, this individual was

infected with DENV. She has no known subsequent exposure to DENV or ZIKV and has not

lived in an endemic region where exposure is likely during this interval. Studies have demon-

strated that prior DENV exposure influences the timing, magnitude, and quality of adaptive

immune responses to ZIKV infection [18, 19]. The influence of prior DENV-exposure on

innate immune responses are not understood. ZIKV is transmited by the same vector as

DENV and circulates in geographical regions where DENV is endemic or hyper-endemic.

Morever, ZIKV vaccine candidates have been designed for testing and deployment in DENV-

endemic countries. Thus, understanding ZIKV immune responses in individuals with DENV-

immunity is highly relevant.

Our analyses of PBMC and cell-specific responses demonstrate that, during acute ZIKV

infection, a robust type I IFN transcriptional response was induced at early time points. Based

on promoter motif analysis, this IFN response is likely driven by activation of JAK/STAT and

IRF transcription factor signaling. Induction of ISG genes broadly are common to all innate

immune cells tested, including monocytes (classical, intermediate and non-classical), mDCs,

pDCs and NK cells. However, induction of some individual ISGs, such as AIM2, are induced

in cell-type specific manners. Transcription analysis of bulk PBMCs is sufficient to capture a

significant proportion of the response at both a pathway and gene-specific level but individual

cell analysis identifies specific gene regulation and the cell type responsible for those responses

during ZIKV infection that is not appreciated in the PBMC analysis. ATAC-seq enables assess-

ment of enhancer elements distal from promoters that play important roles in modulating the

immune response. This assay identified common changes in ISRE/IRF motifs in NK and clas-

sical monocytes, but also indicated substantial chromatin remodeling at sites containing cell-

type specific TF binding motifs that help to explain the observed changes in gene expression.

The ATAC-seq analysis was limited to d6 and d17 samples. ATAC-seq analysis at earlier time

points or inclusion of other cell types could provide higher resolution of time- and cell-type

dependent changes in chromatin accessibility.

Analysis of ZIKV infected cohorts in Brazil and Singapore demonstrated elevations in

many serum cytokines, including IFNγ, MCP-1, IL1RA, IL-18, IL-10, IP-10 and TNFα [13,

14]. We found similar elevations in IP-10, MCP-1 and IL1RA at d3 POS but other cytokines

tested showed smaller variation that is difficult to interpret. At the transcriptional level,

subsets on d6 POS during ZIKV infection and in 3 DENV-naïve and 2 DENV-immune control individuals. (C) Flow cytometry analysis of live

CD3+ cells in one representative DENV-naïve and 2 DENV-immune controls and during acute ZIKV infection d6 and d240 POS. The

percentage of live CD3+ cells that are CD4+CD8dim in each group is shown (D) Relative percentages of CD4+CD8dim among live CD3+ cells. (E)

Flow cytometry analysis of the expression of CD45RA, the cytotoxicity marker CD226, and chemokine receptors CCR6, CCR4 and CXCR3 in

indicated T cell populations. (F) Percent of live CD3+CD4+CD8dim T cells that are CD45RA+CD226+ and negative for CCR6, CCR4 and

CXCR3 chemokine receptors.

https://doi.org/10.1371/journal.pntd.0007053.g006
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PBMCs showed minimal induction of most chemokine genes. This included the genes

CXCL10, CCL2 and IL1RN, that encode for IP-10, MCP-1 and IL1RA. This low-level chemo-

kine gene induction was similar to what was observed during in vivo ZIKV infection of

macaques [33]. In contrast to PBMCs, CXCL10, CCL2 and IL1RN were induced at least 2-fold

in specific monocyte populations. Thus, specific populations, such as monocytes, or non-

PBMCs may be the source of elevated IP-10, MCP-1 and IL1RA.

In our individual, neutralizing Ab titers increased rapidly post infection, peaking at d6

POS. We observed robust increases in neutralizing anti-ZIKV Ab responses with more modest

increases in cross-reactive DENV-neutralization titers. This pace of neutralizing response is

consistent with previous findings that humoral responses develop rapidly in DENV-immune

individuals [19]. Analysis of serum from 8 months prior to infection revealed this individual

had pre-existing low level neutralizing Ab titers (1:83) against ZIKV SD001 that did not pre-

vent symptomatic ZIKV infection. Previous studies have demonstrated that individuals with

remote exposure to DENV infrequently have cross-neutralizing Abs to ZIKV [41, 42]. In two

studies, 0 of 19 [41] and 3 of 17 (18%) convalescent-phase [42] sera from recovered individuals

with single DENV infections, had detectable cross-neutralizing Abs against ZIKV. Among per-

sons exposed to repeat DENV infections, 3 (23%) of 13 [41] and 6 of 16 (38%) [42] conva-

lescent-phase sera had ZIKV neutralizing Abs. Most of these individuals who develop cross-

neutralizing Abs against ZIKV had relatively low Ab titers (<1:100). During DENV infections,

higher levels of cross-reactive pre-infection neutralizing Ab titers in humans correlate with

reduced probability of symptomatic secondary DENV infection [43]. In our individual, prior

DENV exposure induced low-level ZIKV cross-neutralizing Abs that did not protect against

subsequent ZIKV infection.

During our T cell phenotyping, we found a significant CD4+CD8dim T cell subset on d3

through d48 POS that largely resolved by d240 POS. Previous studies have shown that

CD4+CD8dim T cell populations can be highly enriched for cells recognizing DENV, HCMV

and HIV antigens [39, 44, 45]. In our patient, more than 50% of the CD4+CD8dim T cells dur-

ing acute ZIKV infection were CD45RA+CD226+CR-. This expression pattern is suggestive of

cytotoxic T cells, a population not yet reported during ZIKV infection. Increased frequencies

of these cells have been observed after primary and secondary DENV infections, particularly

in individuals expressing HLA alleles that are associated with protection against DENV [39].

Our study provides a rationale and framework for investigating the importance of the

CD4+CD8dim T cell response in ZIKV immunity.

Collectively, these results detail the global and cell type-specific innate immune responses

during an acute ZIKV infection and highlight the rapid development of neutralizing Ab and

effector memory T cell responses in a DENV experienced host. These data supports accumulat-

ing evidence that prior exposure to DENV accelerates and alters adaptive immune responses

likely via the presence of cross-reactive epitopes [16–19, 46]. Measuring time point- and cell

type-specific transcriptional signatures of innate vs. adaptive immune cell populations in the

blood of individuals with and without a history of flavivirus infection and vaccination can eluci-

date how prior flavivirus exposure might alter the magnitude, specificity, breadth, phenotype,

and functionality of both humoral and cellular immune response to ZIKV. Our findings indicate

that information is lost using conventional approaches and that genomic assays have the poten-

tial to provide substantial additional mechanistic insight. Combining detailed longitudinal sys-

tems biology analysis with classic immunologic techniques in future clinical studies has great

potential to improve our understanding of human immune responses to pathogens at a broad

level by identifying communication pathways that connect innate and adaptive immunity and

regulate the balance between protection and pathogenesis. More urgently towards solving the

global ZIKV and DENV problem, this approach may be invaluable in investigating the human
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immune response in the context of natural infection and vaccination, thereby leading to the gen-

eration of ZIKV and DENV vaccines with maximal safety and efficacy.
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