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Abstract

Background

T cell immunoglobulin mucin domain-1 (TIM-1) is a phosphatidylserine (PS) receptor, medi-

ating filovirus entry into cells through interactions with PS on virions. TIM-1 expression has

been implicated in Ebola virus (EBOV) pathogenesis; however, it remains unclear whether

this is due to TIM-1 serving as a filovirus receptor in vivo or, as others have suggested, TIM-

1 induces a cytokine storm elicited by T cell/virion interactions. Here, we use a BSL2 model

virus that expresses EBOV glycoprotein to demonstrate the importance of TIM-1 as a virus

receptor late during in vivo infection.

Methodology/Principal findings

Infectious, GFP-expressing recombinant vesicular stomatitis virus encoding either full

length EBOV glycoprotein (EBOV GP/rVSV) or mucin domain deleted EBOV glycoprotein

(EBOV GPΔO/rVSV) was used to assess the role of TIM-1 during in vivo infection. GFP-

expressing rVSV encoding its native glycoprotein G (G/rVSV) served as a control. TIM-1-

sufficient or TIM-1-deficient BALB/c interferon α/β receptor-/- mice were challenged with

these viruses. While G/rVSV caused profound morbidity and mortality in both mouse strains,

TIM-1-deficient mice had significantly better survival than TIM-1-expressing mice following

EBOV GP/rVSV or EBOV GPΔO/rVSV challenge. EBOV GP/rVSV or EBOV GPΔO/rVSV in

spleen of infected animals was high and unaffected by expression of TIM-1. However, infec-

tious virus in serum, liver, kidney and adrenal gland was reduced late in infection in the TIM-

1-deficient mice, suggesting that virus entry via this receptor contributes to virus load. Con-

sistent with higher virus loads, proinflammatory chemokines trended higher in organs from

infected TIM-1-sufficient mice compared to the TIM-1-deficient mice, but proinflammatory

cytokines were more modestly affected. To assess the role of T cells in EBOV GP/rVSV

pathogenesis, T cells were depleted in TIM-1-sufficient and -deficient mice and the mice

were challenged with virus. Depletion of T cells did not alter the pathogenic consequences

of virus infection.
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Conclusions

Our studies provide evidence that at late times during EBOV GP/rVSV infection, TIM-1

increased virus load and associated mortality, consistent with an important role of this

receptor in virus entry. This work suggests that inhibitors which block TIM-1/virus interaction

may serve as effective antivirals, reducing virus load at late times during EBOV infection.

Author summary

T cell immunoglobulin mucin domain-1 (TIM-1) is one of a number of phosphatidylser-

ine (PS) receptors that mediate clearance of apoptotic bodies by binding PS on the surface

of dead or dying cells. Enveloped viruses mimic apoptotic bodies by exposing PS on the

outer leaflet of the viral membrane. While TIM-1 has been shown to serve as an adherence

factor/receptor for filoviruses in tissue culture, limited studies have investigated the role of

TIM-1 as a receptor in vivo. Here, we sought to determine if TIM-1 was critical for Ebola

virus glycoprotein-mediated infection using a BSL2 model virus. We demonstrate that

loss of TIM-1 expression results in decreased virus load late during infection and signifi-

cantly reduced virus-elicited mortality. These findings provide evidence that TIM-1 serves

as an important receptor for Ebola virus in vivo. Blocking TIM-1/EBOV interactions may

be effective antiviral strategy to reduce viral load and pathogenicity at late times of EBOV

infection.

Introduction

Zaire ebolavirus (EBOV) is one of five species of ebolaviruses within the Filoviridae family.

EBOV continues to cause significant outbreaks in sub-Saharan Africa with case fatality rates as

high as 90% [1]. All filoviruses have a broad species and cellular tropism. With the exception

of lymphocytes, most cells within the body are thought to support EBOV infection and replica-

tion [2, 3]. Histopathological studies of EBOV infected humans and non-human primates

(NHPs) have demonstrated viral antigen in many different organs including: liver, spleen,

lymph nodes, kidney, adrenal glands, lungs, gastrointestinal tract, skin, brain and heart [3–7].

Numerous cell surface receptors are appreciated to mediate filovirus binding and internali-

zation into the endosomal compartment of cells, including phosphatidylserine (PS) receptors

[8, 9] and C-type lectin receptors [10–14]. PS receptors do not interact with the viral glycopro-

tein (GP), but bind to PS on the surface of the virion lipid membrane, causing internalization

of viral particles into the endosomal compartment [9, 15]. This mechanism of viral entry has

been termed apoptotic mimicry [16]. Following endosomal uptake of filovirions, proteolytic

GP processing occurs, thereby allowing GP to interact with its endosomal cognate receptor,

Niemann Pick C1 [17–21].

One important family of PS receptors is the T-cell immunoglobulin mucin domain (TIM)

family. TIM family members, encoded by the Havcr family of genes, contribute to the uptake

of apoptotic bodies to clear dying cells from tissues and the circulation [22–24]. TIM proteins

are type 1, cell surface glycoproteins. Three family members are present in humans (hTIM-1,

hTIM-3 and hTIM-4) and four in mice (TIM-1, TIM-2, TIM-3 and TIM-4) [25]. hTIM-1 was

identified through a bioinformatics-based screen to be important for filovirus entry [8]. Subse-

quent studies demonstrated that hTIM-1 and hTIM-4, but not hTIM-3, enhance entry of a
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broad range of viruses including members of the alphavirus, arenavirus, baculovirus, filovirus,

and flavivirus families [9, 15, 26–29]. Murine TIM-1 and TIM-4 also enhance enveloped virus

uptake into the endosomal compartment [9, 27, 29].

The molecular interactions between TIM family members and enveloped viruses are well

defined. The amino terminal IgV domain binds to PS on the outer leaflet of the viral mem-

brane through a IgV domain binding pocket that is conserved across the TIM family of recep-

tors [9, 26, 27, 29]. We have reported that the ability of PS on Ebola virus like particles and

EBOV glycoprotein pseudotyped vesicular stomatitis virus to bind to TIM-1 is equivalent, sug-

gesting similar levels of PS present on the surface of these virions [15]. Aspartic acid and aspar-

agine residues within the IgV binding pocket are essential for virion binding [9, 15, 27]; these

same TIM residues are required for apoptotic body binding and uptake [30]. The IgV domain

is extended from the plasma membrane by a mucin like domain (MLD) that is anchored to the

cell surface with by a transmembrane domain connected to a short intracellular cytoplasmic

tail. The length, but not the specific sequence, of the MLD is required for TIMs to serve as

enveloped virus receptors [29]. Surprisingly, neither the TIM transmembrane domain nor

cytoplasmic tail is required as a GPI-anchored TIM-1 construct is completely functional as a

viral receptor [26, 29]. These findings indicate that the TIM-1 cytoplasmic tail, which contains

a tyrosine phosphorylation site that initiates signaling events [31–33], is not essential for TIM-

1-mediated virus uptake.

While it is well established that TIM proteins serve as cell surface receptors for a number of

enveloped viruses during infection of cultured cells, the importance of these family members

for in vivo filovirus infection and pathogenesis has not been extensively examined. With the

wide variety of cell surface receptors able to mediate filovirus uptake into endosomes, it is pos-

sible that sufficient receptor redundancy exists in vivo, such that the loss of any one of the PS

receptors may have little or no effect on EBOV viremia, tissue virus load or pathological conse-

quence. Alternatively, specific cell surface receptors, such as TIM-1, might be critical for in

vivo infection and pathogenesis.

As PS receptors have been reported to mediate both immunomodulatory and proinflam-

matory responses [34–37], an additional impact of TIM proteins on virus infection may be

due to alterations in innate immune responses. A recent study demonstrated that TIM-1-defi-

cient mice have lower morbidity and mortality than wild-type mice when challenged intravas-

cularly (i.v.) with mouse-adapted EBOV (maEBOV) [38]. This study highlighted the role of

TIM-1 in non-permissive T lymphocytes, reporting that EBOV interaction with TIM-1 on

CD4+ T cells enhanced proinflammatory cytokine dysregulation in purified CD4+ T cells. The

authors conclude that an enhanced TIM-1-dependent cytokine storm in T cells significantly

contributes to EBOV pathogenesis. However, the impact of TIM-1 on viremia in mice was

examined in the plasma at a single time point during infection, leaving open the possibility

that TIM-1 may also serve as an important receptor for EBOV entry in vivo.

Here, we examined the in vivo importance of TIM-1 for virus replication and pathogenesis

using a highly tractable BSL2 model virus of EBOV. Our BSL2 virus model is recombinant

vesicular stomatitis virus (VSV) encoding either full length EBOV glycoprotein or mucin

domain deleted EBOV glycoprotein in place of the native VSV G protein (EBOV GP/rVSV or

EBOV GPΔO/rVSV). Our use of these viruses allowed us to conduct detailed studies focused,

on the role of TIM-1 virus entry, host responses, and pathogenesis. As reported for maEBOV,

we observed that both EBOV GP/rVSV and EBOV GPΔO/rVSV were less pathogenic in TIM-

1-deficient mice compared to TIM-1-sufficient mice. The impact of the loss of TIM-1 was spe-

cific for EBOV GP-expressing viruses since wild-type VSV was equally virulent in TIM-1-defi-

cient and TIM-1-sufficient mice over a wide range of challenge doses. Importantly, reduced

mortality observed in the EBOV GP encoding virus-infected TIM-1-/- mice was associated at
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late times during infection with lower viremia and virus loads in multiple tissues previously

appreciated to be important in EBOV pathogenesis. Consistent with reduced overall virus

loads, proinflammatory chemokine profiles were lower in the infected TIM-1-deficient mice at

late times during infection. Finally, to directly evaluate whether we observed enhanced patho-

genesis in TIM-1-sufficient mice associated with T cell activation as previously reported [38],

we depleted the T cell compartment of TIM-1-sufficient or -deficient mice and challenge them

with EBOV GP/rVSV. T cell-depleted, TIM-1-sufficient mice succumbed to EBOV GP/rVSV

more readily than T cell-depleted, TIM-1-deficient mice, suggesting that in our model system

a TIM-1-dependent T cell cytokine storm was not responsible for virus pathogenesis. In total,

our studies provide evidence that TIM-1-associated pathogenesis correlated with enhanced

virus load at late times during infection, consistent with TIM-1 having an important role as a

receptor for EBOV in vivo.

Materials and methods

Ethics statement

This study was conducted in strict accordance with the Animal Welfare Act and the recom-

mendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes

of Health (University of Iowa (UI) Institutional Assurance Number: #A3021-01). All animal

procedures were approved by the UI Institutional Animal Care and Use Committee (IACUC)

which oversees the administration of the IACUC protocols and the study was performed in

accordance with the IACUC guidelines (Protocol #8011280, Filovirus glycoprotein/cellular

protein interactions).

Mice

BALB/c TIM-1-deficient mice have been previously described [39] and were a kind gift from

Dr. Paul Rothman (Johns Hopkins University). Briefly, exons 4 and 5 of the TIM-1 gene,

Havcr1, were replaced with a LacZ gene, generating a TIM-1-null mouse (TIM-1-/-). BALB/c

IFN-αβ receptor-deficient (Ifnar-/-) mice were a kind gift from Dr. Joan Durbin, NYU Lan-

gone Medical Center. Mice were bred at the University of Iowa.

BALB/c Ifnar-/- and BALB/c Havcr1-/- (TIM-1-/-) mice were crossed for the creation of het-

erozygous progeny. Progeny were interbred and mice screened for the correct BALB/c Ifnar-/-/

Havcr1-/- genotype (referred to as TIM-1-/- throughout this study). Genomic DNA from

mouse tail-clips was assessed by PCR for genotypes. All expected genotypes were produced in

normal Mendelian ratios. The primers and protocol for Ifnar-/- genotyping has been previously

described [40]. Havcr1 primer sequences included: shared forward, 5’ GTTTGCTGCCTTATT

TGTGTCTGG 3’; WT reverse, 5’ CAGACATCA-ACTCTACAAGGTCCAAGAC 3’; knockout

reverse, 5’ GTCTGTCCTAGCTTCCTCACTG 3’. PCR amplification was performed for 30

cycles at 94˚C for 30 sec, 60˚C for 30 sec, and 72˚C for 1 min.

Production of full length EBOV GP/rVSV virus and EBOV GPΔO/rVSV

which lacked the mucin-like domain

These studies used recombinant, replication-competent vesicular stomatitis virus (VSV)

expressing GFP and either full length EBOV GP (EBOV GP/rVSV-GFP) [41] (kind gift of Dr.

Kartik Chandran), EBOV GP lacking the mucin domain of GP1 (EBOV GPΔO/rVSV-GFP)

[8, 15] or rVSV-GFP encoding its native glycoprotein, G (G/rVSV) (kind gift of Dr. Sean Whe-

lan). Virus stocks were produced by infecting Vero cells, an African green monkey kidney epi-

thelial cell line, at a low multiplicity of infection (MOI) of ~0.001 and collecting supernatants
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48 hours following infection. Virus stocks were concentrated by centrifugation at 7,000 rpm at

4˚C overnight. The virus pellet was resuspended and centrifuged through a 20% sucrose cush-

ion by ultracentrifugation at 26,000 rpm for 2 hours at 4˚C in a Beckman Coulter SW32Ti

rotor. The pellet was resuspended in PBS, treated with endotoxin removal agent (Thermo-

Scientific #20339), aliquoted, and frozen at -80˚C until use.

Mouse infections

Five- to eight-week-old female BALB/c Ifnar-/- (control) and BALB/c Ifnar-/-/Havcr1-/- (TIM-

1-/-) mice were infected i.v. with recombinant, infectious VSV that encoded GFP and EBOV

GP, EBOV ΔO or the native VSV G glycoprotein (EBOV GP/rVSV-GFP, EBOV GPΔO/

rVSV-GFP and G/rVSV-GFP, respectively) using concentrations of virus noted in the figure

legends. The dose of EBOV GP/rVSV or EBOV GPΔO/rVSV-GFP administered was depen-

dent upon the stock. The dose of each stock was titered in vivo to identify stock concentrations

that gave predictably high (75% or greater of challenged mice) levels of mortality of Ifnar-/-

(control) mice in 5–7 days. For studies with G/rVSV-GFP, either 101 or 105 iu of VSV virus

was administered by i.v. injection. Survival was tracked; mice were weighed and scored for

sickness daily. Clinical assessment of sickness was scored as follows: 0, no apparent illness; 1,

slightly ruffled fur; 2, ruffled fur, active; 3, ruffled fur, inactive; 4, ruffled fur, inactive, hunched

posture; 5, moribund or dead. Mice were humanely euthanized if they reached a score of 4. All

mouse infection studies were concluded at 10 or 12 days following infection due to surviving

mice regaining any lost weight and having no signs of clinical illness.

Organ viral titers

Organs were harvested from control and TIM-1-/- mice at 1, 3 or 5 days following infection

from with EBOV GPΔO/rVSV. Prior to euthanasia, mice were anesthetized with isoflurane to

perform retro-orbital bleeds for serum. Mice were euthanized and perfused with 10 mL of PBS

through the heart and organs harvested, weighed and frozen at -80˚C. To determine virus

titers, organs or sera were thawed and organs were homogenized in PBS and filtered through a

0.45 μm syringe filter. Viral titers were determined by end-point dilution on Vero cell as previ-

ously described [8]. Infection was scored 5 days following infection for GFP positivity using an

inverted fluorescent microscope. Virus titers were calculated as 50% tissue culture infective

dose (TCID50)/mL by the Spearman-Karber method. All organ titers were normalized accord-

ing to the weight of the organ at harvest.

Organ RNA isolation and reverse transcriptase quantitative PCR

Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to detect

proinflammatory cytokine and chemokines levels from organs of mice challenged with EBOV

GPΔO/rVSV. At time of harvest, organs were placed in Trizol and frozen at -80˚C until further

use. Total RNA was isolated using TRIzol LS reagent (Life Technologies) according to manu-

facturer’s tissue RNA isolation procedure. RNA was quantified by Nanodrop (Thermo Scien-

tific). Total RNA (2 μg) was reverse transcribed into cDNA using random primers and the

High-Capacity cDNA Reverse Transcription kit (Applied Biosystems). SYBR Green based

quantitative PCR reactions (Applied Biosystems) were performed using 1.5μL of a 1:100 dilu-

tion of cDNA from each reaction and specific primers for murine cytokines and chemokines.

Primer sequences are found in S1 Table. Expression levels of the cytokine/ chemokines of

interest were defined as a ratio between threshold cycle (Ct) values for the gene of interest and

the endogenous control, mouse hypoxanthine guanine phosphoribosyl transferase (HPRT),

and is displayed as the log2 value of this ratio.
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T cell depletion studies

Five- to eight-week-old female BALB/c Ifnar-/- and BALB/c Ifnar-/-/TIM-1-/- mice were

injected with 200μg of anti-CD4 (clone GK1.5) and 200μg anti-CD8 (clone 2.43) depleting

monoclonal antibodies both one day prior to retro-orbital infection with EBOV GP/rVSV-

GFP and two days post infection. Survival was tracked; mice were weighed and scored for sick-

ness daily as described above to assess euthanasia criteria for each infected mouse. Prior to

infection with EBOV GP/rVSV-GFP, depletion was validated by isolating peripheral blood

mononuclear cells from both depleted and non-depleted animals and staining of PBMCs with

anti-CD90 antibody (clone 30-H12). Staining was done by incubating with anti-CD90 anti-

body in FACS buffer and Fc block (clone 2.4G2) for 30 minutes, washing 3 times to remove

excess antibody, and detecting fluorescence on a BD FACSCalibur.

Statistics

Statistical analyses were performed using GraphPad Prism software (GraphPad Software,

Inc.). Results are shown as means or geometric means and standard error of the means (s.e.m.)

or geometric s.e.m., respectively, is shown where appropriate. Log-rank (Mantel-Cox) tests

were used to analyze differences in survival. In vivo experiments were performed at least in

duplicate with at least 8 mice total per treatment group. Mice or samples were randomly

assigned to various treatment groups. All data points and animals were reported in results and

statistical analyses. For the nonparametric viral titer data, Mann-Whitney U-test was used. P
values less than 0.05 were considered significant. For two way comparisons between control

and experimental values, a Student’s t-test was performed.

Results

TIM-1 enhances EBOV GP/rVSV or EBOV GPΔO/rVSV infection, but not

VSV

To create a TIM-1 deficient mouse, exons 4 and 5 of the Havcr1 gene encoding TIM-1 were

replaced with the LacZ gene by homologous recombination as previously described [39]. This

mouse strain was used to study the role of TIM-1 in allergic airway diseases and Th2 responses

[39]. Phenotypic characterization of TIM-1-/- mice revealed no differences in immune cell

numbers, immune system development, or immunological homeostasis compared to WT

mice [39]. BALB/c TIM-1-/- mice were bred onto a BALB/c interferon αβ receptor (Ifnar-/-)
knock out background since type I interferon abrogates replication of the BSL2 recombinant

EBOV GP/rVSV used in these studies [41, 42]. Homozygous BALB/c Ifnar-/-/TIM-1-/- and

Ifnar-/- mice (called TIM-1-/- and control mice, respectively, throughout the remainder of this

study) were used for all infections. Challenge virus was administered intravenously to mimic a

primary route of EBOV transmission, blood-to-blood contact. Mice were challenged with the

lowest dose of virus that produced predictable death in control mice in 5–7 days (S1 Fig).

Minor titer variations were observed between virus stocks and dosages were adjusted

accordingly.

We challenged the TIM-1-/- and control mice with full length EBOV GP/rVSV or EBOV

GPΔO/rVSV, which has the GP1 mucin like domain (MLD) deleted. EBOV GPΔO pseudovir-

ions and recombinant viruses have the same tropism as virus bearing EBOV GP [8, 43–45].

Use of both viruses in these studies allowed us to determine if the elimination of the mucin

domain altered the pathogenesis associated with in vivo challenge with these viruses. As

expected, TIM-1-sufficient control mice succumbed to EBOV GP/rVSV or EBOV GPΔO/

rVSV between days 4–7 of infection (Fig 1A and 1B). By contrast, TIM-1-/- mice challenged
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with the same dose had significantly reduced mortality following EBOV GP/rVSV or EBOV

GPΔO/rVSV infection and delayed time-to-death of those that did succumb to infection.

These findings indicate that TIM-1-/- mice had improved survival when infected with EBOV

GP/rVSV compared to controls and that survival was not affected by the presence of the GP1

MLD.

In tissue culture studies, we have shown that hTIM-1 does not mediate WT VSV entry [8],

presumably because the cognate receptor for VSV, LDL receptor, is abundantly present on tar-

get cells and mediates VSV entry [46]. However, the relevance of TIM-1 in vivo for VSV infec-

tion has not been examined. Further, WT VSV serves as an excellent control for in vivo studies

with EBOV GP-bearing viruses. We challenged TIM-1-/- and control mice with 105 iu of VSV

by i.v. injection. In contrast to our EBOV GP/rVSV findings, we observed no difference in the

survival curve between the two strains of mice (Fig 1C). Since it is likely that VSV bearing it

native GP is more pathogenic than a recombinant VSV containing a different viral GP, we also

evaluated mortality associated with different doses of VSV and found that administration of as

Fig 1. Loss of TIM-1 reduces mortality following EBOV GP/rVSV and EBOV GP ΔO/rVSV infection, but not G/rVSV. A and B. Female BALB/c

Ifnar-/- (control) and BALB/c Ifnar -/-/TIM-1-/- (TIM-1-/-) mice infected with 105 iu EBOV GP/rVSV (A; n = 5 mice per group) or EBOV GP ΔO/rVSV

(B; n = 13–17 mice per group) by intravenous (i.v.) injection. C. Female BALB/c Ifnar -/- (control) and BALB/c Ifnar -/-/TIM-1-/- (TIM-1-/-) mice

infected with 105 iu G/rVSV (n = 10 mice per group) by i.v. infection. D. Similar G/rVSV challenge studies as shown in panel C, but mice were

challenged with 101 iu (n = 5 mice per group) of G/rVSV. Survival was assessed following infection for all mouse studies. Significance for survival curve

was determined by Log Rank (Mantel-Cox) test, � p< 0.05, ��p< 0.01. LT50 = median lethal time until death; NC, noncalculable; ns, not significant.

https://doi.org/10.1371/journal.pntd.0006983.g001

TIM-1 enhances Ebola virus pathogenesis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006983 June 26, 2019 7 / 20

https://doi.org/10.1371/journal.pntd.0006983.g001
https://doi.org/10.1371/journal.pntd.0006983


little as 101 iu of VSV was lethal to Ifnar-/- mice (S2 Fig). Thus, we repeated VSV infections in

control and TIM-1-/- mice at a challenge dose of 101 iu to determine if subtle changes in virus

pathogenesis could be discerned. Even at this low dose, there was no difference in the survival

in the TIM-1-/- mice versus the control mice (Fig 1D). These results provide evidence that the

difference in EBOV GP/rVSV pathogenesis in BALB/c Ifnar-/- and TIM-1-/- mice was due to

the presence of EBOV GP expressed in the recombinant VSV rather than other VSV genes.

The reduced pathogenesis of EBOV GP expressing virus in TIM-1-/- mice was consistent with

findings described by Younan et al. using maEBOV [38].

Murine TIM-1 enhances EBOV GPΔO/rVSV load at late times during

infection

The effect of TIM-1 expression on viremia and organ viral loads following i.v. EBOV GPΔO/

rVSV infection was examined in serum and organs harvested 1, 3 or 5 days following infection

(Fig 2). Viremia and infectious virus in various organs were quantified by endpoint dilution

titering on Vero cells, a highly permissive cell line for EBOV GPΔO/rVSV. At early times dur-

ing infection, no difference in viremia or virus load was observed in most organs of TIM-1-/-

versus control mice. However, by day 5 of EBOV GPΔO/rVSV infection, TIM-1-/- mice had a

100-fold reduction in viremia compared to control mice (Fig 2) and a similar trend was

observed during infections with full length EBOV GP/rVSV (S3 Fig). In parallel, levels of infec-

tious virus in liver, kidney, and adrenal gland were also significantly reduced. Studies at day 5

Fig 2. Reduced viremia and virus titers in a variety of organs of TIM-1-/- mice at late time points following i.v. EBOV GP ΔO/rVSV infection.

Serum and organs were harvested from BALB/c Ifnar -/- (Control) and BALB/c Ifnar -/-/TIM-1-/- (TIM-1-/-) mice at days 1, 3 and 5 following infection

with 105 iu of EBOV GP ΔO /rVSV by i.v. injection. Titers were determined by endpoint dilution of serum or homogenized organ samples on Vero

cells. Solid lines indicate geometric mean for each data set. Dotted line indicates the level of detection. Adrenal gland titers are displayed as per gland

homogenized in 1 ml of PBS. Significance was calculated by Mann-Whitney test to compare control to TIM-1-/- mice at each time point; �p< 0.05;
��p< 0.01; ns, not significant.

https://doi.org/10.1371/journal.pntd.0006983.g002
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of infection also indicated that EBOV GPΔO/rVSV loads were much reduced in the brain of

TIM-1-/- mice and trended lower in the testis (S4A and S4B Fig), consistent with an overall

reduction in virus load in the TIM-1-/- mice at late times during infection. Thus, reduced virus

replication in a number of organs was associated with the survival observed in TIM-1-/- mice.

These findings provide evidence that TIM-1 expression is important for the generation of high

viral load in some organs at late times in infection.

Viral loads in the spleen and lungs were not affected by the loss of TIM-1 (Fig 2 and S4C

Fig). The viral burden in the spleen was significantly higher at day 1 than in any other organ

assessed and remained high in both mouse strains throughout the course of infection with a

peak in titers occurring at day 3. These results are consistent with previous studies that impli-

cate spleen in early and sustained EBOV replication [47–49]. Lung titers were not significantly

different between the control and TIM-1-/- mice at 5 days following infection. This result was

somewhat unexpected as we had previously demonstrated robust hTIM-1 expression on the

apical surface airway epithelial cells [8]. As TIM-1 was not observed to be expressed on the

basolateral side of lung epithelium, TIM-1 may be important for entry of aerosolized EBOV

entry into a host, but may not influence basolateral infection of lung via the circulation.

TIM-1-expressing mice exhibit elevated levels of specific proinflammatory

chemokines following EBOV GPΔO/rVSV infection

Elevated proinflammatory and immunomodulatory cytokines and chemokines are evident in

serum and infected organs during EBOV infection of animal models and patients [50–56]. To

determine if reduced virus load in TIM-1-deficient mice at late time points was associated

with lower RNA expression profiles of selected, well-characterized cytokines, levels in the

spleen, liver and kidney were examined prior to and following EBOV GPΔO/rVSV infection.

Organs were harvested at day 3 and 5 of infection and total RNA was isolated and amplified

for the mRNA of the housekeeping gene, HPRT, and the cytokines TNF, IL-6, IL-12 and IL-

10. Cytokine expression levels were normalized against mouse HPRT expression. Overall,

baseline values of the organ cytokine expression from uninfected control and TIM-1-/- mice

were similar (Fig 3). While at day 5 of infection TNF was significantly higher in spleen of con-

trol mice, in general during infection the expression of cytokine was variable within groups

and levels were not significantly different between the two strains of mice.

Elevated levels of several chemokines and growth factors have been implicated in fatal

EBOV disease outcomes including MIP-1α, MIP-1β, MCP-1, M-CSF, MIF, IP-10, GRO-α and

eotaxin [54]. Therefore, we analyzed control and TIM-1-/- organs following EBOV GPΔO/

rVSV infection for the chemokines, CXCL10 (IP-10) and CCL2 (MCP-1). At least one of the

two transcripts for these proinflammatory chemokines in all three organs was elevated in the

control mice at both day 3 and/or 5 of infection compared to the TIM-1-/- mouse tissues (Fig

4). In combination with our survival and viral burden results, these observations suggest that

the presence of TIM-1 in mice contributes to EBOV GP/rVSV pathogenesis through increased

infection of cells in several organs at late times during infection and that this is associated with

increased expression of proinflammatory chemokines.

T cell depletion does not alter mortality associated with EBOV GP/rVSV

infection

TIM-1 is expressed by a number of different hematopoietic and non-hematopoietic cells [57].

Our findings indicate that virus load in spleen, an organ rich in hematopoietic cells, was not

affected by the loss of TIM-1 expression, suggesting that it might be TIM-1 expression on non-

hematopoietic cells late during infection that affects EBOV GP/rVSV load and survival. As
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others have suggested that TIM-1 on T cell subsets contribute to enhanced EBOV pathogenesis

[38], we depleted T cells in control and TIM-1-/- mice to assess outcomes during EBOV GP/

rVSV infection. Mice were intraperitoneally administered α-CD8 mAb, 2.43, and α-CD4

mAb, GK1.5, at days -1 and 2. We verified that T cells within peripheral blood were

Fig 3. Cytokine expression in liver, spleen and kidney of EBOV GPΔO/rVSV-infected Ifnar-/- and Ifnar -/-/TIM-1-/- mice. Tissues were harvested

from uninfected and infected BALB/c Ifnar -/- (control) and BALB/c Ifnar -/-/TIM-1-/- (TIM-1-/-) mice. In infected mice, tissues were harvested at 3 or 5

days following infection with 105 iu of EBOV GPΔO/rVSV by i.v. injection. RNA was isolated from the organs and expression of mouse TNF, IL-6, IL-

10 and IL-12, was quantified by qRT-PCR. Results represent cytokines expression relative to murine HPRT for at least three independent livers, spleens

and kidneys. Data points represent values for individual mice. Solid lines indicate the mean for each data set. Statistical significance was determined by

Student’s t-test compared the control mice for each time point and is only shown for those comparisons observed to differ. �p<0.05.

https://doi.org/10.1371/journal.pntd.0006983.g003
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profoundly depleted at day 5 of infection by flow cytometry following immunostaining with

an α-CD90 mAb (Fig 5A). As observed for the T cell-competent mice in above studies, T cell-

depleted control mice challenged with EBOV GP/rVSV succumbed to infection between 4–6

days, whereas T cell-depleted TIM-1-/- mice had significantly better survival (Fig 5B). These

data do not provide support for the contention that TIM-1 on T cells contributes to pathogen-

esis associated with our viral infection model. Instead, in total, our findings are consistent with

TIM-1 expression on non-T cell populations contributing to pathogenesis.

Discussion

Here, we show that loss of TIM-1 expression decreased overall mortality and delayed time-to-

death of those mice that did succumb when challenged with EBOV GP/rVSV. The impact on

survival of TIM-1 expression was similar with rVSV bearing MLD-deleted EBOV GP, indicat-

ing that the presence of the MLD did not affect the observed pathogenesis. Consistent with the

enhanced survival of the TIM-1-deficient mice following virus challenge, we show that these

mice also had reduced infectious virus in liver, kidney and adrenal gland at late times during

infection. EBOV replication in these organs is well established and thought to contribute to

overall EBOV load [47, 58–61]. The lower virus load in these organs of the TIM-1-/- mice was

also reflected in a ~100-fold reduction in viremia at day 5 of infection. The reduced pathology

in our TIM-1-deficient mice was EBOV GP-dependent since survival associated with G/rVSV

infection was unaffected by TIM-1 expression. Thus, our studies indicate that the glycoprotein

Fig 4. Chemokine CXCL10 and CCL2 expression in the liver, spleen and kidney of EBOV GPΔO/rVSV-infected control and TIM-1-/- mice.

Tissues were harvested from uninfected and infected BALB/c Ifnar-/- (control) and BALB/c Ifnar -/-/TIM-1-/- (TIM-1-/-) mice. In infected mice, tissues

were harvested at 3 or 5 days following infection with 105 iu of EBOV GPΔO/rVSV by i.v. injection. RNA was isolated from the organs and expression

of proinflammatory chemokines, mouse CXCL10 and CCL2, was quantified by qRT-PCR. Results represent chemokine expression relative to murine

HPRT for at least three independent livers, spleens and kidneys. Data points represent values for individual mice. Solid lines indicate the mean for each

data set. Statistical significance was determined by Student’s t-test compared the control mice for each time point and is only shown for those

comparisons observed to differ. �p<0.05.

https://doi.org/10.1371/journal.pntd.0006983.g004
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present on the virions was responsible for the TIM-1-dependent changes in virus load and

mouse survival.

The correlation between enhanced survival and reduced viral loads in the TIM-1-/- mice

suggests that TIM-1 serves as a virus receptor for EBOV in some organs. However, this role of

TIM-1 must be late in infection since viremia and organ virus loads do not differ between the

two mouse strains at days 1–3 of infection. A number of studies have shown at early times of

infection EBOV antigens are primarily, if not exclusively, found in cells of the myeloid com-

partment [49, 61, 62], cells that do not express TIM-1. However, as infection progresses, addi-

tional cell types become EBOV antigen positive, suggesting a spread of virus to other cell types

[50, 62]. Our data suggest that TIM-1 on some of this later group of cells contributes to virus

infection and pathogenesis. Likely, late cell targets that express TIM-1 would include kidney

epithelial cells [63, 64] and epithelial populations [8] in adrenal gland, eye, liver, brain and

testis.

Fig 5. T cell depletion does not alter the survival protection conferred by the loss of TIM-1 expression. A.

Intraperitoneal injection of α-CD8 mAb, clone 2.43, and α-CD4 mAb, clone GK1.5, treatment at days -1 and 2

systemically depleted T cell populations in female BALB/c Ifnar-/- (control) and BALB/c Ifnar-/- /TIM-1-/- (TIM-1-/-)

mice as determined by α-CD90 mAb staining of peripheral blood mononuclear cells at day 5 following EBOV GP/

rVSV infection. CD90.2 overlay depicts the subset of cells gated in the panel on the left. B. Survival was assessed

following infection with 7x102 iu of EBOV GP/rVSV administered by intravenous infection (n = 10 mice per group)

and two treatments of α-CD8 mAb and α-CD4 mAb at Day -1 and 2 from infection. Significance for survival curve

was determined by Log Rank (Mantel-Cox) test. LT50 = median lethal time until death; ���p< 0.001.

https://doi.org/10.1371/journal.pntd.0006983.g005
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Interestingly, we did not observe that all organs previously implicated as important in

EBOV infection had lower virus load in TIM-1-/- mice. Splenic viral loads were high through-

out infection in both control and TIM-1-/- mice. These data suggested that TIM-1 expressing

cells do not appreciably contribute to splenic virus loads and that splenic loads can be high in

mice without those animals necessarily succumbing to infection.

While the TIM-1 does not interact directly with EBOV GP, the binding of TIM-1 to virion-

associated PS has been shown to elicit viral particle entry into the endosomal compartment [9,

15] where EBOV GP is proteolytically processed, binds to NPC1 and mediates membrane

fusion [17–21]. Filoviral particle entry into endosomes occurs through interactions with a

number of cell surface receptors in tissue culture. However, these studies and those by Younan,

et al [38] provide support that TIM-1 is important for in vivo infection and contributes to

EBOV pathogenesis. Future studies to evaluate the role of additional cell surface receptors

implicated in EBOV entry would provide valuable insights to the potential receptor redun-

dancy. These receptors include other TIM family members, TAM tyrosine kinase receptors

and C-type lectins.

Our studies and those performed by Younan et al. [38] delivered EBOV GP/rVSV intrave-

nously. In other studies, we observed that intraperitoneal (i.p.) delivery of EBOV GP/rVSV

or maEBOV into WT versus TIM-1-/- mice was equally pathogenic. This finding may be

explained by the previous observation that another TIM family member, TIM-4, is highly

expressed on resident peritoneal macrophages [65] and is used as a receptor for EBOV [27].

Likely, the use of TIM-4 as a receptor within this compartment usurps the need for TIM-1

expression during i.p. challenge, even late during infection.

Surprisingly, Younan et al. did not observe that TIM-1-/- mice had decreased maEBOV vir-

ema [38]. The authors reported that the genome copy number in plasma did not significantly

differ in TIM-1-sufficient and -deficient mice at day 6 of infection. The discrepancy between

our findings and the previous study may be due to the tissues examined, the virus adminis-

tered, the quantity of virus administered and/or the timing of the sampling. One notable dif-

ference between the studies is Younan, et al. administered a very large dose of maEBOV

(30,000 LD50) to the mice, whereas the dose of virus given to mice in our study was the mini-

mal lethal dose determined in preliminary titration studies.

The physiological role of TIM-1 has been extensively studied. Agonistic monoclonal anti-

body binding to TIM-1 on CD4+ T, iNKT and splenic B cells induces cellular activation in a

wide range of organisms from zebrafish to humans [24, 32, 33, 63, 66, 67]. This observation

has led to the understanding that TIM-1 serves as a costimulatory molecule on these cells and

leads to upregulation of cytokines in T and NKT cells [24, 63], as well as antibody production

by B cells [67]. In contrast, transient TIM-1 expression on injured kidney epithelial cells serves

an anti-inflammatory role through its uptake and clearance of apoptotic bodies [64].

Younan, et al. described the role of TIM-1 in EBOV pathology to TIM-1 stimulation of T

cell cytokine and chemokine dysregulation [38]. In general, we did not observe significant dif-

ferences of proinflammatory cytokines in TIM-1+ and TIM-1- mice even at late times during

infection when titer differences were notable. It is certainly possible that other cytokines, not

evaluated here, might be more dramatically altered. We did observe elevated levels of the

proinflammatory chemokine transcripts, CCL2 and CXCL10, in the TIM-1-sufficient mice

compared to the deficient mice. We postulate that the higher levels of chemokines in TIM-1+

mice may reflect the innate immune responses stimulated by the higher virus load. Alterna-

tively, as postulated by Younan, et al., the elevated chemokine profile and associated mortality

in the TIM-1+ mice might be due to a TIM-1-dependent cytokine storm elicited by T cells

[38]. We tested this latter possibility by virus challenge of T cell-depleted mice. T cell depletion

did not alter EBOV GP/rVSV pathology. We found significantly greater mortality associated
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with virus infection of TIM-1-sufficient mice which were depleted for T cells than T cell-

depleted, TIM-1-deficient mice, suggesting that T cells are not responsible for the reduced sur-

vival of TIM-1-sufficient mice. Hence, our findings do not support the conclusion that TIM-1

expression on T cells plays a significant role in the pathology associated with this acute

infection.

A caveat to our studies is that our infections were performed in mice on an Ifnar-/- back-

ground. It is possible that the levels of cytokines and chemokines observed in our studies are

influenced by the genetic background of the mice. Others have looked at the effect of an

Ifnar-/- background on immune responses. Studies have shown that a number of cytokines

and chemokines are suppressed by the absence of type I interferon (IFN) responses in the

first 24 hours of virus infection [68, 69]. However, by 24 hours of viral infection, the burst

of production of these transcripts and proteins in wild-type mice is reported to subside and

levels in wild-type and Ifnar-/- animals are roughly equivalent. As our studies investigate

cytokine and chemokines levels at later points (days 3 and 5) during infection, the direct

impact of the lack of type I IFNs may be minimal. Furthermore, not all cytokines and

chemokines are suppressed in Ifnar-/- mice with expression of some of these proteins

enhanced by ablation of this signaling pathway [68]. In addition, during wild-type EBOV

infection, it should be noted that the EBOV type I IFN antagonists, VP24 and VP35, also

rapidly suppress the type I IFN pathway [70]. Thus, our EBOV GP/rVSV studies in Ifnar-/-

mice may recapitulate a number of aspects of immune suppression elicited by wild-type

filoviruses.

Our results also demonstrate that TIM-1 is not important for WT VSV pathogenesis. Due

to the wide cellular tropism of VSV, ubiquitous cell lipid components such as PS, phosphatidy-

linositol or the ganglioside GM3 originally were proposed as the VSV cell surface receptor

[71–73]. However, more recent investigations have revealed that these lipids are not readily

used as VSV cell surface receptors [74, 75]. Instead, the LDL receptor and its family members

are proposed to serve as VSV receptors on human and mouse cells [46]. Therefore, in vivo

pathogenesis induced by VSV would differ from EBOV GP/rVSV since the dependence on

LDL receptors for entry is conferred by the VSV G glycoprotein [46]. Presumably the VSV

membrane contains PS that can interact with TIM-1, but the affinity of VSV G for LDL recep-

tors is likely greater than the affinity of PS in the virion envelope towards PS receptors like

TIM-1. Studies from our lab have shown that only when the high affinity interactions of Lassa

virus GP with its receptor, α-dystroglycan, are abrogated does TIM-1 mediate Lassa virus

pseudovirion entry [76]. Future studies would be valuable to assess the ability of VSV to utilize

TIM-1 as a cell surface receptor in the absence of expression of LDL receptors. A second expla-

nation for the lack of WT VSV utilization of PS receptors, that is not mutually exclusive with

the first, is that the quantity of VSV G versus EBOV glycoprotein incorporated onto the sur-

face of VSV may be greater. While this has not been explored directly to date, if fewer EBOV

glycoproteins were present on a virion, the ability of virion associated PS to interact with PS

receptors might increase.

Liver and kidney dysfunction and necrosis are integral aspects of EBOV pathology of

humans, NHPs [3, 77] and mice [78, 79]. Our studies indicate that TIM-1 expression is associ-

ated with elevated viral loads in the liver, kidney, adrenal gland, and brain since loss of TIM-1

significantly lowered viral burden in these organs. Future studies will need to explore the

impact that TIM-1 expression has on EBOV infection of specific cells within these organs. By

identifying TIM-1 expressing cells that serve as viral targets and understanding the contribu-

tion of these cells to the EBOV disease pathogenesis, we will be able to better develop TIM-1

specific therapeutics against EBOV infection.

TIM-1 enhances Ebola virus pathogenesis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006983 June 26, 2019 14 / 20

https://doi.org/10.1371/journal.pntd.0006983


Supporting information

S1 Table. Cytokine/Chemokine primer sequences for qRT-PCR analysis.

(TIF)

S1 Fig. Mortality (A, C) and weight loss (B, D) associated with increasing doses of EBOV

GPΔO/rVSV (A, B) and EBOV GP/rVSV (C, D). All virus was administered iv. n = 1–3 mice

per group.

(TIF)

S2 Fig. Weight loss following intraperitoneal infection of Ifnar -/- mice with 10-fold serial

dilutions of VSV. BALB/c Ifnar -/- mice (1–4 mice per dose) received the indicated dose of

G/rVSV virus by i.p. injection. Weight loss was tracked over 10-days to determine the lowest

predictably lethal dose (101 infectious units). Grey lines indicate the virus doses that caused

mortality in all or some of the mice over the course of the experiment with 100% of mice suc-

cumbing to the 101 iu dose.

(TIF)

S3 Fig. EBOV GP/rVSV serum titers. Serum was harvested from BALB/c Ifnar-/- (control) or

BALB/c Ifnar-/- /TIM-1-/- (TIM-1-/-) mice at days 1, 3 and 5 following infection with 105 iu of

EBOV GP/rVSV by i.v. injection. Titers were determined by endpoint dilution of serum on

Vero cells. Solid lines indicate geometric mean for each data set. Significance was calculated by

Student’s t-test comparisons of the geometric means.

(TIF)

S4 Fig. Reduced viral loads in the brain but not lungs of Ifnar-/-/TIM-1-/- mice 5 days fol-

lowing i.v. EBOV GP ΔO/rVSV infection. Brain (A), testis (B) and lung (C) tissue were har-

vested from BALB/c Ifnar-/- (control) to BALB/c Ifnar -/- /TIM-1-/- (TIM-1-/-) mice at day 5

following infection with 105 iu of EBOV GP ΔO /rVSV by i.v. injection. Titers were deter-

mined by endpoint dilution of homogenized organ samples on Vero cells. Dotted line indi-

cates the level of detection. Shown are data points for individual mice within each treatment

and the bold line represents the mean titers from serum of 2–4 mice per group.

(TIF)
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