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Abstract

The pathogenesis of Salmonella enterica serovar Typhi (S. Typhi), the cause of typhoid

fever in humans, is mainly attributed to the acquisition of horizontally acquired DNA ele-

ments. Salmonella pathogenicity islands (SPIs) are indubitably the most important form of

horizontally acquired DNA with respect to pathogenesis of this bacterium. The insertion or

deletion of any of these transferrable SPIs may have impact on the virulence potential of S.

Typhi. In this study, the virulence potential and genetic relatedness of 35 S. Typhi isolates,

collected from 2004 to 2013 was determined by identification of SPI and non-SPI virulence

factors through a combination of techniques including virulotyping, Whole Genome

Sequencing (WGS), and Variable Number of Tandem Repeats (VNTR) profiling. In order to

determine the virulence potential of local S. Typhi isolates, 56 virulence related genes were

studied by PCR. These genes are located in the core as well as accessory genome (SPIs

and plasmid). Major variations among studied virulence determinants were found in case of

SPI-7 and SPI-10 associated genes. On the basis of presence of virulence related genes,

the studied S. Typhi isolates from Pakistan were clustered into two virulotypes Vi-positive

and Vi-negative. Interestingly, SPI-7 and SPI-10 were collectively absent or present in Vi-

negative and Vi-positive strains, respectively. Two Vi-negative and 11 Vi-positive S. Typhi

strains were also analyzed by whole genome sequencing (WGS) and their results supported

the PCR results. Genetic diversity was tested by VNTR-based molecular typing. All 35 iso-

lates were clustered into five groups. Overall, all Vi-negative isolates were placed in a single

group (T5) whereas Vi-positive isolates were grouped into four types. Vi-negative and Vi-

positive isolates were mutually exclusive. This is the first report on the comparative distribu-

tion of SPI and non-SPI related virulence genes in Vi-negative and Vi-positive S. Typhi iso-

lates with an important finding that SPI-10 is absent in all Vi-negative isolates.
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Author summary

The distribution of virulence factors in S. Typhi can vary in isolates from different geo-

graphical regions and can have significant effect on the disease control. In this study, we

have checked the distribution of 56 reported virulence associated factors in 35 local iso-

lates of S. Typhi to identify any variations that can help in designing effective control strat-

egies for typhoid. We have identified four naturally occurring variants which are

simultaneously lacking SPI-7 and SPI-10, two adjacently located pathogenicity islands on

S. Typhi chromosome. These isolates are not producing Vi capsular antigen hence the Vi

based vaccines will not be effective against them. These findings highlight the need to

develop typhoid vaccines specifically effective in Pakistan.

Introduction

Pathogenicity islands are distinct genetic components located on the pathogenic bacterial

chromosomes. The pathogenesis of Salmonella enterica serovar Typhi (S. Typhi) is mainly

accredited to the possession of horizontally acquired large DNA elements that transcribe in a

coordinated manner to produce an array of symptoms for the onset of disease. S. Typhi is a

human adapted pathogen. It causes a severe systemic infection, the typhoid fever, which is a

serious worldwide public health problem. According to the World Health Organization

(WHO) the annual global burden of typhoid fever is about 11–20 million new cases per year

and 1% of which are fatal. More than 90% of typhoid fever cases occurred in Asia [1,2]. It is

highly prevalent in Asia and Africa due to shortage of hygienic water and poor sanitation. It is

also a significant travel-associated disease [3]. Therefore, S. Typhi infection poses substantial

burden on healthcare system throughout the world especially in Southeast Asia (including

Pakistan) and other endemic countries. Typhoid fever is clinically manifested by prolonged

fever, abdominal discomfort, headache, and general lethargy. Early diagnosis and treatment

using an appropriate antibiotic are essential for optimal management of typhoid fever, espe-

cially in children. Unfortunately, the emergence of multidrug-resistant S. Typhi strains causes

difficulty in its treatment and poses a serious threat to future treatment options [4,5,6,7,8].

The complex pathogenesis of systemic Salmonella infections is associated with the presence

of various defensive as well as offensive virulence factors. These factors contribute for its suc-

cess as an intracellular human pathogen and participate at various stages of invasion, intracel-

lular replication and survival within the host. Many of the Salmonella virulence genes are

distributed on large genomic regions of 10–134 kb known as Salmonella pathogenicity islands

(SPIs) [9]. The SPIs are characterized by a base composition different from the core genome

and are often associated with tRNA genes and mobile genetic elements, like IS elements, trans-

posons or phage genes [10]. Virulence factors encoded by SPI genes tamper with host cellular

mechanisms and are thought to dictate the host specificity of different S. enterica serovars.

Some virulence genes not located on SPIs such as the chromosomally-encoded phoP/Q (two

component global regulator), rpoS (global stationary phase regulator) and fliA (RNA polymer-

ase sigma factor for flagellar operon) also play important roles in the virulence of Salmonella
[11,12].

Twenty one SPIs are known to date in Salmonella [13]. Out of these, 17 SPIs, 1 to 13 and 15

to 18 have been reported in S. Typhi. The largest of these islands, SPI-7 contains 134 kb of S.

Typhi-specific DNA and carries biosynthesis genes (viaB locus) for the production of the Vi

capsular antigen [14]. The Vi capsular antigen is a significant virulence factor for typhoid

fever, as isolates positive for Vi production have higher rates of infection [15,16], and it
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continues to be the focus for prophylaxis for this disease. Volunteer studies have indicated that

Vi-positive strains of serovar Typhi are more virulent in humans than Vi-negative isolates,

although Vi production is not essential for the infection process in humans [17].

Vi-negative isolates (lacking Vi capsular polysaccharide antigen) of serovar Typhi have

been reported in regions where typhoid fever is endemic. Previously, we have reported the

existence of two types of naturally occurring Vi negative S. Typhi in Faisalabad region of Paki-

stan with partial (viaB operon only) or total absence of SPI-7 [18].

S. Typhi isolates which are genetically diverse with clonal expansion and genome variations

have been reported in Malaysia and Southeast Asia. These genetic variations may be important

for virulence [19,20,21,22]. The severity of the illness varies in different areas and this may be

due to genetic diversity among the endemic strains [23]. Recent genome sequence projects

demonstrated that S. Typhi strains showed limited genetic variation [24].

Genome sequence data on S. Typhi strains from different countries are required to clearly

recognize their virulence potential. A well-known quick typing method is virulotyping that is

used for detection and profiling in pathogenic bacteria. It increases our understanding of pos-

sible risk for human and animal infections. Virulotyping is a valuable tool for the characteriza-

tion of Salmonella isolates [25]. In most of the studies involved in virulotyping, virulence

factors with reported contributions to virulence were screened by PCR using gene specific

primers. To find the presence of virulence genes, monoplex and multiplex PCR is routinely

carried out. The distribution of SPIs has already been investigated in a reference strain CT18

[26] but such studies on naturally occurring Vi-positive and Vi-negative strains of S. Typhi are

infrequent. This study was designed to find differences, if any, in the distribution of SPIs and

related virulence factors as wells as non-SPI virulence factors of Vi-positive and Vi-negative

isolates from Punjab, Pakistan. For this purpose, the comparative distribution of a significant

number of virulence factors in clinical isolates of Vi-negative and Vi-positive S. Typhi collected

from local sources was investigated.

Results

Distribution of virulence genes in Vi-positive and Vi-negative S. Typhi

isolates

In this study 56 virulence related genes involved in mobility, secretion systems, metabolic reg-

ulation and toxin production were screened by PCR. The distribution of the virulence related

genes among local isolates is presented in Table 1. In this study, S. Typhi isolates showed

clearly distinct virulence-gene profiles: Vi antigen-positive and Vi antigen-negative according

to the association of the virulence genes with SPI-7 and SPI-10.

Virulence determinant associated to core genome. Ten virulence related genes associ-

ated with core genome were included in the present work. These genes encode outer mem-

brane protein (tolC), adhesion factors (agfA, staA, stgA, sifA and fimA), sigma factor (rpoS,

fliA), virulence transcriptional regulatory gene (phoP) and peptidase (STY1450). Each of the

studied S. Typhi isolate harbored all these core genome associated virulence genes. No varia-

tion was observed in the genes located on core genome of S. Typhi.

Virulence determinant associated to accessory genome. Virulence genes associated to

fifteen SPIs (SPI-1-12, and SPI-16-18) previously reported to be related to virulence were

investigated in this study. All of the major virulence markers located on SPI-1 to 6, 8, 9, 11, 12

and 16–18 (Table 1) were identified in 100% of local isolates. On the contrary, some of the vir-

ulence determinants located on SPI-7 (pilS, tviA and tviB) and all virulence determinants of

SPI-10 (sefBCR, prpZ, prkY and prkX) were absent in 11% (n = 4) of S. Typhi isolates. Both

tviA and tviB are required for Vi capsule synthesis. As these four isolates (11% of total isolates)
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were expected to be incapable of Vi expression, they were designated as ‘Vi-negative’. The SPI-

7 associated phage-related sopE gene was detected in all S. Typhi isolates. However, partial

deletion in sopE prophage was found in case of Vi-negative isolates.

Virulence related genes located on plasmids. Three virulence genes (spvB, spvR and

thrW) located on plasmids were also studied and 71% of strains did not possess any plasmid-

associated virulence gene. Only one plasmid-associated gene trhW (located on pHCM1;

encodes plasmid transfer protein involved in fimbrial regulation) was detected in 29% of iso-

lates. This virulence gene was only detected in Vi-positive isolates.

Evaluating the presence or absence of SPI-7 and SPI-10 in Vi-negative

isolates

Polymerase chain reaction. Presence or absence of complete SPI-7 and SPI-10 was

searched using primers specific to their flanking sides. SPI-7 is flanked by two partially dupli-

cated tRNApheU loci. Primers DE0032-F and DE0083-R have been previously used to demon-

strate the lack of an insertion at the tRNApheU locus [27,28]. These primers generate a PCR

amplicon of 1275bp if the island is absent. SPI-7 is 134kb in length; therefore, the presence of

the island is outside the constraints of the PCR. All Vi-negative and Vi-positive isolates failed

to give any amplification with these primers, suggesting the presence of SPI-7. It was found

that in our all Vi-negative isolates SPI-7 was present but it lacked viaB and pil operons. The

primer pair SPI10up-F, SPI10up-R, was designed to amplify the upstream flanking side

whereas SPI10dn-F, SPI10dn-R for downstream flanking side of SPI-10. Fig 1 shows the posi-

tion of these primers in the genome of S. Typhi CT18.

Table 1. Distribution of virulence related genes of chromosomal (SPIs, Non-SPI) and extrachromosomal origin

(plasmids) among local isolates of S. Typhi (in percent).

Location Virulence Related Genes Percentage of S. Typhi Strains

Positive by PCR

Vi-positive

n = 31

Vi-negative

n = 4

SPI-1 invA, prgI, hilA, sipA, prgH 100 100

SPI-2 spiC, sseB 100 100

SPI-3 mgtb,mgtC, nepI/gaiA 100 100

SPI-4 spi4d, orfL 100 100

SPI-5 pipB, pipD, sopB/sigD 100 100

SPI-6 tcf, safC 100 100

SPI-7 pilS, tviA, tviB, tviD-E 100 0

SPI-7 sopE 100 100

SPI-8 STY3280, STY3282 100 100

SPI-9 prtB, STY-2875 100 100

SPI-10 sefC, sefB, sefR, prpZ, prkY, prkX 100 0

SPI-11 pagC, pagD,msgA, cdtB 100 100

SPI-12 sspH2 100 100

SPI-16 gtrA, gtrB 100 100

SPI-17 STY-2629 100 100

SPI-18 clyA/sheA/hlyE, taiA 100 100

Non-SPI agfA, stgA, fimA, staA, sifA, phoP, rpoS, fliA, tolC, STY1460 100 100

�R27, �pHCM1 trhW 29 0

�pRST98 spvB, spvR 0 0

�Plasmids

https://doi.org/10.1371/journal.pntd.0006839.t001
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Interestingly, no PCR amplification was obtained with SPI-10 flanking side primers in case

of Vi-negative isolates whereas Vi-positive isolates showed the respective amplifications for

SPI-10 flanking side primers. The forward primer of upstream insertion site, SPI10up-F and

reverse primer of downstream insertion site, SPI10dn-R were also used to amplify any genome

sequences flanking the two insertion sites to verify the absence of SPI-10 but no amplification

was observed. Therefore, it was concluded that SPI-10 was completely absent including the

insertion sites from all our Vi-negative S. Typhi isolates. As expected, SPI-10 associated

virulence genes (sefBCR, prpZ, prkY and prkX) were detected only in Vi-positive S. Typhi. In

order to confirm the specificity of amplicons of SPI-10, associated virulence genes as well as

amplified fragments of flanking sides of SPI-10 were sequenced. The sequences were then

verified by BLASTn [29] against Salmonella enterica serovar Typhi sequences. All these

sequences were confirmed as related to corresponding genes and region of SPI-10 of the S.

Typhi genome.

Whole genome sequencing results. Complete absence of SPI-10 in Vi-negative S. Typhi

isolates was confirmed by the whole genome sequence analysis [29]. Altogether, 76.79 million

read pairs of 100bp were obtained for the genome of 13 S. Typhi strains (2 Vi-negative and 11

Vi-positive) with an average of 5.9 million read pairs per sample, comprising average through-

put of 1.18Gb per sample, as shown in supplementary table (S1 Table). All of the sequenced

strains were having a minimum of 230x genome coverage, which is fairly good enough for a

reliable comparison of bacterial genomes. The Vi-negative strains have 4062 complete and 49

partial genes (pseudogenes) as compared to the reference genes set (4395) of S. Typhi CT18

which is fairly low than the other Vi-positive strains. The NG50 statistics for the de novo
assemblies is in the range of 145kb to 173kb. The results show that both Vi-negative strains

(ST5 and ST25) have a higher level of divergence from the S. Typhi reference genome as the

number of contig mismatches (>9300) and indels (>200) are higher than other strains, as

shown in supplementary table (S1 Table). The comparative analysis of Nx, NGx, cumulative

length, GC content and coverage histograms has been provided in supplementary figures S1

Fig–S31 Fig. Blastn [29] similarity search of assembled contigs with the S. Typhi reference

genome confirmed the PCR findings that both Vi-negative strains (ST5 and ST25) did not

have SPI-7 and SPI-10 except for some of the genes of SPI-7, as shown in Fig 2.

Fig 1. Physical map of the SPI-10 in the Salmonella enterica serovar Typhi CT18 NC_003198.1. Genes are depicted by arrows with gene designation indicated within

arrows. Virulence genes are dotted and in black are phage-related genes. The schematic locations of primer pairs specific for SPI-10up, SPI-10dn, prkX, prkY, prpZ, sefB,

sefC, and sefR are shown below genes. The position and length of expected PCR product (including region and genes investigated in this study) are mentioned according

to the CT18 genome coordinates [26].

https://doi.org/10.1371/journal.pntd.0006839.g001
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These data validate our hypothesis of simultaneous absence of SPI-7 and SPI-10 from

Vi-negative isolates. The WGS data of the 13 isolates of S. Typhi have been submitted in Gen-

Bank and the accession numbers were assigned as SAMN08195664, SAMN08195665,

Fig 2. Comparative genome analysis of SalmonellaTyphi strains for pathogenicity Islands. The outer circle corresponds to the reference genome of S. Typhi (Acc:

AL513382) whereas inner circles depict the strains with clear depiction of absence of SPI-7 and SPI-10 in S. Typhi strain 5 and 25. The gene labels are displayed at

1500bp distance window size for figure adjustment.

https://doi.org/10.1371/journal.pntd.0006839.g002
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SAMN08195666, SAMN08195667, SAMN08195668, SAMN08195669, SAMN08195670,

SAMN08195671, SAMN08195672, SAMN08195673, SAMN08195674, SAMN08195675,

SAMN08195676.

Variable Number of Tandem Repeats (VNTR) based molecular typing of S.

Typhi Local Isolates

On the basis of multiplex PCR results, all 35 S. Typhi isolates were grouped into 5 VNTR types

(Fig 3). Overall, 3, 4 and 2 alleles were observed for TR1, TR2 and TR3, respectively. Therefore,

all these nine type of amplicons from representative isolates were sequenced and number of

repeats in each case was calculated by using tandem repeat finder (70). Table 2 briefly describes

each observed VNTR type.

Fig 3. Agarose gel analysis of the all five types of VNTR profiles from representative S. Typhi local isolates. Lane 1

and 8:100bp DNA ladder (Invitrogen 15628–019; showing bands of 2072, 1500, 1400, 1300, 1200, 1100, 1000, 900, 800,

700, 600, 500, 400, 300, 200 and 100 bp), Lane 2–6: Vi-positive S. Typhi isolates, Lane 7: Vi- negative S. Typhi isolates.

https://doi.org/10.1371/journal.pntd.0006839.g003

Table 2. VNTR profiles of 35 local isolates of S. Typhi.

Sr. # VNTR profile

(TR1/TR2/TR3)

No. of isolates

(Vi+, Vi-)

VNTR profile designation

1 3.9x/10.5x/2.3x 15(Vi+) T1

2 5x/13.9x/2.3x 6(Vi+) T2

3 3.9x/12.5x/2.3x 6(Vi+) T3

4 3.9x/ND/2.3x 4(Vi+) T4

5 9.6x/3.1x/3.3x 4 (Vi-) T5

ND (not detected); x = copy number

https://doi.org/10.1371/journal.pntd.0006839.t002
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Discussion

This study was focused on assessing the distribution of Salmonella pathogenicity islands (SPIs) in

Vi-positive and Vi-negative variants of Salmonella enterica serovar Typhi and comparative virulo-

typing from local clinical samples. The virulence factors of the Salmonella serovars are mostly

encoded by the Salmonella pathogenicity islands (SPIs). Two hallmarks of Salmonella pathogene-

sis, the host invasion and intracellular proliferation, are directly linked to the genes on SPIs. SPI-1

contains invasion genes whereas SPI-2 is required for intracellular pathogenesis. These SPIs

encode two Type-III secretion systems (T3SS) and have crucial role for systemic S. enterica infec-

tions [30]. The invA, hilA, sipA, prgl and prgH genes are located on SPI-1 whereas spiC, sifA and

sseB genes belong to SPI-2. In this study, we detected these genes in all S. Typhi isolates. SPI-3 is

involved in intracellular survival and encodes a magnesium transporter (mgtB andmgtC) [31].

These genes were also detected in both types of isolates. Similar genetic homogeneity among Vi

positive and Vi negative S. Typhi isolates was observed in virulence genes located on SPI-4 to 6,

SPI-8, 9, 11, 12, and SPI-16-18. These findings are in accordance with previous studies [26,32].

Virulence factors on SPI-7 and SPI-10 are less stable than those associated with other SPIs

[9]. In S. Typhi, SPI-7 is also referred as major SPI and represents the largest SPI with a size of

134 kb. It comprises of four parts: type IVB pilus operon, sopE prophage, Vi biosynthetic

operon, and a 15 kb phage-like segment [26,27]. It codifies for the surface Vi polysaccharide

antigen that contributes to virulence. However, lack of Vi expression can also be beneficial to

some key steps of S. Typhi infectivity, for example, invasion, as Vi is the target of protective

immune responses [33]. Vi-positive S. Typhi can benefit by inhibiting complement deposition

at the bacterial surface and the post-phagocytic oxidative burst, thus resulting in reduced bac-

terial internalization and killing by phagocytes [34]. Serovar Typhi lacking Vi capsular polysac-

charide antigen has been known and reported worldwide for several decades. Molecular

evidence of the loss of Vi antigen has suggested that Vi-negative strains can be derived by the

excision of SPI-7 or by a spontaneous base change in the viaB operon [28,35,36].

In the present study, all local isolate were carrying SPI-7 but some of them (11%) were deficient

in SPI-7 associated genes (tviA, tviB and pilS). Results of this study indicated that 89% of analyzed

S. Typhi isolates possessed viaB operon which is involved in biosynthesis of Vi-antigen. This viru-

lence factor is also observed in S. Typhi isolates from typhoid patient’s blood, bone marrow as

well as stool. It has been reported that most isolates were Vi-positive and only a few S. Typhi were

Vi-negative [18,37,38]. The Vi-negative S. Typhi isolates that only lose expression of viaB operon

have also been reported from India [37], and Nepal [38], but the absence of SPI-7 has been first

time demonstrated in this study supported by whole genome sequencing (WGS).

SPI-10 is a pathogenicity island found next to the tRNAleuX gene at centisome 93. In the S.

Typhi genome, this island corresponds to a 33 kb fragment carrying a full P4-related prophage,

termed ST46 and the sefA-R chaperone-usher fimbrial operon [26,39]. The tRNAleuX region is

a hypervariable hot spot for horizontal gene transfer in the Salmonella genus and different iso-

lates from the same S. enterica serovar can exhibit significant variation in this region. Presence

of mobile genetic elements and P4 phage play a major role in driving the variability of this

region [39]. Genome sequence analysis identified three open reading frames carried by P4 like

phage which have integrated within SPI-10 and are termed as prpZ gene cluster [39,40]. These

are present in Ty2 and multi-drug resistant CT18 genomes of S. Typhi but absent in all other

sequenced serovars of S. enterica. Several lines of evidence indicate that S. Typhi has acquired

these three ORFs through Horizontal Gene Transfer (HGT). The prpZ gene cluster consists of

three ORFs coding for proteins with homology to eukaryotic-type Ser/Thr protein phospha-

tases 2C (prpZ) and Ser/Thr protein kinases (prkY and prkX). It has been found to promote

survival in macrophages [41,42].
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The results in this study related to prpZ gene cluster were apparently distinct from previous

reports [42,43,44]. Based on the findings of this study, we report for the first time that all our

naturally occurring Vi-negative S. Typhi are lacking SPI-10. None of SPI-10 associated viru-

lence genes (sefB, sefC, sefR, prpZ, prkX, and prkY) were detected in the Vi-negative isolates. In

addition PCR targeting flanking regions of SPI-10 also yielded negative result. On the other

hand all Vi-positive S. Typhi isolates yielded positive results under same conditions. WGS

analysis of our Vi-negative and Vi-positive strains also confirms absence of SPI-7 and SPI-10.

Unlike SPI-7 which can be either partially or fully lost, SPI-10 is observed as completely

absent in Vi-negative strains. It might be because its size is much smaller (33kb). It can be

inferred that virulence related genes located on SPIs associated with prophages make up the

major differences in gene contents among Vi-negative and Vi-positive S. Typhiisolates.

Repetitive DNA including VNTRs in bacterial genomes reflects their genomic diversity.

VNTRs are commonly used to differentiate strains of homogenous clones. These are conve-

nient for typing Salmonella enterica serovars and many previous studies have reported the

VNTR based variability among S. Typhi isolates [45,46,47,48,49]. In this study, genetic diver-

sity among studied S. Typhi isolates was tested by VNTR based molecular typing. All 35 iso-

lates were clustered into five groups. Overall, all Vi-negative isolates were placed in a single

group (T5) whereas Vi-positive isolated were grouped into four types. Both Vi-negative and

Vi-positive isolates did not fall into same VNTR type. Unlike our isolates, S. Typhi strains

from other countries including Nepal [45,46], China [48], Indonesia, Bangladesh, India, Singa-

pore and Malaysia [45]showed more variety in their VNTR types. Octavia and Lan also

searched VNTR profiles among S. Typhi strains collected from many countries except Paki-

stan. They also found variety of VNTR types among these global isolates [47]. Overall results

of our study showed that Vi-negative and Vi-positive isolates were mutually exclusive in

VNTR typing. Unlike S. Typhi strains from other counties, isolates from Pakistani showed less

variety in their VNTR types.

S. Typhi clinical isolates from Pakistan showed genetic homogeneity in most of the viru-

lence genes. They were found to be different only with regard to that of SPI-7 and SPI-10

regions. Our Vi-negative strains were deficient in both SPI-7 and SPI-10, so are reporting first

time their simultaneous absencein S. Typhi Vi-negative strains. Interestingly, the absence of

SPI-10 was also reported in an Indian strain (P-stx-12) that has intact SPI-7 [22]. Both SPI-7

and SPI-10 are associated with bacteriophages and mobile genetic elements, so this is probably

the reason for their less stability.

It is hypothesized that Vi-negative isolates have evolved alternative ways to survive and col-

onize even without virulence genes associated with SPI-7 and SPI-10. The absence of both SPIs

from the genome of Vi-negative strain could provide important functional clues for under-

standing the virulence and persistence of the pathogen, anticipating the need for extensive

future studies focusing on their possible roles in bacterial pathogenesis. Our unique finding of

SPI-10 deficient Vi-negative variants has further highlighted the importance of naturally

occurring Vi-negative S. Typhi and thus the need to focus on universally present somatic anti-

gens rather than Vi antigen for the preparation of successful vaccines effective against all iso-

lates of S. Typhi.

Materials and methods

S. Typhi isolates

A total of 35 of S. Typhi isolates (Vi-negative (n = 4) and Vi-positive (n = 31)) were included

in this study. All isolates were revived from National Institute for Biotechnology and Genetic

Engineering (NIBGE, Pakistan) stock cultures previously collected different patients suffering
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from typhoid fever in various hospitals in Faisalabad region of Pakistan between 2002 and

2006 and stored in 20% glycerol at -20˚C.

Identification and confirmation of isolates

Identification of isolates was performed by conventional biochemical methods after growing

them on TSI medium (Merck, Germany). The strains were tested by agglutination for the pres-

ence of Vi antigen using Vi monovalent antisera (Monovalent Vi, Bio-Rad, France). These iso-

lates were confirmed by regular and nested polymerase chain reaction (PCR) targeting fliC-d,

tviA, and tviB genes as previously reported [50].

PCR virulotyping

For virulotyping analysis, all 35 S. Typhi isolates were screened for the presence/absence of 56

reported virulence genes (Table 3). Virulence determinants were categorized according to

their locations and function. Virulence genes located on chromosome and associated with 15

SPIs (SPI-1 to 12, SPI-16 to 18) and other virulence genes not associated with any SPI were

studied. These genes are responsible for encoding Type I and III secretion systems, invasions,

adhesions, motility, sigma factor, virulence transcriptional regulatory protein, outer mem-

brane protein, peptidase, phosphatase, fimbriae, pili, toxin and purine ribonucleoside efflux

pump (Table 3). Most of the genes were detected by PCR using previously reported primer

sequences whereas we designed new oligonucleotide primers for some of the virulence genes

not studied previously by PCR (Table 3).

PCR primers were designed for this study from S. Typhi CT18 reference genome sequence

from the NCBI Genbank (Accession number AL513382) [26]. Primer-BLAST [29] was used

for designing the gene specific primers. Each 50μL of reaction mixture for each of the PCR

included, 10μL of template DNA, contained 1.5mM MgCl2, 50nmol of each dNTP, 40pM of

each (forward and reverse) primer and 2U of TaqDNA polymerase (Thermo Scientific, USA).

PCR conditions were as follows: initial denaturation at 94˚C for 5 min and 30 cycles of dena-

turation at 94˚C for 1 min, annealing at temperature mentioned in Table 1 for each primer set

for 1 min and extension at 72˚C for 1 min, with a final extension at 72˚C for 5 min using

T100™ Thermal Cycler (Bio-Rad, USA). A non-template control was included in each run. The

PCR products were analyzed by gel electrophoresis on 1.5% agarose stained with ethidium

bromide under UV transilluminator.

Confirmation of absence of SPI-7 and SPI-10 in Vi-negative isolates

Presence of complete SPI-7 was searched by using flanking sides primers [27]. To confirm the

complete absence of SPI-10 in Vi-negative isolates, primers specific to flanking sides of SPI-10

were designed (Table 4). The location of these primers on the physical map of the SPI-10

region is shown in Fig 1.

Whole Genome Sequencing (WGS) analysis. Two Vi-negative and 11 Vi-positive S.

Typhi strains were analysed by whole genome sequencing to confirm our findings. DNA was

isolated by genomic DNA purification kit (Cat# K0152, Thermo Scientific, EU) and whole

genome paired end sequencing was performed at aScidea Computational Biology Solutions, S.

L., Barcelona (Spain) using Illumina HiSeq 2000 system. The sequencing adaptors were

removed using built-in Illumina pipeline and raw data was quality checked using FASTQC

program and quality filtering and trimming was performed using Trimmomatic v0.35. de novo
assembly of the short reads was performed using Edena v3 [73] using default parameters.

Comparative genome analysis of assembled contigs with S. Typhi reference (Accession
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Table 3. List of primers sequences used to detect the virulence genes of Salmonella enteric serovar Typhi isolates.

Sr.

#

Location Gene Primer Sequence

5‘!3‘

Annealing Temp

˚C

Amplicon size

(bp)

Reference

(Coordinatesa)

1 SPI-1 invA
(STY3019)

GTGAAATTATCGCCACGTTCGGGCAA

TCATCGCACCGTCAAAGGAACC

64 284 [51]

2 SPI-1 prig
(STY2994)

CAGGTAACAGAGGCGCTGGATAAA

TTACCGTGTTCGATTGCGCGTTAC

55 121 [52]

3 SPI-1 hilA/iagA ACGGACAGGGTTATCGGTTTAAT

AAAAGGAAGTATCGCCAATGTATGAG

50 92 [53]

4 SPI-1 sipA/sspA GTTAAGTAATGTGCTGGACGGCCT

ACCCGATCCACACCAGGTTTATTC

55 100 [52]

5 SPI-1 prgH TCATAATCGCCCCTCGCTAA

TCTATGTCGCTGCGCAAAAT

50 70 [53]

6 SPI-2 spiC CCTGGATAATGACTATTGAT

AGTTTATGGTGATTGCGTAT

50 301 [54]

7 SPI-2 sseB ATATGGCGATCATGGGAAGCTGGA

TCGGTATTCCGGTTGGCGTCATTA

55 84 [52]

8 SPI-3 mgtB GGCAGGAGTTTCGCACTAAC

GCGTACCCACAATGGATTTC

55 445 [55]

9 SPI-3 mgtC TCGGCGTGTTATGCGGCTTA

AGCCCTGTTCCTGAGCGGGG

55 264 [56]

10 SPI-3 nepI/gaiA
(STY4008)

GTTGGCGCTGGGCGGATTCT

CACCGGCACCAACGCAAACG

60 616 This study

(3870217–

3871410)

11 SPI-4 spi4D
(STY4457)

GTTCATGGTCAGGGCGTTAT

CTTAAAGAACGGGTGCCATC

55 275 [55]

12 SPI-4 orfL
(STY4458)

GGAGTATCGATAAAGATGTT

GCGCGTAACGTCAGAATCAA

50 332 [57]

13 SPI-5 pipB TAAGAAGAAGCAATGAAAGATGGTT

GGTTATAAGTGAATCAGGCTGTTGT

50 305 [58]

14 SPI-5 pipD CGGCGATTCATGACTTTGAT

CGTTATCATTCGGATCGTAA

50 399 [54]

15 SPI-5 sopB/sigD CGGACCGCCCAGCAACAAAACAAGAAGAAG

TAGTGATGCCCGTTATGCGTCAGTGTATT

55 220 [54]

16 SPI-6 tcf CATTTATTCTCAGGGGGAGCG

CATCCTCTTTATCTGTTGCCACG

57 1049 [59]

17 SPI-6 safC TGTTCTGGCTCCTTGTTTGACG

TTCTGTTTGACCTCCACCCGAG

57 [59]

18 SPI-7 pilS GTATCAACATTAAATCCATGC

CGTTACTTTCGCATCGGTGTG

50 502 [18]

19 SPI-7 tviA GTTATTTCAGCATAAGGAG

ACTTGTCCGTGTTTTACTC

50 599 [60]

20 SPI-7 tviB CGAGTGAAACCGTTGGTACA

CAATGATCGCATCGTAGTGG

50 846 [28]

21 SPI-7 tviD-E TACCTAGCGAGCCAGTACAGAG

CTGGAACCGTCATTCTTATCCCG

55 2500 [61]

22 SPI-7 sopE GCTGACTTTGGTGCTGCTGCTCTCG

CTGGCGTATGCGGGGTCTTTACTCG

50 2000/2425 [35]

23 SPI-8 STY3280 ATATGACTCGAATGAAATCAGG

GGGGATTGTCTACATTGTAA

50 132 [62]

24 SPI-8 STY3282 AAAAAGAGGTCGAGCGCCTTACTCC

TTTTAGGAGTGTTTATCATA

50 142 [62]

25 SPI-9 prtB
(STY2877)

TAACCTGTGCGGCGTGCTGG

GCCGGACAGGCCGTTACCAC

55 559 This study

(2755839–

2757995)

(Continued)
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Table 3. (Continued)

Sr.

#

Location Gene Primer Sequence

5‘!3‘

Annealing Temp

˚C

Amplicon size

(bp)

Reference

(Coordinatesa)

26 SPI-9 STY-2875 TGGCGACACTCTGCTTGGCG

CCGTTGAGCGTCGGCTGTGT

50 276 This study

(2743495–

2754369)

27 SPI-10 sefC GAAGAAAACCACAATTACTC

CAACTGTTAGTTTGCTCTTT

50 668 [62]

28 SPI-10 sefB AATATTATGGCCTAAGATTGGG

GCTCAATATATCCATTTGGA

50 534 [62]

29 SPI-10 sefR TGACATTCCTACGGCATATG

TTACCATTAAGAACAAGTCAAAGCC

50 625 [62]

30 SPI-10 prpZ CAATGGTGCGGTGCGAAAGATAAC

TTCCCATAAGGGTCCCATAACTCT

57 115 [42]

31 SPI-10 prk-Y AGCCATGACAAATATGCTCGACCG

TTTCCATTCAGGACGAAGAGGGCA

57 104 [42]

32 SPI-10 prk-X CGTCATGTCGGTCGCGTCAATAAT

TTGTTGAGGTGTTTGGGTACCTCG

55 127 [42]

33 SPI-11 pagC TTTAATGGTTGGGCCAGCCTATCG

TTAAATGTCGCCTTTACCGTGCCG

55 87 [63]

34 SPI-11 msgA GCCAGGCGCACGCGAAATCATCC

GCGACCAGCCACATATCAGCCTCTTCAAAC

62 189 [64]

35 SPI-11 pagD
(STY1880a)

TGGTAGTAAAACCCCGCAACCACC

TGGGTTTTGCCGTCGGGCAG

60 89 This study

(1782539–

1782802)

36 SPI-11 cdtB ACAACTGTCGCATCTCGCCCCGTCATT

CAATTTGCGTGGGTTCTGTAGGTGCGAGT

58 268 [11]

37 SPI-12 sspH2
(STY2467)

GGGCTGCACCCGCAGAAGAG

AGACCTCCAGCGTCCGCAGT

60 216 This study

(c2300203-

2297837)

38 SPI-16 gtrA
(STY0607)

GCATCAGGCGCTGGCGAACT

AGCGAAGCGTGGTGGTGCTG

60 104 This study

(c609678-609316)

39 SPI-16 gtrB
(STY0606)

CATGCAACCGGGGATGCGGT

AATCGCCGGCAACACGCTCA

60 364 This study

(c609319-608393)

40 SPI-17 STY-2629 TGGGACGGGTTTAATTGGCGCA

GCCCATTGAAAAGAGCCGCCG

55 251 This study

(2462589–

42645111)

41 SPI-18 clay GACCTTTGATGAAACCATAAAAGAG

GCATCGATATCTTTATTCGCTTG

50 600 [65]

42 SPI-18 taiA ATATCACCGATGCGGTGGGAATC

ACTTTCACCATTCCATCTTCCGGC

55 141 [63]

43 Non-SPI cgsA TGCAAAGCGATGCCCGTAAATC

TTAGCGTTCCACTGGTCGATGGTG

55 151 [66]

44 Non-SPI staA/yadN CTTTAGAAGCATCGGCACGAAC

CGCAATGGTTATGGCTATGGG

57 505 [67]

45 Non-SPI stgA TGCCAGGTTACGCCACAAACC

CGCTGTGGTATCAATCGTGC

60 354 [68]

46 Non-SPI fimA CCTTTCTCCATCGTCCTGAA

TGGTGTTATCTGCCTGACCA

58 85 [69]

47 Non-SPI fliA
(STY2164)

ACGCCCCAGTTCCTGCTCCA

ACCGCTGGTGCGTCACGAAG

60 277 This study

(2008974–

2009693)

48 Non-SPI rpoS
(STY3049)

CCGCACTCGGTTCGTGGTCC

GTCGCGCACTGCGTGGAGAT

60 345 This study

(2915077–

2916069)

49 Non-SPI phoP ATGCAAAGCCCGACCATGACG

GTATCGACCACCACGATGGTT

62 299 [70]

(Continued)
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number: AL513382)was performed using NCBI Blastn [29] and visualized using Circos pro-

gram [74].

VNTR based molecular typing

Genetic relatedness of all studied isolates was investigated by Variable Number of Tandem

Repeat (VNTR) analysis as described by Liu et al [45]. Three primer pairs, TR1, TR2, and TR3

Table 3. (Continued)

Sr.

#

Location Gene Primer Sequence

5‘!3‘

Annealing Temp

˚C

Amplicon size

(bp)

Reference

(Coordinatesa)

50 Non-SPI tolC TACCCAGGCGCAAAAAGAGGCTATC

CCGCGTTATCCAGGTTGTTGC

60 161 [64]

51 Non-SPI SsifA TTTGCCGAACGCGCCCCCACACG

GTTGCCTTTTCTTGCGCTTTCCACCCATCT

55 449 [54]

52 Non-SPI STY1460 TACCGGGGTGGATGCGCTGA

GCGACAGGCCTGCGAACAGT

60 322 This study

1410094–1412058

53 pRST98 spvB ATGTTGATACTAAATGGTTTTTCA

CTATGAGTTGAGTACCCTCATGTT

55 1776 [71]

54 pRST98 spvR ATGGATTTCATTAATAAAAAATTA

TCAGAAGGTGGACTGTTTCAGTTT

55 894 [71]

55 R27,

pHCM1

trhW ACTGGCCAGGTTCCCGCAGA

CTGACCGCTGCCAAGACGCT

60 109 This study

56 Non-SPI eno(STY3081) GCTCCGTCAGGTGCTTCTAC

GCGTCTTTGCCAAGAATAGC

60 143 [72]

aGenome coordinates of the location of the genes for which primers have been designed in this study based on S. enterica Typhi CT8 reference genome [26]

https://doi.org/10.1371/journal.pntd.0006839.t003

Table 4. List of primers used to detect the complete presence/absence of SPI-7 and SPI-10.

Sr.# Primers Primer Sequence

Forward and Reverse

5‘!3‘

Annealing Temp˚C Amplicon size (bp) Reference/(genome Coordinatesa)

1 DE0032-F

DE0083-R

GCTCAGTCGGTAGAGCAGGGGATT

TCATCTTCAGGACGGCAGGTAGAATG

57 1275 [27]

2 Spi10up-F

Spi10up-R

TTCGAGTCCGGCCTTCGGCA

TGCGTCGTGATCCCCCGGAA

50 1134 This study (4683667–4684800)

3 Spi10dn-F

Spi10dn-R

CCACCACCCGCGCTCTTTCC

CCACAAACCGCTCACCCGGA

50 1039 This study (4716415–4717453)

aGenome coordinates of the location of the genes for which primers have been designed in this study based on S. enterica Typhi CT8 reference genome [26]

https://doi.org/10.1371/journal.pntd.0006839.t004

Table 5. List of primers used for S. Typhi isolates molecular typing based on VNTR.

Sr. # Primer Primer Sequences

Forward + Reverse

5‘!3‘

Repeat sequences Reference

1 TR1 AGAACCAGCAATGCGCCAACGA

CAAGAAGTGCGCATACTACACC

AGAAGAA [45]

2 TR2 CCCTGTTTTTCGTGCTGATACG

CAGAGGATATCGCAACAATCGG

CCAGTTCC [45]

3 TR3 CGAAGGCGGAAAAAACGTCCTG

TGCGATTGGTGTCGTTTCTACC

CGCGGGGATCGGTTTATCCCCGCTGG [45]

https://doi.org/10.1371/journal.pntd.0006839.t005
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were used to perform a multiplex PCR (Table 5), and all amplified fragments of different sizes

were sequenced. The sequences were then verified by BLASTn[75] against Salmonella enterica
serovar Typhi. In order to calculate copy number, Tandem Repeat Finder program [76] was

used to analyze these sequences.

Supporting information

S1 Table. Whole genome sequencing and assembly statisitics of SalmonellaTyphi Strains.

(XLSX)

S1 Fig. Comparison of de novo assembled contig lengths between all strains. The x-axis

shows the percentage of length of the assembled genome for any strain and y-axis shows the

length of contigs in kilobases used for a particular length percentage of assembled genome.

(TIF)

S2 Fig. Comparison of de novo assembled contig lengths between all strains with respect to

the reference genome size [S. Typhi, Acc: AL513382]. The x-axis shows the percentage of

length assembled with respect to the reference genome for any strain and y-axis shows the

length of contigs in kilobases used for a particular length percentage.

(TIF)

S3 Fig. Comparison of growth of contig lengths. On the x-axis, contigs are ordered from the

largest to smallest. The y-axis gives the size of the x largest contigs in the assembly.

(TIF)

S4 Fig. Comparative distribution of # contigs with GC percentage in a certain range. The x

value is the GC percentage intervals. The y value is the number of contigs which GC content

lies in the corresponding interval.

(TIF)

S5 Fig. %GC content of a ST5 de novo assembled contigs.

(TIF)

S6 Fig. %GC content of a ST6 de novo assembled contigs.

(TIF)

S7 Fig. %GC content of a ST7 de novo assembled contigs.

(TIF)

S8 Fig. %GC content of a ST8 de novo assembled contigs.

(TIF)

S9 Fig. %GC content of a ST11 de novo assembled contigs.

(TIF)

S10 Fig. %GC content of a ST16 de novo assembled contigs.

(TIF)

S11 Fig. %GC content of a ST17 de novo assembled contigs.

(TIF)

S12 Fig. %GC content of a ST18 de novo assembled contigs.

(TIF)

S13 Fig. %GC content of a ST19 de novo assembled contigs.

(TIF)
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S14 Fig. %GC content of a ST22 de novo assembled contigs.

(TIF)

S15 Fig. %GC content of a ST25 de novo assembled contigs.

(TIF)

S16 Fig. %GC content of a ST26 de novo assembled contigs.

(TIF)

S17 Fig. %GC content of a ST38 de novo assembled contigs.

(TIF)

S18 Fig. Distribution of total contig lengths (y-axis) at different read coverage depths (x-

axis, grouped in bins).

(TIF)

S19 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST5.

(TIF)

S20 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST6.

(TIF)

S21 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST7.

(TIF)

S22 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST8.

(TIF)

S23 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST11.

(TIF)

S24 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST16.

(TIF)

S25 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST17.

(TIF)

S26 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST18.

(TIF)

S27 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST19.

(TIF)

S28 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST22.

(TIF)
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S29 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST25.

(TIF)

S30 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST26.

(TIF)

S31 Fig. Distribution of contig lengths (y-axis) at different read coverage depths (x-axis) of

ST38.

(TIF)
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