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Abstract

Systemic insecticides in dogs have been suggested as a public health intervention to pre-

vent human cases of Zoonotic Visceral Leishmaniasis (ZVL). But, currently there are no sys-

temic insecticides for dogs registered against zoo-anthropophilic pool blood feeding

phlebotomine flies. We predict the impact of community-wide use of systemic insecticide in

dog populations as a public health measure to control transmission of Leishmania infantum

to humans using a mathematical model. We developed a Susceptible-Exposed-Infected

(SEI) compartmental model to describe L. infantum transmission dynamics in dogs, with a

vectorial capacity term to represent transmission between L. infantum-hosting dogs via

phlebotomine flies. For Infected (I) dogs two levels of infectiousness were modelled, high

infectiousness and low infectiousness. Human incidence was estimated through its relation-

ship to infection in the dog population. We evaluated outcomes from a wide range of scenar-

ios comprising different combinations of initial insecticide efficacy, duration of insecticide

efficacy over time, and proportion of the dog population treated (60%, 70% & 80%). The

same reduction in human infection incidence can be achieved via different combinations of

insecticide efficacy, duration and dog coverage. For example, a systemic insecticide with an

initial efficacy of 80% and 6 months above 65% efficacy would require treating at least 70%

of the dogs to reduce the human infection incidence by 50%. Sensitivity analysis showed

that the model outcome was most sensitive to baseline values of phlebotomine fly daily sur-

vival rate and insecticide coverage. Community-wide use of systemic insecticides applied to

the “L. infantum canine reservoir” can significantly reduce human incidence of L. infantum

infection. The results of this mathematical model can help defining the insecticide target

product profile and how the insecticide should be applied to maximise effectiveness.
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Author summary

Zoonotic visceral leishmaniasis (ZVL) is a potentially deadly disease in humans caused by

Leishmania infantum. This leishmania species can be delivered by pool blood feeding zoo-

anthropophilic phlebotomine flies to several mammals, the dog population being recog-

nized as the main reservoir. Transmission from infected dogs to humans is through the

bite of female phlebotomine sand flies. The disease is endemic in several countries and

Brazil has a high prevalence of cases with over 3000 ZVL cases reported per year. The

main, inefficient and highly controversial, control measure in Brazil has been culling sero-

positive dogs. The community-wide use of systemic insecticides in dogs could be an alter-

native to control L. infantum transmission from phlebotomine flies to humans. The ratio-

nale is that phlebotomine flies which sampled their blood meals from dogs treated with

systemic insecticides would die reducing the risk of L. infantum transmission. To reduce

the number of ZVL cases, a large proportion of dogs in the community should be treated

and the systemic insecticide used should be effective in killing phlebotomine flies acting as

vectors of L. infantum parasites for a significant amount of time. We used a mathematical

model mimicking L. infantum transmission to show that this novel vector control strategy

could be effective. We identified the combination of different key parameters (e.g. insecti-

cide efficacy, duration and proportion of dogs treated) that could lead to a significant

reduction of the risk of L. infantum infection in humans.

Introduction

The protozoan parasite Leishmania infantum is the etiological agent of Zoonotic Visceral

Leishmaniasis (ZVL) in humans and dogs. This pathogen can also infect other mammals, but

dogs are the main reservoir causing human infections [1–3]. Transmission of L. infantum to

humans occurs through the bite of female phlebotomine sand flies previously infected by bit-

ing infected dogs [4, 5], whereas humans are not considered a reservoir of L. infantum [6–8].

ZVL in humans is characterized by fever, weight loss, hepato- and spleno-megaly, and anemia

[9], and the fatality rate can be very high if untreated [9,10]. The reported case numbers of

human ZVL in Brazil has persisted above 3000 cases per year since 1994 despite intervention

policies of reservoir reduction and sand fly control against transmission [11]. Indeed, since the

1980s, endemic transmission has expanded into more urban and peri-urban areas, beyond the

historic predominantly rural transmission foci [12–14]. In endemic areas of ZVL and particu-

larly in Brazil, a national policy of test-and-slaughter of sero-positive dogs has been the main

control strategy, though this method continues to be highly controversial [15–17]. Additional

control measures include early diagnosis and treatment of human cases, and reactive chemical

control of the vector [11]. Despite these combined efforts, ZVL transmission continues to

expand in Brazil [18,19].

A proven method to reduce L. infantum transmission is by insecticide-impregnated collars

applied to dogs [20–22]. Community-wide deployment of deltamethrin-impregnated collars

has proven also to reduce human infections incidence with L. infantum [23]. However, the

cost of the collars, their high loss rate (requiring continual surveillance and replacement) and

the logistics required to deploy them at a mass scale limit their use as a public health interven-

tion in endemic regions [24,25]. Systemic insecticides could be an alternative to impregnated

collars and their community-wide use in dogs may control L. infantum infection in humans in

endemic areas [26]. In theory mass treating dogs with systemic insecticides may be easier than
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deploying impregnated collars. Oral treatments (e.g. treated baits [27] or chewable tablets

[28,29]) could be used to significantly reduce dog handling.

Currently there are no systemic insecticides for dogs registered against sand flies but the

effect of mass drug administration of drugs with an insecticidal effect has already being evalu-

ated on anthroponotic VL [30] and malaria [31], with mathematical models also providing fur-

ther support for their use in these cases [32,33]. Mathematical modelling has similarly been

used to estimate the efficacy of control strategies for ZVL [34], specifically the culling of sero-

positive dogs [15,16,35] or the use of insecticide impregnated collars or vaccines [16,36].

Recent and more complex models have aimed to better understand and predict L. infantum
transmission dynamics [37,38].

The aim of this study is to evaluate the efficacy of community-wide use of systemic insecti-

cides in dogs as a strategy to reduce the number of human infections with L. infantum causing

ZVL cases in an endemic area using a parsimonious deterministic mathematical model. The

modelling exercise will also help defining the minimum requirements for developing systemic

insecticides for dogs against sand flies.

Methods

The transmission dynamics of L. infantum was modelled assuming that only infected dogs

are capable of infecting sand flies, i.e. assuming that infected people do not contribute sig-

nificantly to transmission relative to dogs (Fig 1). To model the transmission dynamics, we

used (i) a deterministic mathematical model to calculate transmission to dogs, and (ii) a set

of equations to estimate transmission from infected dogs to humans, extended and devel-

oped from Dye (1996) [39]. Using the deterministic model, we simulated different interven-

tion scenarios and calculated the number of infected dogs in the population for each

scenario, and then estimated the number of new human infections arising from transmis-

sion from the infected dogs.

Fig 1. Model representing the transmission dynamics of L. infantum. (A) Compartmental model to calculate transmission between dogs: Susceptible (S)–

Exposed (E)—Infectious (I). Proportion ρ of E dogs become highly infectious (IHI), and 1-ρ become low infectious (ILI). Vectorial capacity (CD) represents the

transmission of L. infantum among dogs. (B) Equations to estimate transmission from infected dogs to humans in the form of human incidence of ZVL (λH).

Vectorial capacity (CH) represents the transmission of L. infantum from dogs to humans. All the parameters included in CD, CH and λH are defined in Table 1.

https://doi.org/10.1371/journal.pntd.0006797.g001
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Transmission to dogs

We used a Susceptible-Exposed-Infectious (SEI) compartmental model to describe the transmission

dynamics of ZVL in dogs (Fig 1), where susceptible (S) dogs become exposed (E) after being bitten

by an infected sand fly, and after an exponentially distributed incubation period (with average dura-

tion 1/i, where i is the incubation rate per day) become either highly infectious (IHI) or low-infec-

tious (ILI) [15], whereupon they can infect other dogs via the vector. The model uses a vectorial

capacity term (CD) to represent the transmission of L. infantum between dogs by sand flies. This

approach is appropriate because the infection dynamics happen on a much faster time scale in sand

flies than in dogs, and few sand flies live long enough to acquire infection. The formula for CD (1)

includes the following terms: number of sand flies (V), number of dogs (N), biting rate on dogs (aD),

sand fly mortality rate (μ), and probability of surviving the fixed extrinsic incubation period τ (e−μτ)

CD ¼
V
N
a2
De
� mt

m
; ð1Þ

Exposed (E) dogs represent recently infected dogs that do not transmit infection and do not show

clinical symptoms. The fraction of dogs that become highly infectious (IHI) is denoted ρ, so (1 − ρ)

become low infectious (ILI). The set of differential equations that describe the dynamics in a stable

population are:

B ¼ d ðSþEÞ þ diðILI þ IHIÞ; ð2Þ

dS
dt
¼ B � pDp

li
v

CDSILI
N
� pDp

hi
v

CDSIHI
N
� dS; ð3Þ

dE
dt
¼ pDp

li
v

CDSILI
N
þ pDp

hi
v

CDSIHI
N
� iþ dð ÞE; ð4Þ

dIHI
dt
¼ riE � diIHI; ð5Þ

dILI
dt
¼ 1 � rð ÞiE � diILI; ð6Þ

N ¼ SþEþ ILI þ IHI; ð7Þ

All terms and values used in Eqs (2)–(7) are described in Table 1. The system of differential Eqs (1)–

(7) were solved using the package deSolve in R 3.2.0 [40].

Transmission to humans

Human infection incidence (λH) is related to the number of infected dogs (ID = IHI + ILI) and

to the capacity of sand flies to transmit to humans (CH) [39]

lH ¼
IDCH

H
; ð8Þ

CH ¼
V
H
aHaDe� mt

m
; ð9Þ

The per capita human incidence rate amongst the susceptible population (λH) was calculated

using Eqs (8) and (9).
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Parameter values

Model parameter values (Table 1) were largely obtained from a cohort study of naturally

infected Brazilian dogs under high transmission [15,41,44]. In this setting it was shown that a

small fraction (17%) of infected dogs were highly infectious, being responsible for 80% of all

transmission events measured by longitudinal xenodiagnosis [15]. Therefore, our model

included two types of infected dogs: highly infectious (IHI) and low-infectious (ILI) dogs. For

the highly infectious dogs the probability of transmitting infection (phiv = 0.39) was much

higher than for the low-infectious dogs (pliv = 0.017) [15]. The following fixed values were used

for the number of sand flies (V = 12000), number of dogs (N = 1000), and number of humans

(H = 1000) as these were the parameters for which the model reached equilibrium at 0.02 to

0.03 L. infantum infections/1000 susceptible people. This is the incidence reported in endemic

areas in Brazil [11].

The value chosen for the natural sand fly mortality rate (μ = 0.42) was reported by Dye in

1996 [39]. This parameter was estimated from the parous rate in a study of the aggregation

behavior of the South American vector, Luztomyia longipalpis where they observed 212 sand

flies out of 746 survived one cycle (212/746 = 0.284) [43]. From the parous rate the mortality

rate was calculated as μ = −ln (0.284) = 1.26/cycle, and life expectancy of 1/1.26 = 0.79 cycles;

given a gonotrophic cycle of 3 days on average the average life expectancy of Lu. longipalpis is

estimated to be 2.4 days (corresponding to a death rate of μ = 0.42/day) equivalent to 57% mor-

tality at day 2 and 95% mortality at day 7 (Fig 2).

Scenarios for prediction

The sand fly mortality rate under treatment (μT), and the proportion of dogs treated with sys-

temic insecticides (coverage) (PT), were varied to make model predictions of the efficacy of the

intervention to prevent human infection. For the non-treatment scenario, the natural sand fly

mortality rate μ = 0.42/day [39] was used. For the treatment scenarios the sand fly mortality

rate was used as a proxy of the insecticide efficacy. Insecticide efficacy was included in the

Table 1. Parameters in the model and their sources.

Parameter Definition Value Reference

ρ Proportion of highly infectious dogs 0.17 [15]

i Incubation rate in dogs 0.005/day [41]

δ Death rate in non-infectious dogs 0.0011/day [15]

δi Death rate of infected dogs 0.003006/day [42]

aD Biting rate on dogs 0.333/day [43]

aH Biting rate on humans 0.125/day [36]

τ Latent period of L. infantum in sand flies 7 days [39]

μ Sand fly mortality rate 0.42/day (57%) [39]

μT Sand fly mortality rate under treatment Variable (57–100%) -

V Number of sand flies 12000 Fixed

H Number of humans 1000 Fixed

N Number of dogs 1000 Fixed

phiv Probability of a highly infectious dog transmitting to a sand fly 0.39 [15]

pliv Probability of a low-infectious dog transmitting to a sand fly 0.017 [15]

pD Probability of an infected sand fly transmitting to a dog 0.321 [16]

PT Proportions of dogs treated with systemic insecticides Variable (60, 70, 80%) -

Δ Insecticide decay/day in insecticide efficacy after the administration Variable(-0.0001, -0.05) -

https://doi.org/10.1371/journal.pntd.0006797.t001
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vectorial capacity equation in the term defining the sand fly longevity (e−μ(t)τ/μ(t)). The effect

of a proportion PT of dogs being treated with systemic insecticide on the overall sand fly mor-

tality rate μ(t) was modelled as:

mðtÞ ¼ ð1 � PTÞmU þ PTmTðtÞ ð10Þ

where μU is the natural sand fly mortality rate (μU = 0.42/day) from feeding on untreated dogs,

and μT(t) is the (time-dependent) mortality rate from feeding on treated dogs (see below).

These intervention parameters were tested in combination, whereby coverage scenarios

(PT) ranged from 60–80% and insecticide efficacies (lethality) were tested from the minimum

of 57%, (equivalent to the natural sand fly mortality (Fig 2)) to a maximum of 100% 2 days

after blood feeding on a treated dog. Scenarios also included a decrease in insecticide efficacy

Fig 2. Sand fly survival curve showing the continuous probability of sand fly survival. Blue dashed-dotted line represents the sand fly

survival after biting a dog treated with a systemic insecticide of 80% efficacy where only 20% of the sand flies survive after 2 days (black

triangle). Black line is the baseline sand fly mortality reported by Dye, 1996. Red dotted line represents the lower bound used in the sensitivity

analysis. Green dashed line represents the upper bound used in the sensitivity analysis. Black triangles represent survival 2 days after biting on

dogs. Black squares represent survival of L. infantum extrinsic incubation period (7 days).

https://doi.org/10.1371/journal.pntd.0006797.g002
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over time, reflecting a linear daily rate of decay in insecticide efficacy per day post insecticide

administration. For each level of insecticide efficacy we simulated a range of decay scenarios,

from negligible decay over time (Δmin = 0.0001/day) to rapid decay, eliminating efficacy within

10 days of treatment (Δmax = - 0.05/day). All scenarios were run for 365 days (after first run-

ning the dynamics to equilibrium). With the slope we estimated the time duration for which

the insecticide efficacy is above 65%, the minimum efficacy reported for systemic insecticides

[45].

Different combinations of the target parameter values were run to identify the parameter

space that resulted in� 50% and� 80% reductions in annual human infection incidence. The

percentage reduction in human incidence is given by:

%reduction in lH ¼ 100 1 �
lHi

lH0

 !

; ð11Þ

where lH0
is the median equilibrium human incidence calculated from the model run with ini-

tial values of 1000 dogs (S = 998, E = 0, IHI = 1, and ILI = 1) and 12000 sand flies, and lHi
is the

median human incidence during the 365 days of the intervention, calculated from each

scenario.

Sensitivity analysis

L. infantum transmission models have been reported as being highly sensitive to some of the

parameters included in our model [16,37,38]. Univariate sensitivity was performed by selecting

biologically realistic lower and upper bounds of the following parameters: biting rate on

humans (aH), biting rate on dogs (aD), natural sand fly mortality rate (μU), sand fly density (V/

N), proportion of highly infectious dogs (ρ), probability of an infected sand fly transmitting to

a dog (pD) and death rate of infected dogs (δi). We also included insecticide coverage (propor-

tion of the dog population treated), PT, and decay in insecticide efficacy, Δ, in the sensitivity

analysis to observe how these parameters affected model predictions compared to the afore-

mentioned parameter values.

For the purposes of the sensitivity analysis, our outputs at equilibrium were lH0
, S, E, IHI,

and ILI, and the chosen baseline intervention scenario was 80% coverage, 80% insecticide effi-

cacy and a linear decrease in efficacy of Δ = −0.00128/day (i.e. monthly decay of 4%).

Results

Model equilibrium

Running the model for 10,000 days, the equilibrium number of dogs in each infection class

were 508 susceptible (S = 508), 130 exposed (E = 130), 62 highly infectious (IHI = 62), and 300

low-infectious (ILI = 300) dogs, and per capita human incidence lH0
= 0.0227 infections/1000

susceptible people/year.

Model outcomes

Including combinations of initial insecticide efficacy (57–100%) and efficacy decay (0.001/day

—0.05/day), the model predicted reductions of 0 to 97% in human infection incidence when

dog population coverage was 80%. At 70% and 60% dog coverage the maximum reductions in

human incidence achieved were similarly high, 95% and 93% respectively (Fig 3).

Reductions of� 50% in human incidence were achieved with an initial insecticide efficacy

of� 80% and efficacy above 65% maintained for a least 5.7, 6.1, and 6.5 months when under
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80%, 70% and 60% dog coverage respectively (Table 2). The model predictions also showed

that change in human incidence was most sensitive to variations in the initial levels of insecti-

cide efficacy and efficacy decay or duration once the incidence reduction was between 50 and

75% (contour curves Fig 3).

The model also allows us to estimate the dog population coverage required to reduce

human incidence by 50% for an insecticide with given characteristics. For example, a systemic

insecticide with an initial efficacy of 80% and 6.5 months above 65% efficacy would require a

coverage of 60% to reduce the human infection incidence by 50%. For the same reduction in

human incidence an insecticide with 80% initial efficacy and 5.7 months above 65% would

require a coverage of 80%.

Testing the ranges of these intervention parameters together, the transmission model allows

us to identify all additional combinations of dog coverage, insecticide efficacy and duration

that lead to a similar reduction in human incidence. Taking 50% and 80% reduction in human

incidence as two significant thresholds, we find a group of combinations (initial efficacies

from 80 to 90%, coverage from 60 to 80%, and duration above 65% from 5.7 to 12 months)

that will lead to the desired result (Table 2).

Sensitivity analysis

The estimated reduction in human incidence in the baseline intervention model used in the

sensitivity analysis was 50.3%. Of the intervention parameters, model predictions were most

influenced by sand fly mortality (Fig 4). A 28% change in sand fly mortality resulted in a 40%

change in the reduction in human incidence (Fig 4). It had a greater modification effect than

dog coverage, for which a 35% change produced only a 20% change in the estimated incidence

reduction. Likewise, a ±25% variation in the decay rate of insecticide efficacy resulted in a -17

and +27% change in human incidence compared to baseline. Lower influence was found in

Fig 3. Reduction of human incidence of L. infantum infection. Scenario of mass application of systemic insecticides to dogs. Dog coverage: 80% (A), 70% (B)

and 60% (C). Insecticide efficacy (horizontal axis) is represented by the increase in sand fly mortality caused by the insecticide (μT(0)). Decay in the insecticide

efficacy occurs at a constant rate per day (vertical axis). Contour curves mark 5% changes in human incidence.

https://doi.org/10.1371/journal.pntd.0006797.g003
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death rate of infected dogs for which a ± 40% change induced a ± 5% change in human inci-

dence (Fig 4).

Discussion

Using a mathematical model of L. infantum transmission, we have predicted that significant

reductions in human incidence of infection can be achieved by community-wide use of sys-

temic insecticides in dogs.

The model allows estimating the minimum requirements of the systemic insecticide (effi-

cacy and duration) and the intervention (dog treatment coverage) to significantly reduce L.

infantum infections in humans. For example, reducing annual ZVL incidence by 50% would

require treating at least 70% of the dogs using an insecticide with an initial efficacy greater

than 80% and that would remain effective (mortality over 65%) for at least 6 months. Different

combinations of insecticide efficacy, duration and coverage could reach similar impact.

Currently there are no systemic insecticides for dogs registered against phlebotomine sand

flies, but some of the existing insecticidal products [26] may comply with some of the require-

ments identified in our model. In a previous study we showed that fluralaner administered

orally to dogs, currently registered for fleas and ticks, had a phlebotomine mortality effect of

60 to 80% for 30 days [46]. The initial insecticide effect may be adequate but its duration seems

to be limited for control of ZVL. Slow release formulations [47,48], which have a prolonged

effect could be evaluated.

Our model also allows us to evaluate the effect of modifying the coverage of the interven-

tion. Treating 80% or more of the dogs would mean that human infections could still be

reduced using systemic insecticides that are less effective or have a shorter duration. However

previous studies (e.g. those with impregnated collars) have shown that it may be difficult to

reach a high coverage in dogs in some ZVL endemic regions [49]. Other strategies such as tar-

geting highly infectious dogs (or ‘superspreaders’) could be more efficient in reducing L. infan-
tum transmission [44].

Our model assumes that dog, sand fly and human populations are constant, and thus that

the insecticide does not affect the sand fly-to-host ratios. We have therefore only evaluated the

Table 2. Example of identification of combinations of dog coverage, insecticide efficacy and monthly decay in efficacy that lead to 50% and 80% reduction in

human incidence according to the model.

Target: reduction in human incidence Dog coverage

(% dogs treated)

Initial Insecticide efficacy

(% mortality)

Monthly decay in efficacy Months with efficacy� �65%

50% 80% 90% 10.6% 5.9

80% 4.8% 5.7

70% 90% 10.4% 6

80% 4.6% 6.1

60% 90% 10% 6.25

80% 4.3% 6.5

80% 80% 90% 8.5% 7.4

80% 2.7% 10.25

70% 90% 7.9% 7.9

80% 2.2% 12

60% 90% 7.2% 8.6

80% 1.5% 12

�Minimum efficacy reported in systemic insecticide efficacy studies [45]

https://doi.org/10.1371/journal.pntd.0006797.t002
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impact that systemic insecticides would have on sand fly survival, not on sand fly density.

Reducing sand fly density could also reduce the risk of Leishmania transmission as shown by

Poché et al [32]. The model does not consider other potential source of infection such as

synanthropic animals or humans that could play a significant role in transmission and it also

assumes a constant risk of infection throughout the year. In some endemic areas L. infantum
vectors are seasonal, for example in more temperate climates [50,51]. In those areas, systemic

insecticides with shorter efficacy (e.g. 3 months) may be sufficient to significantly reduce the L.

infantum infections in humans. This scenario was not considered in our model. Neither was

the use of repeated treatments (e.g. treating dogs every 3 months), which may be an alternative

to reach the efficacy requirements identified in the model. This would, however, increase the

cost of the intervention.

Additionally, some aspects of the model could cause bias in the predictions. The parameter

that the model output was most sensitive to was the sand fly mortality rate. This parameter is

critical since is directly related to the probability of a sand fly surviving 7 days, the extrinsic

Fig 4. Tornado plot showing the sensitivity of different parameters on the reduction in human incidence of L. infantum infection in the

model.

https://doi.org/10.1371/journal.pntd.0006797.g004
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incubation period of L. infantum (Fig 2). However, other, lower sand fly mortality rates (μ<
0.42) have been used in modelling of ZVL [12, 23, 25]. This would indicate that our predictions

are conservative, i.e. using any of the other reported sand fly mortality rates our model would

predict a stronger effect at controlling human infections of L. infantum using systemic insecti-

cides in dogs.

In ZVL endemic regions (e.g. Brazil) where current control measures are failing to control

L. infantum transmission, the community-wide use of systemic insecticides in dogs could be

considered as an alternative or complementary vector control strategy. In this study we did

not compare different interventions but previous models using similar multi-compartmental

models have shown that the risk of L. infantum transmission can be significantly reduced by

the use of insecticide-impregnated dog collars [16,36]. Both interventions would reduce the

number of infected sand flies so similar results can be expected. Compared to the mass-use of

insecticide impregnated dog collars, systemic insecticides may be easier to deploy, in particular

if oral formulations are used. Nevertheless, a number of operational challenges can be

expected. As in other mass-treatment interventions high coverage may be difficult to reach.

The systemic insecticides currently used in dogs against fleas and ticks have shown to be save

when administered based on weight groups [52–54] but its mass use in dogs has never been

tested. Dogs may require repeated treatments and adverse effects may need to be monitored.

Similarly, estimating the cost of this new intervention is difficult as there are no systemic insec-

ticides for dogs registered against sand flies. The cost of community-wide use of dog collars in

Brazil has been reported at 12 USD/dog assuming one cycle of intervention [38,55], other

authors have reported a cost just per collar around 10–15 USD [21]. The cost-effectiveness of

the use of systemic insecticides in dogs to control ZVL remains to be proven.

The product requirements identified in our model could guide the development of a new

product or the repurposing of systemic insecticides already available so that they can be used

as a public health intervention to control ZVL in endemic regions.
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2016;32.

50. Sherlock IA. Ecological interactions of visceral leishmaniasis in the state of Bahia, Brazil. Mem Inst

Oswaldo Cruz. 1996; 91:671–83. PMID: 9283643

51. Kelly DW, Mustafa Z, Dye C. Differential application of lambda-cyhalothrin to control the sandfly Lutzo-

myia longipalpis. Med Vet Entomol. 1997; 11:13–24. PMID: 9061673

52. Crosaz O, Chapelle E, Cochet-Faivre N, Ka D, Hubinois C, Guillot J. Open field study on the efficacy of

oral fluralaner for long-term control of flea allergy dermatitis in client-owned dogs in Ile-de-France

region. Parasit Vectors. 2016; 9:174. https://doi.org/10.1186/s13071-016-1463-z PMID: 27007494

53. Beugnet F, Crafford D, de Vos C, Kok D, Larsen D, Fourie J. Evaluation of the efficacy of monthly oral

administration of afoxolaner plus milbemycin oxime (NexGard Spectra, Merial) in the prevention of adult

Spirocerca lupi establishment in experimentally infected dogs. Vet Parasitol. 2016; 226:150–61. https://

doi.org/10.1016/j.vetpar.2016.07.002 PMID: 27514901

54. Becskei C, De Bock F, Illambas J, Cherni JA, Fourie JJ, Lane M, et al. Efficacy and safety of a novel

oral isoxazoline, sarolaner (SimparicaTM), for the treatment of sarcoptic mange in dogs. Vet Parasitol.

2016; 222:56–61. https://doi.org/10.1016/j.vetpar.2016.02.017 PMID: 26928658

55. Camargo-Neves V, Rodas L, Calemes E. Cost effectiveness of deltamethrin impregnated collars (Scali-

bor) for the control of visceral leishmaniasis in human and canine populations in Brazil. Proc 2nd Int

Congr Canine Leishmaniasis.: pp 118–120.

Modelling systemic insecticides in dogs to control zoonotic visceral leishmaniasis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006797 September 17, 2018 14 / 14

https://doi.org/10.1371/journal.pntd.0002583
http://www.ncbi.nlm.nih.gov/pubmed/24416460
https://doi.org/10.1186/s13071-015-1240-4
https://doi.org/10.1186/s13071-015-1240-4
https://doi.org/10.1186/s13071-018-2820-x
https://doi.org/10.1186/s13071-018-2820-x
http://www.ncbi.nlm.nih.gov/pubmed/29622033
https://doi.org/10.1186/s12936-015-0883-0
https://doi.org/10.1186/s12936-015-0883-0
http://www.ncbi.nlm.nih.gov/pubmed/26377691
https://doi.org/10.1126/scitranslmed.aag2374
http://www.ncbi.nlm.nih.gov/pubmed/27856796
http://www.ncbi.nlm.nih.gov/pubmed/9283643
http://www.ncbi.nlm.nih.gov/pubmed/9061673
https://doi.org/10.1186/s13071-016-1463-z
http://www.ncbi.nlm.nih.gov/pubmed/27007494
https://doi.org/10.1016/j.vetpar.2016.07.002
https://doi.org/10.1016/j.vetpar.2016.07.002
http://www.ncbi.nlm.nih.gov/pubmed/27514901
https://doi.org/10.1016/j.vetpar.2016.02.017
http://www.ncbi.nlm.nih.gov/pubmed/26928658
https://doi.org/10.1371/journal.pntd.0006797

