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Abstract

Progress towards controlling and eliminating parasitic worms, including schistosomiasis,

onchocerciasis, and lymphatic filariasis, is advancing rapidly as national governments, mul-

tinational NGOs, and pharmaceutical companies launch collaborative chemotherapeutic

control campaigns. Critical questions remain regarding the potential for achieving elimina-

tion of these infections, and analytical methods can help to quickly estimate progress

towards—and the probability of achieving—elimination over specific timeframes. Here, we

propose the effective reproduction number, Reff, as a proxy of elimination potential for sexu-

ally reproducing worms that are subject to poor mating success at very low abundance (pos-

itive density dependence, or Allee effects). Reff is the number of parasites produced by a

single reproductive parasite at a given stage in the transmission cycle, over the parasite’s

lifetime—it is the generalized form of the more familiar basic reproduction number, R0,

which only applies at the beginning of an epidemic—and it can be estimated in a ‘model-

free’ manner by an estimator (‘ε’). We introduce ε, demonstrate its estimation using simu-

lated data, and discuss how it may be used in planning and evaluation of ongoing elimination

efforts for a range of parasitic diseases.

Author summary

Critical questions remain regarding the potential for achieving elimination of helminth

(worm) infections, and methods are needed to quickly estimate the probability of
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achieving elimination over specific timeframes. Here, we make use of methods in mathe-

matical epidemiology to propose an estimator of elimination potential, and then apply

this estimator of Reff−the number of parasites produced by a single reproductive parasite

at a given stage in the transmission cycle, over the parasite’s lifetime—as a so-called ‘elimi-

nation feasibility coefficient,’ or ‘ε.’ We compare this metric ε to commonly used metrics

of population viability for the parasitic disease schistosomiasis. The value of this estimator

is that it allows us to determine whether an elimination program is succeeding and how

much effort might be required to bring it to completion.

Introduction

The World Health Organization (WHO) Neglected Tropical Disease (NTD) Roadmap [1]

advocates targeting several parasitic diseases, including schistosomiasis, onchocerciasis, and

lymphatic filariasis (LF), for elimination or control. Control measures generally rely on mass

drug administration (MDA) and environmental interventions that interrupt the parasites’ life

cycles [2]. The WHO has set goals to locally eliminate (e.g. malaria from the Greater Mekong

Region by 2030 [3]) or globally eradicate (e.g. yaws by 2020 [4]) certain NTDs in the coming

years, and elimination may also be within reach for onchocerciasis in Guatemala [5]; Chagas

disease in parts of Central and South America [5]; lymphatic filariasis in Brazil, Haiti and The

Dominican Republic [5]; trachoma in Mexico [5]; and schistosomiasis in China [6].

However, assessing the control effort required to reach elimination in these settings

remains a major challenge. The standard mathematical epidemiological approach relies on fit-

ting differential equation models to epidemiological data, and examining model parameters

and associated dynamical features. Such models are simple enough to be rapidly solved and

yet rich enough to encode many of the mechanisms that give rise to epidemics, e.g., person-to-

person contact processes, incubation times, and infectious periods [7]. However, these models

require substantial knowledge of the epidemiological system so that the essential biological

processes can be properly mathematically formulated. For this reason, non-parametric

approaches (i.e., approaches that do not require model parameters to be fitted to data) that

analyze empirical data, such as time series of infection intensity or disease prevalence, have

also been proposed to answer policy-relevant questions, such as determining when a disease is

close to elimination [8].

A powerful way to use mathematical epidemiology in systems in which the full model can-

not be easily specified is to use quantities from well-formulated models to generate model-free

analyses of commonly collected data. We refer to analyses that are ‘model-free’ as those that do

not require the construction and parameterization of a mechanistic (or simulation) model.

Here, the effective reproduction number, Reff, is presented as one such candidate quantity for

assessing the elimination feasibility of parasitic diseases. Because morbidity associated with

parasitic infections is often related to infection intensity (i.e., the number or burden of adult

parasites or worms harbored by human hosts) rather than the presence or absence of infection

in a particular individual [9], the effective reproduction number is defined as the number of

parasites produced by a single reproductive parasite at a given stage in the transmission cycle,

over the parasite’s lifetime. The effective reproduction number is the generalized form of the

more familiar basic reproduction number, R0, which only applies at the beginning of an epi-

demic. Reff is a function of parasite population density (it should correctly be referred to as

Reff(W) but we use the more compact form Reff throughout this article) and thus changes as

the parasite density changes over time [10]. When Reff = 1, the parasite population is at an
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equilibrium, where it is expected to be perfectly replaced over the course of its lifetime. Fur-

thermore, Reff > 1 indicates a parasite population expected to increase in size while a popula-

tion with Reff < 1 would be expected to decrease.

The Reff profile (Fig 1) captures the relationship between Reff and parasite population den-

sity, providing a summary of system stability across a range of parasite burdens within the

human host population. Under the influence of both positive density dependence (PDD; e.g.

the mating probability of dioecious—two gendered—parasites) and negative density depen-

dence (NDD) (see [10]), the Reff profile intersects Reff = 1 twice and has a humped shape. Fur-

ther examples of PDDs include parasite suppression of the host’s immune response [11], and

of NDDs include host immunity and parasite crowding effects acting upon parasite establish-

ment or fecundity [12]. An endemic equilibrium (Fig 1,Weq) occurs at high parasite burdens

where parasite population growth is restricted by NDD (e.g., because of crowding, competi-

tion, or host immunity). The breakpoint (Fig 1,Wbp) occurs at a low parasite burden where

strong PDD, also known as an Allee effect [10,13], facilitates parasite elimination due to reduc-

tions in parasite reproduction (e.g., due to mate limitation) [10]. The Reff profile can be used to

estimate key features of a parasite population such as the rate of rebound following treatment,

the expected parasite burden at the endemic equilibrium, or the expected breakpoint parasite

population size [10]. Even though the mating probability PDD is often ignored in traditional

parasitic models, there are a number of studies that have included this PDD, and breakpoints,

in their theoretical analyses [10,14–18].

Below the breakpoint (Fig 1,Wbp), Reff < 1 and the effects of PDD are expected to drive the

parasite population to elimination. The breakpoint therefore provides a logical target for inter-

vention campaigns that decrease parasite burden, e.g., through the use of MDA, as reducing

the parasite population below its breakpoint should result in elimination even without further

resources devoted to intervention. Detecting the influence of PDD on parasitic disease systems

and summarizing its potential influence on the elimination feasibility of sexually reproducing

parasites is therefore of great value to public health practitioners developing campaigns to

eliminate parasitic diseases from human populations. We hypothesize that parasite popula-

tions influenced by PDD exhibit distinct dynamics that are detectable in epidemiological data-

sets measuring parasite burden or prevalence through the course of an intervention campaign,

Fig 1. The Reff profile. An Reff profile with equilibria noted at both low (unstable;Wbp) and high (stable;Weq) parasite

burdens. Between these equilibria lies a point of parasite burden (Wpeak) where intense transmission is expected

(transmission being proportional to the value of Reff) due to minimized influence of restrictive negative density

dependence and facilitation of transmission through amplified positive density dependence. The critical influence of

positive density dependence on expected values of Reff at low worm burdens (solid line) and its deviation from

expected values in the absence of positive density dependence (dashed line), where Reff! R0, is also shown.

https://doi.org/10.1371/journal.pntd.0006794.g001
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and that straightforward analysis of these datasets can shed light on the elimination feasibility

of parasite populations subjected to regular interventions.

To demonstrate this, the Reff profile of the dioecious macroparasitic disease schistosomiasis

is estimated, and shown to approximate the rate at which infection intensity rebounds follow-

ing MDA, a quantity referred to as the Bounce Back Rate, BBR. Furthermore, it is shown that

data collected from longitudinal intervention campaigns (e.g., annual MDA campaigns con-

ducted in endemic schistosomiasis communities) can generate time-series of the BBR that can

be used to develop an estimator that quantifies the elimination feasibility of the parasite popu-

lation. The estimator is evaluated by comparing it to the results of commonly used population

stability analyses. This estimator is presented as a simple, model-free quantity which can be

used to determine the elimination feasibility of a parasitic disease subjected to regular control

efforts, and more stringent and systematic collection of data that could be used to derive it is

suggested.

Methods

A mathematical model of schistosomiasis transmission, adapted from the compartmental

model developed by Anderson and May [19] and from other previous work [20,21] (which

focused upon S. haemotobium) is developed to describe parasite burden, measured as mean

worm burden per person,W, in the human host population, and three disease states of the

intermediate host snail population: susceptible S, exposed (pre-patent, E) and infectious (pat-

ent, I). The model, expressed below as Eqs 1–4, incorporates NDD via the snail population

carrying capacity, C, acquired host immunity, ρ, and parasite crowding, γ. A PDD is imple-

mented via the mating probability of the obligatory dioecious Schistosoma spp. parasites, ϕ.

The mating probability represents the probability that an individual female worm will be suc-

cessfully mated, and therefore able to produce viable eggs. It is quantified as a function of the

mean worm burden per person,W, and its distribution amongst human hosts assuming a neg-

ative binomial distribution with aggregation parameter, κ [22].

Mathematical model of schistosomiasis transmission

The basic schistosomiasis model is given by the following system of differential equations:

dS
dt
¼ fN 1 �

N
C

� �

Sþ Eð Þ � mNS �
1

2
bWH�gS ð1Þ

dE
dt
¼

1

2
bWH�gS � mN þ sð ÞE ð2Þ

dI
dt
¼ sE � mN þ mIð ÞI ð3Þ

dW
dt
¼ lIr � mW þ mHð ÞW ð4Þ

where the density dependent parameters, ϕ, γ, and ρ, are estimated as:

� ¼ 1 �
1 � W

Wþk

� �kþ1
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g ¼ 1þ
ð1 � e� aÞW

k

� �� ðkþ1Þ

ð6Þ

r ¼ eð1� vW� e� vW Þ ð7Þ

and N = S + E + I is the total snail population.

Parameter and state variable descriptions and values used in the model are shown in

Table 1. The transmission parameters, β and λ, representing man-to-snail and snail-to-man

transmission, respectively, are estimated by fitting the full model to epidemiological data col-

lected in a community in the Senegal river basin as described elsewhere [20,21]. The aggrega-

tion parameter of the negative binomial distribution, κ, is also estimated directly from the data

(S1 Text). The degree of parasite aggregation may differ for different stages of the parasite life

cycle, but even complex simulation models generally use only a single aggregation parameter

[25]; we therefore use a single parameter for the parasite negative binomial distribution to

allow simple interpretation of our modelled results.

The effective reproduction number and bounce back rate. Setting state variable time

derivatives to zero in Eqs 1–3, and substituting into Eq 4, we obtain the rate of change of worm

burden, expressed in terms of Reff as:

dW
dt
¼W Reff � 1

� �
mW þ mHð Þ ð8Þ

where Reff is given by (details in SI):

Reff ¼
lrT1T2CðfNð1þ T2Þ � mN � bWH�gÞ
fNð1þ T2 þ T2T1Þð1þ T2ÞðmW þ mHÞW

ð9Þ

Table 1. Model parameters and state variables, their symbols, and values along with their literature basis.

Parameters Symbol Value Reference

Snail fertility rate fN 0.1 [20]

Snail carrying capacity C 10000 [20]

Snail mortality: deaths/snail/year μN 6.2 [19]

Transition rate from exposed to infected snails (per year) σ 9.1 [20]

Enhanced snail death due to infection (per year) μI 30.3 [20]

Death rate of adult worms (per year) μW 0.3 [20]

Number of human hosts H 300 [20]

Death rate of humans (per year) μH 0.02 [20]

Neg Bin aggregation parameter K 0.08 Est. from epi data

Parasite crowding density dependence parameter α 0.001 [23]

Acquired immunity density dependence parameter v 0.0028 [24]

Snail-to-human transmission λ 1.8 × 10−4 Fit to epi data

Human-to-snail transmission β 1.6 × 10−6 Fit to epi data

State Variables

Susceptible snails S
Exposed snails E
Infected snails I
Adult parasite intensity per human W

https://doi.org/10.1371/journal.pntd.0006794.t001
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where T1 ¼
s

mNþmI
, and T2 ¼

1
2
bWH�g
mNþs

. In Eq (8), Reff performs the same role as the basic reproduc-

tion number R0 for the parasite dynamics close to the disease-free equilibrium (DFE) (and

reduces to R0 at the DFE). We define the Bounce Back Rate, BBR(W) (henceforth, BBR), as the

rate of change of parasite burden per adult parasite, expressed as:

BBR ¼
1

W
dW
dt

ð10Þ

and therefore:

BBR ¼ ðReff � 1ÞðmW þ mHÞ ð11Þ

The linear relationship between Reff and BBR, implied by Eq 11, indicates that estimation of

BBR can inform the estimation of Reff, thus establishing a link between the model-based Reff

and the value of BBRmeasured through field study (see below).

Modeling positive density dependence. To demonstrate the influence of PDD on Reff

and BBR, two versions of the model are simulated across a range of worm burdens,W, to gen-

erate and compare Reff profiles: (1) the PDDmodel is run with κ = 0.08 [20] as estimated from

the epidemiological data; and (2) the PDD-free model is run with ϕ = 1 implying all worms are

successfully mated and therefore PDD has no influence on model dynamics.

Estimating BBR from data

While the BBR can be estimated from the model (Eq 11), its value lies in its model-free estima-

tion from empirical data. Consider a schistosomiasis intervention program in which an

infected human population is treated with annual rounds of MDA. Previous to MDA in year

(or other time frame) i, mean worm burden,Wprei, in the human population is assessed, while

mean worm burden in the human population following MDA,Wposti, is estimated based on

the coverage of treatment and the efficacy of the administered anthelminthic drug. Therefore,

in what follows,Wposti is the worm burden in the population following MDA in year i, and

Wprei+1 is the worm burden in the human population before MDA in the following year i+1.

Using the negative binomial aggregation parameter, κ, the prevalence before, PREVprei, and fol-

lowing, PREVpost i, MDA can also be estimated via simple conversion ofW to the probability

that an individual is infected. The BBR in year i is then estimated using these longitudinal

infection or prevalence data as:

BBRi ¼
1

Wposti

 !
Wpreiþ1

� Wposti

tiþ1 � ti

� �

ð12Þ

This is the finite-difference estimator of the continuous time BBR (Eq 11), which is linearly

related to Reff, as previously established. Based on this relationship, it is next demonstrated that

the underlying dynamics of disease transmission driven by PDD are detectable in empirical

datasets by calculating the expression in Eq 12.

Model fitting and data generation. The model expressed as Eqs 1–4 was fitted to epide-

miological data detailed elsewhere [20]. Briefly, the model is used to simulate mean worm bur-

den in treated and untreated segments of the population which is then used to estimate the

maximum likelihood transmission parameter set using the optim function in R [26]. A profile

likelihood approach is then used to estimate the 95% confidence interval of the transmission

parameters that are included in subsequent simulations. In order to focus on system dynamics

that demonstrate the influence of PDD (i.e., low intensity transmission), 100 low transmission

intensity parameter sets within the 95% CI were used to simulate transmission over the course
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of 20 years with annual MDA at 80% coverage and 94% drug efficacy—corresponding to the

egg reduction ratio for S. haematobium estimated in [27]—using both the PDDmodel and the

PDD-free model. From these simulated datasets,Wprei andWposti were calculated annually,

allowing for the estimation of BBR over the course of a feasible, long-term MDA campaign,

using Eq 12. Following 20 rounds of annual MDA, 40 years of intervention-free transmission

are simulated to demonstrate the influence of PDD on the sustainability of worm burden

reductions after an intervention campaign is halted.

The elimination feasibility coefficient ‘ε’: Development and evaluation

From Eq 11 it can be seen that BBR should decrease and eventually become negative as Reff

approaches and passes the breakpoint over the course of long-term MDA. Because this behav-

ior will only occur in the presence of strong PDD, longitudinal analysis of BBR can provide

information on the presence and strength of PDD and the elimination feasibility of the disease.

Specifically, adopting the simplest possible relationship, if BBR is related to time using a simple

linear model:

BBRðtimeÞ ¼ � � time ð13Þ

The parameter ε is expected to be positive, or not significantly different from zero, for the

PDD-free model, while it should be negative for the model accounting for mating probability

and PDD. The coefficient, ε fit to longitudinal BBR data—termed the elimination feasibility
coefficient—is estimated using the PDD and PDD-free models run with each of the 100 parame-

ter sets explained above. The ability of ε to identify disease transmission dynamics that are

influenced by strong PDD—which are expected to be more susceptible to elimination from

MDA-based intervention—is determined by estimating ε for each model for each year 3<

i< 20 in the 20 years of simulated annual MDA. In addition, for each set of estimates of ε
derived from the 100 parameter sets and for each year where 3< i< 20, one-sided t-tests are

used to identify significantly negative values of ε in data derived from the PDD and PDD-free
models. An estimate of ε significantly less than 0 provides evidence of the influence of PDD, as

it implies BBR is consistently decreasing with successive treatments.

The ability of ε to predict the feasibility of elimination in parasite populations influenced by

PDD was evaluated by comparing ε to the probability of extinction, P(e)—or strictly-speaking

local extinction, for parasite control programs, though we will not use the word local in what

follows—a common estimate of population viability in ecology and conservation biology [28].

Derived from stochastic models of population dynamics, P(e) explicitly incorporates demo-

graphic stochasticity, known to have a strong influence on population dynamics [28]. Simulat-

ing transmission and annual MDA with a stochastic model across a range of transmission

intensities 1.3x10-4� λ� 3.0x10-4, corresponding to the upper and lower bounds of the 95%

CI of λ, and parasite aggregation (0� κ� 2) therefore provides an estimate of population via-

bility in a variety of transmission scenarios. Stochastic versions of the PDD and PDD-free mod-
els were developed using the Gillespie Stochastic Simulation Algorithm [29,30] with the

adaptivetau package in R [31]. Additionally, random observation noise was added to simulated

measurements of worm burden by resampling the estimated mean worm burden with the R

function rnbinom to represent imperfect sampling and diagnosis associated with estimates of

parasite burden in human host populations [15]. These same resampled worm burden data

were then also used to estimate prevalence.

Simulated instances (n = 1,000) of longitudinal MDA intervention campaigns, as described

in section 2.2.1, were generated for each of 2500 parameter sets drawn from the ranges of λ
and κ above and holding all other parameters to values shown in Table 1. For each parameter

Elimination feasibility for parasites under MDA
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set, the probability of extinction, P(e), was estimated as the proportion of model instances that

result in elimination (i.e., induced extinction of the parasite population) out of all 1,000

instances. In each simulation, ε was estimated as in Eq 13 and the mean of all 1,000 estimates

of ε for each parameter set was examined with respect to its correlation with P(e) estimates

using a simple linear model with logit-transformed estimates of P(e) (thus transformed due to

the natural [0,1] range of P(e)):

logitðPðeÞÞ / � ð14Þ

Agreement between ε and P(e) implies that the model-free elimination feasibility coefficient is a

reliable estimate of how likely it is the that a parasite population will be eliminated over the

course of a routine MDA campaign. In summary, the higher the positive value of the elimina-

tion potential, the further from elimination the system currently lies. As the estimator becomes

negative, the system is moving towards elimination and growing negative values indicate prog-

ress in this direction. In all modelled parasite prevalence and intensity trajectories that follow,

we display the output values from the model unadjusted for diagnostic sensitivity or specificity.

Results

Influence of positive density dependence on profiles of Reff and BBR

The Reff profile (Fig 1) indicates that, without PDD, Reff! R0 asW! 0 (Fig 1, dashed line).

The disease-free equilibrium (W = 0) is unstable for the PDD-free model, while it is always sta-

ble for the PDDmodel (Fig 2B, dashed lines). As anticipated, the PDDmodel produces a BBR
profile with a humped shape, intersecting a line at BBR = 0 twice: at the breakpoint,Wbp, and

the endemic equilibrium,Weq (Fig 2A, solid line). This closely resembles the Reff profile shown

in Fig 1, which can indeed be recovered from the BBR profile through transformation accord-

ing to Eq 10. In such a system, asW! 0, Reff! 0 (Fig 1A, solid line) and dW
dt < 0 whileW<

Wbp and BBR< 0 (Fig 2A & 2B).

Elimination feasibility coefficient from generated data

A consequence of the global stability of the endemic equilibrium of the PDD-free model is that

the parasite density will always rebound after MDA is halted [19]. In the PDD-free model, dWdt
remains above 0 even with repeated MDA drivingW! 0 (Fig 3A, red line), with the potential

to rebound to pre-treatment infection levels. The low value ofW after 20 rounds of treatment

in the PDD-free model could mistakenly be interpreted as successful elimination, yet rebound

occurs after release of treatment (Fig 3A, red line). By contrast, the PDDmodel exhibits no

such rebound, since repeated MDA suppressesW belowWbp (Fig 3A, black line), restricting

transmission in the absence of exogenous parasites added to the system.

With respect to bounce back rate, the PDDmodel yields a steady decline over the period of

MDA and beyond caused by a decreasing mating probability asW! 0, and resulting in the

anticipated decline in BBR. AsW falls belowWbp, a negative estimate of BBR is also observed

(Fig 3B). The PDD-free model shows no such decline in BBR with successive MDA, as the mat-

ing probability remains high irrespective of reductions inW, and in fact BBR rises with each

round of MDA as the effects of NDD diminish asW! 0 (Fig 3B).

The slope of the BBR profile provides an estimate of ε (Eq 12), the elimination feasibility

coefficient and, as anticipated, the PDDmodel yields a BBR profile with a value of ε< 0, while

the PDD- free model shows ε> 0. When ε< 0, elimination is feasible using successive MDA

treatments that driveW belowWbp, while ε> 0 implies greater resistance to achieving

elimination.
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Trajectories of prevalence rather than worm burden through the course of annual MDA

intervention reveals similar dynamics that yield sustainable elimination in the PDDmodel and

rebound to endemic prevalence in the PDD-free model (Fig 4A). Prevalence based estimation

of BBR and ε reveals two key differences from the worm burden based estimation, however.

The first is that ε is initially both positive and relatively large in magnitude (Fig 4C) as a result

of relatively minor changes in the overall prevalence initially induced by MDA. This leads to ε
becoming negative only after 7 years of annual MDA. However, as opposed to BBR estimates

derived from worm burden data, every estimate of the prevalence-based BBR is< 0 (Fig 4B)

implying that, at least in the early stages, negative estimates of the prevalence-based BBRmay

serve as a better indicator of progress towards elimination than prevalence-based estimates

of ε.

Probability of extinction and elimination feasibility coefficient correlations

The probability of extinction, P(e), was analyzed in a stochastic modeling framework across a

range of realistic transmission intensities and degrees of aggregation of parasites among the

human host population, which moderates the strength of PDD. A broad range of transmission

scenarios were encapsulated in the tested parameter sets as P(e) ranged from 0 to 1. Fig 5

Fig 2. BBR profile reflecting key equilibria in relation to population parasite burden. The BBR profile for the PDD (a, solid

line) and PDD-free (a, dashed line)models. Note the symmetry with the Reff profile shown in Fig 1, including the location of key

equilibria at the breakpoint (Wbp) and endemic equilibrium (Weq) where Reff and BBR = 0. Also shown is the rate of change of

worm burden, dWdt (b), across log-transformed worm burden,W, for the PDD (solid line) and PDD-free (dashed line) models. At

low values ofW (b, inset), the models diverge as transmission in the PDDmodel (solid lines) is restricted by reduced mating

probability leading to dW
dt < 0 below the breakpoint,Wbp.

https://doi.org/10.1371/journal.pntd.0006794.g002
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shows the mean ε for each parameter set and its corresponding value of P(e), each derived

from 1,000 simulations of the stochastic model. The elimination feasibility coefficient was

strongly correlated with logit-transformed P(e) (Eq 14, R2 = 0.94). Additionally, the proposed

threshold of ε< 0 as an indicator of feasible elimination appears to be corroborated by corre-

sponding estimates of the probability of elimination with P(e) ~ 0.25 when ε = 0 and P(e)! 1

as ε decreases.

Elimination feasibility coefficient sensitivity

At low transmission intensities, the elimination feasibility coefficient remains negative in the

presence of any PDD (i.e. κ> 0; Fig 6). Examining the surface resulting from estimation of ε
across a range of transmission intensities and degrees of PDD illustrates that, as transmission

intensity increases, ε increases and remains greater than 0 irrespective of the degree of PDD.

Fig 3. Influence of PDD on key model outputs estimated with worm burden. (a) Worm burden profiles derived from the PDDmodel (black line) and PDD-free
model (red line) during 20 rounds of simulated annual MDA followed by 40 years with no intervention (the worm burden trajectory from the PDD-freemodel is

shifted two months along the axis to improve clarity). In the presence of PDD,W remains at 0 even after releasing MDA as it has been suppressed belowWbp (a),

while a lack of PDD allowsW to rebound back to pre-MDA levels once MDA stops. (b) Mean BBR values of 100 model runs across 20 annual treatment rounds with

error bars indicating standard deviation. (c) The elimination feasibility coefficient, ε, for the PDDmodel (black bars) and the PDD-free model (red bars) across each

round of MDA. Error bars represent standard deviation.

https://doi.org/10.1371/journal.pntd.0006794.g003
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At these high transmission intensities, single rounds of annual MDA—as were simulated in

this experiment—are insufficient to make sustainable reductions in transmission.

Discussion

Achieving local elimination of global infectious diseases, particularly parasitic worms that

cause a variety of NTDs, has become a major focus of the global health community. The avail-

ability of chemotherapeutic drugs is at an historic high due to drug donations from large phar-

maceutical companies, and to a commitment from multinational NGOs, such as The Bill and

Melinda Gates Foundation, to combat NTDs [32]. Yet measuring and tracking progress

towards elimination remains challenging [33,34].

Here, a model-free estimator of elimination potential for parasites with sexual reproduction

and positive density dependence was presented, based on longitudinal measurements of worm

burden or disease prevalence in human populations treated with regular MDA. The estimator,

ε, is based on observations of the bounce back rate, BBR, of parasitic infections in the host pop-

ulation following MDA, which are shown to be strongly associated with the effective reproduc-

tion number, Reff. Negative values of ε derived from worm burden and/or negative values of

Fig 4. Influence of PDD on key model outputs estimated with prevalence. (a) Prevalence profiles derived from the PDDmodel
(black line) and PDD-free model (red line) during 20 rounds of simulated annual MDA followed by 40 years with no intervention

(the prevalence trajectory from the PDD-freemodel is shifted two months along the axis to improve clarity). In the presence of

PDD, prevalence remains at 0% even after releasing MDA (a), while a lack of PDD allows the prevalence to rebound back to pre-

MDA levels once MDA stops. (b) Mean prevalence-based BBR values of 100 model runs across 20 annual treatment rounds with

error bars indicating standard deviation. (c) The prevalence-based elimination feasibility coefficient, ε, for the PDDmodel (black

bars) and the PDD-free model (red bars) across each round of MDA. Error bars represent standard deviation and the dashed line

between years 7 and 8 indicates the timepoint at which ε becomes significantly (p<<0) negative.

https://doi.org/10.1371/journal.pntd.0006794.g004
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prevalence-based BBR indicate consistent reductions in transmission that are expected to

result in elimination if conditions such as MDA frequency and coverage hold.

Short-term estimates of BBR (measurable following each round of MDA) and long-term

estimates of ε (measurable following three or more years of well-documented MDA) can pro-

vide a robust estimate of control status and progress towards elimination. Values of BBR derived

from worm burden data that approach or reach 0 may indicate reductions in transmission that

result in little to no reinfection in the measured time period. Furthermore, negative BBR follow-

ing MDA may indicate a parasite population that has been driven below its breakpoint and is

heading towards elimination due to reduced mating probabilities and below-replacement repro-

duction (i.e., Reff < 1). Negative values of BBR derived from prevalence data may indicate suc-

cessful reduction in transmission that can be coupled with longer term prevalence-based

estimation of ε to indicate progress towards elimination. Meanwhile, high values of BBR (> 0.3)

may indicate ineffective interruption of transmission and high rates of transmission (Reff > 2).

Since most parasites that infect humans and have sexual reproduction exhibit PDD [19], ε esti-

mates should tend to be negative asW! 0 in the presence of effective interventions. The

Fig 5. Correlation between mean ε and P(e). Correlation between mean ε and P(e) for each parameter set derived

from 1,000 simulations of the stochastic model. The model-free elimination feasibility coefficient is a strong predictor

of the model-predicted probability of extinction even in the presence of demographic stochasticity and observation

noise (R2 = 0.94; probit-transformed P(e)).

https://doi.org/10.1371/journal.pntd.0006794.g005
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elimination feasibility coefficient can therefore serve as a measure of progress and success in an

intervention campaign, with negative estimates of ε implying a campaign is achieving sustained

success in transmission interruption. On the other hand, positive values of ε could be indicative

of a campaign failing to induce sustainable reductions in transmission due to unmeasured,

untreated, or otherwise unaccounted for demographic groups [15], environmental conditions

such as temperature and precipitation [35], and connectivity between transmission sites [36].

Sensitivity analysis of the model revealed the possibility that high, but reasonable, levels of

transmission can overwhelm efforts to induce significant reductions in parasite burden using

annual MDA alone. Positive estimates of ε and/or high BBR values could indicate such a situa-

tion, signaling especially challenging conditions for achieving elimination by MDA alone and

possibly necessitating additional sanitation and/or education and/or snail control based inter-

ventions. Simultaneous estimation of BBR and ε can provide public health practitioners with a

quantitative framework to assess the status of an NTD intervention as it transitions from mor-

bidity control to transmission interruption to elimination.

Coupling estimates of ε and BBRmay thus be valuable to infer disease dynamics over the

course of an intervention campaign. Importantly, however, estimation of ε is reliant on

Fig 6. Elimination feasibility coefficient sensitivity. Sensitivity analysis showing how the elimination feasibility

coefficient (ε) changes across transmission intensity, λ, and degree of PDD, κ. The surface shows a positive

relationship between λ and ε and a negative relationship between κ and ε. At low transmission intensities, ε remains

negative as long as κ 6¼ 0 whereas high transmission intensities mostly eliminate the influence of PDD on ε, implying

that annual MDA is insufficient to successfully interrupt transmission.

https://doi.org/10.1371/journal.pntd.0006794.g006
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consistent surveys of parasite burden (that is, measures of infection intensity rather than sim-

ple prevalence) in the human host population over multiple years. Indeed, the viability of any

quantitative measure of the progress of control efforts hinges upon the data that are collected

before, during, and after the campaign. Here, documentation of infection intensity in the host

population prior to treatment, accurate assessment of the treatment coverage, and common

assumptions regarding treatment efficacy are all necessary to derive values ofWpre andWpos or

PREVpre and PREVpos that are used to quantify BBR and ε. Such data are available from long-

standing, well-documented MDA campaigns, yet rarely are these data made available in public

databases [14]. It goes without saying that the collection and reporting of data on parasite bur-

den (infection intensity) during MDA campaigns remains a critical priority, particularly as

new methods become available to analyze and interpret such data with respect to estimating

intervention efficacy. While infection intensity data may be preferred, we acknowledge the

great difficulty in collecting parasite or egg counts from infected hosts, and demonstrate how

similar methods can be adapted to more commonly and easily collected prevalence data [37].

In the present work, we examined performance of the elimination feasibility coefficient in

predicting MDA success in the presence of observation noise, and under the influence of

demographic stochasticity. Estimates of ε were compared to the probability of extinction, P(e),
a well-established measure of population viability in conservation biology and population ecol-

ogy which has recently been investigated in relation to elimination strategies in the parasitic

disease Onchocerciasis [38]. A strong correlation between P(e) and ε was found, including a

meaningful threshold at ε = 0, where there is approximately a 20% chance of elimination

under the simulated MDA intervention scenario, and chances increase as ε decreases. These

results suggest that the magnitude of the elimination feasibility coefficient may be a valuable

indicator of the probability of extinction (i.e. the success of elimination efforts).

Future research should explicitly incorporate known sources of heterogeneity that may

influence elimination feasibility, beyond those explored here. These should include seasonality,

connected transmission sites, untreated demographic groups, and other sources of heterogene-

ity that can limit the impact of intervention campaigns and threaten their success. Methods to

account for these sources of variability and uncertainty have been suggested, such as recent

work to develop an accurate predictor of parasite extinction based upon a measure of the vari-

ance of disease prevalence over time [39]. Still other work [40] has sought to derive preva-

lence-based indicators of the elimination probability for STHs using an individually-based

stochastic model, finding that end-point prevalence serves as the most reliable indicator of

elimination probability. The work represented here adds to these analyses by proposing a

potential mechanism underlying the observed effects, and providing additional approaches for

estimating elimination probability. As a whole, this body of work demonstrates the utility of

considering phenomena such as critical slowing down around population thresholds that is

extensively investigated in other fields, but underappreciated for its applications to disease

elimination. Critical slowing down is a phenomenon encountered in dynamical systems that

are close to phase transitions, initially investigated in physics but carried over to ecology by

Holling [41]. Since phase transitions occur in the vicinity of unstable equilibria, where the

rates of change of system variables approach zero, we naturally expect this slowing down and

we argue here that this is exploitable information in the context of disease elimination.

A key remaining question that deserves further theoretical and applied exploration is how

to most effectively increase the breakpoint population size of sexually reproducing parasites

subject to PDD, and thus increase the population’s susceptibility to elimination, especially

when MDA alone appears insufficient to reach elimination due to very high transmission

rates. If the breakpoint is very low, then immigration of a single infected individual from out-

side the treated area could result in the system suddenly returning to the trajectory towards the
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locally stable endemic equilibrium. Interventions that alter the degree of PDD over time by tar-

geting high risk and/or heavily infected individuals may successfully increase the breakpoint,

and interventions such as snail control, sanitation infrastructure, and education campaigns

that reduce exposure may also increase the breakpoint by reducing the population’s overall

capacity for transmission. The elimination feasibility coefficient, ε, represents a model-free

summary estimate of the probability of elimination that can be used to evaluate ‘end game’

control programs aiming for parasite elimination.
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