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Abstract

Background

Infectious diseases are one of the primary healthcare problems worldwide, leading to mil-

lions of deaths annually. To develop effective control and prevention strategies, we need

reliable computational tools to understand disease dynamics and to predict future cases.

These computational tools can be used by policy makers to make more informed decisions.

Methodology/Principal findings

In this study, we developed a computational framework based on Gaussian processes to

perform spatiotemporal prediction of infectious diseases and exploited the special structure

of similarity matrices in our formulation to obtain a very efficient implementation. We then

tested our framework on the problem of modeling Crimean–Congo hemorrhagic fever cases

between years 2004 and 2015 in Turkey.

Conclusions/Significance

We showed that our Gaussian process formulation obtained better results than two fre-

quently used standard machine learning algorithms (i.e., random forests and boosted

regression trees) under temporal, spatial, and spatiotemporal prediction scenarios. These

results showed that our framework has the potential to make an important contribution to

public health policy makers.

Author summary

Infectious diseases cause important health problems worldwide and create difficult chal-

lenges for public health policy makers. That is why they need reliable computational tools

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006737 August 17, 2018 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS
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to better understand disease and to predict case counts. They will benefit from such

computational tools to make more informed decisions in developing control and preven-

tion strategies. We formulated a computational framework that can be used to model

spatial, temporal, or spatiotemporal dynamics of infectious diseases. We showed the utility

of our framework on the problem of modeling Crimean–Congo hemorrhagic fever in

Turkey.

Introduction

Infectious diseases constitute a major part of healthcare burden worldwide, leading to millions

of deaths annually, which are especially seen among poor and young populations in low and

middle income countries [1]. In addition to pandemic infectious diseases such as influenza

and tuberculosis, there are also emerging infectious diseases such as Ebola virus disease and

Zika fever, which require a worldwide effort to combat. Thus, predicting the case counts of

infectious diseases is of great importance in developing control and prevention strategies. In

particular, there might be spatial dependencies (e.g., humid conditions for malaria) and tem-

poral dependencies (e.g., seasonal effects for influenza) that control the emergence and spread

of such diseases [2].

To be able to develop protective measures against infectious diseases, it is very important

(i) to clearly identify the disease spread and (ii) to make reliable predictions for future cases.

When the disease spread is known, policy makers can develop preventive strategies against, for

instance, environmental factors that promote the disease. Once we have reliable predictions

for future cases, policy makers can make informed decisions on, for example, vaccine pur-

chases, public awareness campaigns and training programs for healthcare workers.

Machine learning algorithms can contribute to the control of infectious diseases by address-

ing aforementioned two aims. In the literature, standard machine learning algorithms such as

random forests [3] and boosted regression trees [4, 5] were frequently used in ecological and

epidemiological applications [6–10]. These algorithms have been picked by the applied

researchers mainly because they have a relatively simple interface for nonspecialists. However,

they might fail to capture highly complex dependencies in disease modeling scenarios. Thus,

we used Gaussian processes [11] to be able to identify highly nonlinear dependencies and to

make more reliable predictions.

We proposed a computational framework that uses Gaussian processes as the basic building

block to perform spatiotemporal prediction of infectious diseases. We first noted that the ker-

nel matrices have a special structure owing to their dependencies on both spatial and temporal

covariates and then exploited this special structure to obtain a very efficient inference algo-

rithm. We tested our proposed framework on Turkey’s country-wide surveillance data set of a

vector-borne infectious disease Crimean–Congo hemorrhagic fever, which is a widespread

endemic infectious disease seen in Africa, the Balkans, the Middle East, and Asia with a case

fatality rate of 5–40% [12].

We present the overview of our proposed computational framework with three possible

prediction scenarios in Fig 1. We assume that the reported case counts of location and time

period pairs have been recorded with additional information about their spatial and temporal

properties. We first extract spatial and temporal features for each location and time period,

respectively, from these properties. We then calculate two similarity matrices among locations

and time periods, respectively, using the extracted features. These two similarity matrices are

combined to obtain a larger similarity matrix between location and time period pairs. Using
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the combined similarity matrix and reported cases counts, we train a Gaussian process regres-

sion model to be able to make predictions under three different scenarios: (i) temporal predic-

tion (i.e., predicting case counts for future time periods, leading to predicting disease

prevalence for each location in the future), (ii) spatial prediction (i.e., predicting case counts

for unseen locations, leading to predicting disease spread within the same time frame in other

locations), which can be used to complete missing case counts for the locations that we could

not obtain historical data, and (iii) spatiotemporal prediction (i.e., predicting case counts for

unseen location and future time period pairs, leading to predicting disease spread to new loca-

tions in the future), which is especially important to be able to prepare against emerging infec-

tious diseases since there will be no historical data for the locations that experience the disease

for the first time.

Materials and methods

In this study, we proposed a computational framework to perform spatiotemporal prediction

of infectious diseases. To test this framework, we addressed an important public health prob-

lem in Turkey, namely, Crimean–Congo hemorrhagic fever (CCHF), which is a vector-borne

infectious disease transmitted by infected tick bites and exposure to blood or bodily fluids of

the infected cases.

Materials

We used an unpublished surveillance data set of 9,636 CCHF infection cases reported in Tur-

key between years 2004 and 2015, which was collected by the Ministry of Health of Turkey (S1

File). The reported cases were mainly because of infected tick bites, and they were diagnosed

with clinical symptoms such as fever, myalgia, and bleeding from various sites. These infected

cases were also confirmed with blood tests.

The Ministry of Health of Turkey provided us with spatial information (province, district,

and town names) and temporal information (year and month) for each case, which made this

Fig 1. Overview of our proposed computational framework to perform spatiotemporal prediction of infectious diseases. (a) Reported case counts

are given for location and time period pairs. The proposed framework can be used for three different prediction scenarios: (b) spatial prediction, (c)

temporal prediction, and (d) spatiotemporal prediction.

https://doi.org/10.1371/journal.pntd.0006737.g001
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data set suitable for studying spatiotemporal characteristics of CCHF. The data set does not

include clinical covariates of infected cases, which forces our study to investigate only spatial

and temporal covariates.

Spatial covariates. We used the infected case counts of provinces to capture the spatial

spread of CCHF since finer resolutions such as district or town level gives us very sparse case

counts. Fig 2 shows the total numbers of infected cases reported in 81 provinces of Turkey

between years 2004 and 2015, whereas annual numbers of infected cases can be seen in S1, S2,

S3, S4, S5, S6, S7, S8, S9, S10, S11 and S12 Figs. CCHF cases had mainly been observed in

northern and northeastern regions of Turkey (e.g., 2,046 of 9,636 infected cases were reported

in a single northern province), and other regions had strikingly fewer infected cases (e.g.,

southern provinces had one to three infected cases per year). This confirmed that CCHF has a

strong spatial dependency, which was reported by several earlier studies [13–15], owing to

mainly spatial differences in wild-life and livestock animal populations carrying ticks. We

extracted latitude and longitude coordinates of each province centre, leading to two spatial

covariates.

Temporal covariates. We used the monthly infected case counts since we did not have

data for finer resolutions and ticks become dormant (i.e., inactive) during cold weather, which

makes periods longer than month unable to capture the temporal dynamics of CCHF. Fig 3

shows the numbers of country-wide infected cases for each month between years 2004 and

2015. CCHF cases had been observed frequently during hot months (e.g., May, June, and July),

moderately during warm months (e.g., April, August, and September) and rarely during cold

months (e.g., October, November, December, January, February, and March). This confirmed

that CCHF has a strong temporal dependency, which was again reported by several earlier

studies [16–18], owing to mainly life or sleep cycles of ticks. We encoded each time period by

three temporal covariates: the year, month, and seasonal group (i.e., hot, warm, or cold) it

belongs to.

Fig 2. The total numbers of infected cases reported in 81 provinces of Turkey between years 2004 and 2015. Note that the northern and

northeastern regions had strikingly high numbers of infected cases. The numbers were shown on the province centers. This map was generated using

the Turkish administrative map downloaded from https://www.gadm.org and the R package maps version 3.3.0 at https://cran.r-project.org/web/

packages/maps.

https://doi.org/10.1371/journal.pntd.0006737.g002
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Methods

Infectious disease spread is usually driven by both location and time, which means nearby

locations and time periods have similar characteristics. The disease spreads to adjacent prov-

ince much more easily than distant provinces due to spatial dependency. Case counts in conse-

cutive time periods or in time periods within the same season are usually heavily correlated

due to temporal dependency.

We suggest using Gaussian process regression (GPR), which is suitable to capture highly

complex dependencies between input and output variables thanks to its nonlinear nature

Fig 3. The numbers of country-wide infected cases for each month between years 2004 and 2015. The total numbers of infected cases for each

month and each year were also reported as column and row sums, respectively. The columns were annotated by their seasonal group information at the

top (yellow: cold; orange: warm; red: hot). Note that there is an annual periodicity of cases and a striking seasonal variation over infected cases.

https://doi.org/10.1371/journal.pntd.0006737.g003
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brought by kernel functions. We propose a computational strategy based on GPR that enables

us to perform predictions under spatial (i.e., predicting case counts for unseen locations), tem-

poral (i.e., predicting case counts for future time periods) and spatiotemporal scenarios (i.e.,

predicting counts for unseen location and future time period pairs) for infectious diseases.

We first give a brief description of GPR. We then show how GPR can be modified for infec-

tious disease modeling by introducing a structured kernel function based on two separate ker-

nel functions over spatial and temporal covariates, respectively, and how this modified GPR

formulation can be implemented very efficiently. We describe three different prediction sce-

narios encountered in spatiotemporal modeling of infectious diseases. We lastly discuss two

baseline algorithms from the literature that will be used to benchmark against.

Gaussian process regression. Gaussian processes have been used in many applications

for temporal and spatial prediction such as environmental surveillance [19], reconstruction of

sea surface temperatures [20], drug–target interaction prediction [21], global land-surface pre-

cipitation prediction [22], and wind power forecasting [23] as well as spatiotemporal modeling

[24, 25]. There is also a significant number of studies on Gaussian processes with application

to epidemiology [26–29].

For a given training data set fðxi; yiÞg
N
i¼1

, GPR uses a probabilistic formulation to model the

relationship between the input covariates and the output as follows [11]:

y ¼ f þ ξ;

f jX � Normalðf ; 0;KÞ;

ξjs2
y � Normalðξ; 0;s2

yIÞ;

where y = [y1 y2 � � � yN]> is the vector of observed output values, f = [f1 f2 � � � fN]> is the vector

of underlying true output values for the corresponding input data instances X = [x1 x2 � � � xN],

ξ = [ξ1 ξ2 � � � ξN]> is the vector of measurement noise values that are assumed to follow an iso-

tropic multivariate normal distribution with the variance parameter s2
y , and 0 and I are the

vector of zeros and the identity matrix of proper sizes, respectively.

The true output values f are assumed to follow a multivariate normal distribution with the

mean 0 and the covariance K defined as

K ¼

kðx1; x1Þ kðx2; x1Þ � � � kðxN ; x1Þ

kðx1; x2Þ kðx2; x2Þ � � � kðxN ; x2Þ

..

. ..
. . .

. ..
.

kðx1; xNÞ kðx2; xNÞ � � � kðxN ; xNÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

where k(�,�) is a kernel function that calculates a similarity measure between two data

instances. By integrating out the true output values f, it can be shown that the observed output

values y have the following form:

yjX; s2
y � Normalðy; 0;Kþ s2

yIÞ;

where we can use the properties of the multivariate normal distribution to find the predictive

distribution of an unknown output value y? for an unseen data instance x?. We first write the

joint distribution of (y, y?) and then find the conditional distribution of y? to obtain its predic-

tive distribution, which is also a multivariate normal distribution with the following mean and
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variance:

E½y?jx?;X; y; s2
y � ¼ k>

?
ðKþ s2

yIÞ
� 1y; ð1Þ

Var½y?jx?;X; y; s2
y � ¼ kðx?; x?Þ � k>

?
ðKþ s2

yIÞ
� 1k?; ð2Þ

where k? = [k(x?, x1) k(x?, x2) � � � k(x?, xN)]>.

Structured GPR. For large data sets, Gaussian processes might become computationally

intensive. Several decomposition algorithms have been previously proposed to make the infer-

ence faster such as Nyström approximation [11], approximation using Hadamard and diago-

nal matrices [30], or Kronecker methods [21, 31–36].

In spatiotemporal modeling, we can represent each data instance xi as a pair of location and

time period vectors (sl, tp), where l indexes locations, p indexes time periods, L is the number

of locations, and P is the number of time periods. We can also form a response matrix Y of size

L × P to store yi values of these pairs.

In this case, the kernel function between data instances can be written as the multiplication

of two separate kernel functions:

kðxi; xjÞ ¼ kððsl; tpÞ; ðsm; tqÞÞ ¼ ksðsl; smÞktðtp; tqÞ;

where ks(�,�) gives the similarity between geographical locations using spatial features, and

kt(�,�) calculates the similarity between time periods using temporal features.

The kernel matrix calculated on the training instances can be written as the Kronecker

product of two smaller kernel matrices calculated on the geographical locations and the time

periods, respectively.

K ¼ Ks 
 Kt;

where K, Ks, and Kt are of sizes LP × LP, L × L, and P × P, respectively. Similarly, the vector

that stores kernel function outputs between the test instance and the training instances can be

written as

k? ¼ ks;? 
 kt;?:

We can update the mean prediction equation of standard Gaussian process in Eq (1) with

the Kronecker kernel:

E½y?jx?;X;Y;s2
y � ¼ ðks;? 
 kt;?Þ

>
ðKs 
 Kt þ s2

yIÞ
� 1 vec ðYÞ; ð3Þ

where vec(�) converts the input matrix into a column vector. The variance prediction equation

in Eq (2) can also be updated as

Var½y?jx?;X;Y;s2
y � ¼ ksðs?; s?Þktðt?; t?Þ

� ðks;? 
 kt;?Þ
>
ðKs 
 Kt þ s2

yIÞ
� 1
ðks;? 
 kt;?Þ:

ð4Þ

Implementation details. The matrix inversion operation in Eqs (3) and (4) is computation-

ally expensive since it inverts an LP × LP matrix. To benefit from the special structure of our

kernel matrices, we will use the properties of the Kronecker product as described in [37]. First,

we factorize the smaller kernel matrices Ks and Kt using singular value decomposition:

Ks ¼ UsDsU
>

s ;

Kt ¼ UtDtU
>

t ;

Spatiotemporal prediction of infectious diseases
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where the left-singular vectors and right-singular vectors are identical since the kernel matrices

are positive semi-definite.

We then write the Kronecker product of the spatial and temporal kernel matrices using the

singular values and singular vectors of each matrix:

Ks 
 Kt ¼ ðUs 
 UtÞðDs 
DtÞðUs 
 UtÞ
>
:

The matrix inversion operation can be replaced by the following formula:

ðKs 
 Kt þ s2
yIÞ
� 1
¼ ðUs 
 UtÞðDs 
Dt þ s2

yIÞ
� 1
ðUs 
 UtÞ

>
: ð5Þ

We can rewrite the mean and variance predictions in Eqs (3) and (4) using the Kronecker

inversion rule in Eq (5). After this change, these two equations can be calculated very effi-

ciently using Kronecker matrix-vector multiplications and by inverting a diagonal matrix.

Infectious disease modeling using structured GPR. In this study, we use structured GPR

formulation to predict case counts under three different scenarios (Fig 4): (i) predicting case

counts for a future time period t?, (ii) predicting case counts for an unseen location s?, and (iii)

predicting case counts for an unseen location and future time period pair (s?, t?). In all scenar-

ios, we assume that we are given case counts within a list of locations for a number of time

periods.

Predicting case counts for a future time period. In the first scenario, we are interested in

finding case counts in the observed locations for a future time period. This amounts to making

predictions for (sl, t?) pairs, where sl is one of the locations in our training set.

Fig 4. Three prediction scenarios. (i) temporal scenario to predict case counts of future time points on the training

locations, (ii) spatial scenario to predict case counts of unseen locations at the training time points, and (iii)

spatiotemporal scenario to predict case counts of unseen locations at future time points.

https://doi.org/10.1371/journal.pntd.0006737.g004
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Predicting case counts for an unseen location. In the second scenario, we are interested in

finding case counts in an unseen location for the observed time periods. This amounts to mak-

ing predictions for (s?, tp) pairs, where tp is one of the time periods in our training set.

Predicting case counts for an unseen location and future time period pair. In the third

scenario, we are interested in finding case counts in an unseen location for a future time

period. This amounts to making predictions for (s?, t?) pairs.

Baseline algorithms. Several off-the-shelf machine learning algorithms can be used to per-

form spatiotemporal prediction of infectious diseases. In this study, we compared our method

against two particular baseline algorithms, namely, random forests regression (RFR) and

boosted regression trees (BRT). We have two main reasons for these particular choices: (i)

Both RFR and BRT are frequently used and considered as the standard machine learning algo-

rithms to capture temporal, spatial, and spatiotemporal dependencies in ecological and epide-

miological applications [6–10]. (ii) Both RFR and BRT are nonlinear algorithms as our

structured GPR formulation.

Random forests regression. RFR algorithm combines several regression trees trained on

different portions of the input covariates [3]. As a result, the obtained regression trees give

diverse decision rules, and combining several trees produces more robust results.

Boosted regression trees. BRT algorithm is based on the idea of combining weak learners

to obtain better learners (i.e., boosting) and uses decision trees trained on different subsamples

of training instances as weak learners [4, 5].

Experimental settings and performance metrics. We created three scenarios to perform

experiments for temporal, spatial, and spatiotemporal prediction.

For temporal prediction, we took the first 10 years and the remaining two years as training

and test sets, respectively. We first trained the three algorithms using case counts of 81 prov-

inces over 10 years (120 months) as the observed response matrix, leading to a training set of

9,720 instances (81 provinces × 120 months). We then tested the trained models by predicting

observed case counts of 81 provinces for the remaining two years (24 months), leading to a test

set of 1,944 instances (81 provinces × 24 months).

For spatial prediction, we divided 81 provinces into two groups by first ordering their total

case counts and then taking odd- and even-numbered provinces as training and test sets,

respectively (S13 Fig). We first trained the three algorithms using case counts of 41 training

provinces over 12 years (144 months) as the observed response matrix, leading to a training set

of 5,904 instances (41 provinces × 144 months). We then tested the trained models by predict-

ing observed case counts of 40 test provinces for the same time periods, leading to a test set of

5,760 instances (40 provinces × 144 months).

For spatiotemporal prediction, we took the intersection of training sets (respectively, test

sets) of the first two scenarios as the training set (respectively, test set). We first trained the

three algorithms using case counts of 41 training provinces over 10 years (120 months) as the

observed response matrix, leading to a training set of 4,920 instances (41 provinces × 120

months). We then tested the trained models by predicting observed case counts of 40 test prov-

inces for the last two years (24 months), leading to a test set of 960 instances (40 provinces × 24

months).

The observed case counts were mapped to logarithmic scale after adding one since they are

count data and contain zero values. These mapped values were used as the response matrix for

all three algorithms. After training the algorithms, their predictions were mapped back to the

original scale by exponentiating first and then subtracting one.

For RFR algorithm, we used the randomForestR package version 4.6-12 [38]. We set

the formula parameter formula to “cases ~ year + month + season + latitude + longitude” to

Spatiotemporal prediction of infectious diseases
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describe the model and set the number of trees to grow parameter ntree to 100,000, and

other parameters were held at their default values.

For BRT algorithm, we used the gbm R package version 2.1.1 [39]. We set the formula

parameter formula to “cases ~ year + month + season + latitude + longitude” to describe the

model, set the maximum number of iterations (i.e., the maximum number of trees) parameter

n.trees to 100,000, set the number of cross-validation folds parameter cv.folds to 5 and

set the maximum depth of variable interactions parameter interaction.depth to 2, and

other parameters were held at their default values.

We implemented our structured GPR algorithm in R and used the Gaussian kernel to

define similarity functions on spatial and temporal covariates. The Gaussian kernel function

kGð�; �Þ between two data instances xi and xj can be defined as

kGðxi; xjÞ ¼ exp ð� kxi � xj k
2
2
=s2Þ;

where k � k2 denotes the ℓ2 norm, and s is the kernel width parameter. For spatial covariates of

two data instances (i.e., latitude and longitude coordinates of two province centres), we

defined the spatial kernel as ksðsl; smÞ ¼ kGðsl; smÞ and picked the kernel width parameter as the

mean of pairwise Euclidean distances between training instances. For temporal covariates of

two time periods (i.e., years, months, and seasonal groups of two time periods), we defined the

temporal kernel as the multiplication of three kernels, i.e., kt(tp, tq) = kyear(tp, tq) kmonth(tp, tq)

kseason(tp, tq), to capture the interaction effects between them, where we had three separate

Gaussian kernels on year, month, and seasonal group covariates. The kernel width parameters

were chosen as the means of pairwise Euclidean distances between training instances for all

three kernels. We picked the standard deviation parameter of measurement noise values σy as

the standard deviation of log-scaled observed case counts of training instances.

We used the Pearson’s correlation coefficient (PCC) and normalized root mean squared

error (NRMSE) to compare prediction performances of the three algorithms. PCC can be cal-

culated as

PCC ¼
ðy � 1y:Þ

>
ðŷ � 1ŷ :Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy � 1y:Þ
>
ðy � 1y:Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðŷ � 1ŷ :Þ
>
ðŷ � 1ŷ :Þ

q

where y and ŷ denote the vectors of observed and predicted case counts, respectively, and y.

and ŷ : denote the averages of y and ŷ , respectively. Larger PCC values correspond to better

performance in capturing the trend in case counts. NRMSE can be calculated as

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy � ŷÞ>ðy � ŷÞ
ðy � 1y:Þ

>
ðy � 1y:Þ

s

:

Smaller NRMSE values correspond to better performance in capturing the scale of case counts.

Results

Performance comparison

Table 1 reports PCC values of RFR, BRT, and GPR algorithms on our CCHF data set for three

prediction scenarios. We see that GPR algorithm obtained the best PCC values by improving

the results of temporal, spatial, and spatiotemporal prediction scenarios by 1.05%, 26.31%, and

16.45%, respectively. Note that RFR and BRT algorithms failed to capture the spatial spread of

CCHF when predicting case counts for unseen provinces (i.e., in spatial and spatiotemporal

scenarios), whereas GPR algorithm was able to capture this spread by obtaining more than
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70% PCC for these two scenarios. All algorithms achieved PCC values around 75% and 85%

for temporal scenario since capturing temporal dynamics is easier owing to annual periodicity

of CCHF cases.

Table 2 shows NRMSE values of RFR, BRT, and GPR algorithms on our CCHF data set for

temporal, spatial, and spatiotemporal prediction scenarios. We see that GPR algorithm again

obtained the best NRMSE values by improving the results of temporal, spatial, and spatiotem-

poral prediction scenarios by 21.39%, 20.38% and 15.65%, respectively. Even though BRT algo-

rithm obtained a PCC value comparable to that of GPR algorithm for temporal scenario, GPR

algorithm obtained considerably better NRMSE values than both RFR and BRT algorithms.

This shows that GPR algorithm is better than the other two algorithms in terms of capturing

the range of CCHF cases in the test sets as discussed below.

Fig 5 shows the total observed and predicted case counts by RFR, BRT and GPR algo-

rithms for years 2014 and 2015 over the five provinces with the highest case counts among 40

common test provinces of all scenarios. We see that all three algorithms captured the annual

periodicity of CCHF cases, whereas GPR algorithm performed the best in terms of predicting

the observed case counts. RFR algorithm was not able to predict the observed case counts

owing to its lack of high order interactions between covariates, whereas BRT algorithm per-

formed better owing to its second order interactions. The same results were also valid if we

took the first 10, 15, and 20 provinces from 40 common test provinces (S14, S15 and S16

Figs).

S17 Fig gives a detailed comparison between observed and predicted case counts of RFR,

BRT, and GPR algorithms for the same five provinces reported in Fig 5. We see that GPR algo-

rithm produced predictions mostly in agreement with the range of observed CCHF case

counts, whereas RFR and BRT algorithms underestimated CCHF case counts in most of the

time periods. BRT algorithm obtained NRMSE value comparable to that of GPR algorithm for

temporal scenario, whereas GPR algorithm reduced NRMSE values by 0.277 and 0.170 for spa-

tial and spatiotemporal scenarios, respectively.

The results of the computational experiments reported in this study can be analyzed from

different perspectives. We analyzed the results with respect to prediction scenarios, machine

learning algorithms, computational complexity, dependency on training set size, and depen-

dency on sampling over provinces.

Table 2. Normalized root mean squared errors of three algorithms on CCHF data set for three prediction scenar-

ios together with ranks in parentheses.

Temporal Spatial Spatiotemporal

RFR 0.875 (3) 0.927 (3) 0.894 (3)

BRT 0.746 (2) 0.900 (2) 0.876 (2)

GPR 0.532 (1) 0.697 (1) 0.720 (1)

https://doi.org/10.1371/journal.pntd.0006737.t002

Table 1. Pearson’s correlation coefficients of three algorithms on CCHF data set for three prediction scenarios

together with ranks in parentheses.

Temporal Spatial Spatiotemporal

RFR 0.748 (3) 0.486 (2) 0.543 (2)

BRT 0.846 (2) 0.437 (3) 0.493 (3)

GPR 0.857 (1) 0.749 (1) 0.707 (1)

https://doi.org/10.1371/journal.pntd.0006737.t001
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Fig 5. The total observed and predicted case counts by each algorithm for years 2014 and 2015 over the five provinces with the highest case

counts (i.e., endemic region) among 40 common test provinces of all scenarios. The time periods were annotated by their seasonal group

information at the bottom (yellow: cold; orange: warm; red: hot). Note that all three algorithms were able to capture the annual periodicity of

CCHF cases in all scenarios, whereas the predicted case counts of GPR algorithm were closer to the observed CCHF cases.

https://doi.org/10.1371/journal.pntd.0006737.g005
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Prediction scenarios

We performed computational experiments under three different scenarios. As we can see from

Tables 1, 2, Fig 5 and S17 Fig, making temporal predictions (i.e., predicting future time periods

by looking at the historical data) is strikingly easier than making spatial and spatiotemporal

predictions (i.e., generalizing to unseen locations). Most infectious disease outbreaks occur in

cycles (i.e., ascending, plateau, and descending phases), and this structure makes temporal pre-

diction easier. The disease we addressed is a vector-borne infectious disease mainly transmit-

ted by infected tick bites, leading to a strong temporal dependency owing to the sleep cycles of

ticks.

Machine learning algorithms

We used three machine learning algorithms for predicting case counts. As we discussed before,

GPR algorithm was able to capture the range of CCHF case counts better than RFR and BRT

algorithms. We think that this was mainly due to the capability of GPR algorithm to model

highly complex dependencies between input and output covariates thanks to nonlinear kernel

functions such as the Gaussian kernel we used. We also noted from Fig 5 and S17 Fig that the

main improvement of GPR algorithm over the others was the ability to better capture the

range of case counts in the time periods with nonzero observed case counts. In the literature,

RFR and BRT algorithms were frequently used as classification algorithms to predict whether

there will be cases. In terms of classification performance, we would not expect major differ-

ences between three algorithms.

Computational complexity

Instead of using a naive version of GPR algorithm, we implemented an efficient variant that

exploits the special structure of the kernel matrix to make inference very fast. We decomposed

the kernel matrix into a Kronecker product of two smaller kernel matrices calculated on spatial

and temporal covariates, respectively. By doing so, we were able to perform inference for our

structured GPR formulation in the order of milliseconds, whereas RFR and BRT algorithms

took several minutes to complete using drastically higher physical memory.

Dependency on training set size

To show the dependency of GPR on training set size, we performed an additional set of experi-

ments by changing the number of years used for training. We used CCHF case counts of the

last two, four, six, eight, and ten years between 2004 and 2013, respectively. Table 3 shows

PCC and NRMSE values of GPR algorithm for this new set of experiments. We can see that

there was an increasing trend in predictive performance as we increased the training set size.

Table 3. Pearson’s correlation coefficients and normalized root mean squared errors of GPR algorithm on CCHF

data set with changing training set size (i.e., 2, 4, 6, 8, and 10 years).

Temporal Spatiotemporal

PCC NRMSE PCC NRMSE

2012–13 0.633 1.015 0.558 1.039

2010–13 0.749 0.830 0.636 0.960

2008–13 0.831 0.582 0.725 0.760

2006–13 0.791 0.637 0.745 0.671

2004–13 0.857 0.532 0.707 0.720

https://doi.org/10.1371/journal.pntd.0006737.t003
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Dependency on sampling over provinces

Up to this point, we performed our experiments on a fixed training and test set split (S13 Fig),

which was designed to make training and test sets as similar as possible, to better illustrate the

differences between machine learning algorithms. We also compared the predictive perfor-

mances of RFR, BRT, and GPR on 100 different training and set set splits constructed by ran-

dom sampling on 81 provinces. Fig 6 shows PCC and NRMSE values of the algorithms for

spatial and spatiotemporal modeling scenarios. We see that our algorithm GPR was statistically

significantly better (i.e., p< 0.001) than other two algorithms for both scenarios in terms of

PCC values. In spatial prediction scenario, GPR achieved statistically significantly better

NRMSE values than RFR (i.e., p = 0.023), but it obtained NRMSE values comparable to BRT

(i.e., p = 0.052). In spatiotemporal prediction scenario, NRMSE values of GPR were statistically

significantly better than those of BRT (i.e., p< 0.001), whereas NRMSE values were compara-

ble between GPR and RFR (i.e., p = 0.932).

Fig 6. Pearson’s correlation coefficients and normalized root mean squared errors of three algorithms on CCHF

data set for 100 different training and test set splits of 81 provinces for spatial and spatiotemporal modeling

scenarios. GPR was compared against RFR and BRT using a two-sided paired t-test to check whether the predictive

performances are significantly different, and p-value for each comparison was also reported. If the p-value is less than

0.05, it is typeset with the color of the winning algorithm.

https://doi.org/10.1371/journal.pntd.0006737.g006
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Discussion

Infectious diseases cause important health problems worldwide and create difficult challenges

for public health policy makers. To be able to make correct and effective decisions, it is quite

important to understand the characteristics of each infectious disease, which includes environ-

mental factors such as climate and animal population in addition to molecular evolution of

disease sources such as bacteria and viruses. In this study, we addressed to capture the effect of

environmental factors on infectious diseases by modeling their spatial and temporal depen-

dencies on these factors.

For this purpose, several computational methods have been proposed in the literature,

whereas we focused only on machine learning algorithms applied to this problem. Easy-to-use

machine learning algorithms such as random forests and boosted regression trees were fre-

quently used in infectious disease modeling studies. However, Gaussian processes might cap-

ture highly complex dependencies better than these tree-based algorithms. Thus, we

formulated a computational framework based on Gaussian processes that can be used to per-

form spatial, temporal, or spatiotemporal prediction of infectious diseases.

We integrated spatial features (such as geographical coordinates) and temporal features

(such as seasonal conditions) for location and time period pairs that were used as data

instances in our Gaussian process formulation. However, a naive implementation of Gaussian

processes would become computationally infeasible owing to very high numbers of pairs being

modeled. We exploited the special structure (i.e., Kronecker) of similarity matrices in our for-

mulation to obtain a very efficient implementation, which enabled us to train models for

around 10,000 data instances in the order of milliseconds.

We applied our framework to the problem of predicting the case counts of a vector-borne

infectious disease Crimean–Congo hemorrhagic fever using the data set of infected case counts

between years 2004 and 2015 collected by the Ministry of Health of Turkey. We performed

predictions under three different scenarios (Fig 1), which correspond to making predictions

for unseen provinces (i.e., spatial prediction), future time periods (i.e., temporal prediction),

or unseen province and time period pairs (i.e., spatiotemporal prediction) to show the suitabil-

ity of our approach to distinct problems.

Predicting future cases of infectious diseases is very important for the control and preven-

tion of the disease. The predicted case counts can be used to develop new public health policies

and intervention mechanisms. It is more useful for public health policy makers to be able to

predict the possible number of infected cases for a region and a time period pair rather than

predicting whether there will be cases or not. Policy makers can make use of predicted number

of infected cases to purchase vaccines around the right amount, to raise public awareness in

the region, to educate healthcare workers, etc. From that perspective, GPR algorithm did a bet-

ter job than RFR and BRT algorithms by predicting CCHF case counts more accurately (i.e.,

lower NRMSE values).

We tested our proposed formulation on a single disease, but the same framework can be

extended towards other vector-borne infectious diseases (e.g., dengue fever, malaria, Zika

fever) and as well as other infectious diseases (e.g., influenza, measles, tuberculosis). We also

made the source code publicly available to enable other computational and applied researchers

to make such extensions easily.

Supporting information

S1 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2004. The numbers were shown on the province centers. This map was generated using the

Turkish administrative map downloaded from https://www.gadm.org and the R package
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maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S2 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2005. The numbers were shown on the province centers. This map was generated using the

Turkish administrative map downloaded from https://www.gadm.org and the R package

maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S3 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2006. The numbers were shown on the province centers. This map was generated using the

Turkish administrative map downloaded from https://www.gadm.org and the R package

maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S4 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2007. The numbers were shown on the province centers. This map was generated using the

Turkish administrative map downloaded from https://www.gadm.org and the R package

maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S5 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2008. The numbers were shown on the province centers. This map was generated using the

Turkish administrative map downloaded from https://www.gadm.org and the R package

maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S6 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2009. The numbers were shown on the province centers. This map was generated using the

Turkish administrative map downloaded from https://www.gadm.org and the R package

maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S7 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2010. The numbers were shown on the province centers. This map was generated using the

Turkish administrative map downloaded from https://www.gadm.org and the R package

maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S8 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2011. The numbers were shown on the province centers. This map was generated using the

Turkish administrative map downloaded from https://www.gadm.org and the R package

maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S9 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2012. The numbers were shown on the province centers. This map was generated using the

Turkish administrative map downloaded from https://www.gadm.org and the R package

maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S10 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2013. The numbers were shown on the province centers. This map was generated using the
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Turkish administrative map downloaded from https://www.gadm.org and the R package

maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S11 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2014. The numbers were shown on the province centers. This map was generated using the

Turkish administrative map downloaded from https://www.gadm.org and the R package

maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S12 Fig. The total numbers of infected cases reported in 81 provinces of Turkey during

2015. The numbers were shown on the province centers. This map was generated using the

Turkish administrative map downloaded from https://www.gadm.org and the R package

maps version 3.3.0 at https://cran.r-project.org/web/packages/maps.

(TIFF)

S13 Fig. Training and test set split of 81 provinces for spatial and spatiotemporal modeling

scenarios. Red-colored 41 provinces were used as the training set, whereas gray-colored 40

provinces were used as the test test. Province IDs were shown on the province centers. This

map was generated using the Turkish administrative map downloaded from https://www.

gadm.org and the R package maps version 3.3.0 at https://cran.r-project.org/web/packages/

maps.

(TIFF)

S14 Fig. The total observed and predicted case counts by each algorithm for years 2014

and 2015 over the 10 provinces with the highest case counts among 40 common test prov-

inces of all scenarios. The time periods were annotated by their seasonal group information at

the top (yellow: cold; orange: warm; red: hot).

(TIFF)

S15 Fig. The total observed and predicted case counts by each algorithm for years 2014

and 2015 over the 15 provinces with the highest case counts among 40 common test prov-

inces of all scenarios. The time periods were annotated by their seasonal group information at

the top (yellow: cold; orange: warm; red: hot).

(TIFF)

S16 Fig. The total observed and predicted case counts by each algorithm for years 2014

and 2015 over the 20 provinces with the highest case counts among 40 common test prov-

inces of all scenarios. The time periods were annotated by their seasonal group information at

the top (yellow: cold; orange: warm; red: hot).

(TIFF)

S17 Fig. The observed (x-axis) and predicted case counts (y-axis) by each algorithm in

time periods of years 2014 and 2015 for the five provinces with the highest case counts

among 40 common test provinces of all scenarios. Each province was represented with a

distinct marker. We also reported NRMSE values for each algorithm and scenario pair at

the bottom-right corner. We also drew a dashed unit slope line to show whether the algo-

rithms captured the range of observed CCHF case counts. Note that BRT and GPR algo-

rithms obtained comparable results for temporal scenario, whereas GPR algorithm achieved

remarkably better prediction performances than RFR and BRT algorithms under other two

scenarios.

(TIFF)
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S1 File. Surveillance data set of 9,636 CCHF infection cases reported in Turkey between

years 2004 and 2015, which was collected by the Ministry of Health of Turkey. Province

IDs reported in this file correspond to numbers shown in S13 Fig.

(XLSX)
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Methodology: Çiğdem Ak, Mehmet Gönen.

Project administration: Önder Ergönül, Mehmet Gönen.

Software: Çiğdem Ak, Mehmet Gönen.
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Writing – review & editing: Çiğdem Ak, Önder Ergönül, Mehmet Gönen.

References
1. Harris M, Reza JN. Global report for research on infectious diseases of poverty. Geneva, Switzerland:

World Health Organization; 2012.

2. Jone KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL. Global trends in emerging infectious

diseases. Nature. 2008; 451:990–993. https://doi.org/10.1038/nature06536

3. Breiman L. Random forests. Mach Learn. 2001; 45(1):5–32. https://doi.org/10.1023/A:1010933404324

4. Freidman JH. Greedy function approximation: A gradient boosting machine. Ann Stat. 2001; 29(5):1189–

1232.

5. Freidman JH. Stochastic Gradient Boosting. Comput Stat Data Anal. 2002; 38(4):367–378. https://doi.

org/10.1016/S0167-9473(01)00065-2

6. Cappelle J, Girard O, Fofana B, Gaidet N, Gilbert M. Ecological modeling of the spatial distribution of

wild waterbirds to identify the main areas where avian influenza viruses are circulating in the Inner Niger

Delta, Mali. EcoHealth. 2010; 7(3):283–293. https://doi.org/10.1007/s10393-010-0347-5 PMID:

20865438

7. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and

burden of dengue. Nature. 2013; 496:504–507. https://doi.org/10.1038/nature12060 PMID: 23563266

8. Kane MJ, Price N, Scotch M, Rabinowitz P. Comparison of ARIMA and Random Forest time series

models for prediction of avian influenza H5N1 outbreaks. BMC Bioinformatics. 2014; 15(1):276. https://

doi.org/10.1186/1471-2105-15-276 PMID: 25123979

9. Ducheyne E, Charlier J, Vercruysse J, Rinaldi L, Biggeri A, Demeler J, et al. Modelling the spatial distri-

bution of Fasciola hepatica in dairy cattle in Europe. Geospat Health. 2015; 9(2):261–270. https://doi.

org/10.4081/gh.2015.348 PMID: 25826307

Spatiotemporal prediction of infectious diseases

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006737 August 17, 2018 18 / 20

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006737.s018
https://doi.org/10.1038/nature06536
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1007/s10393-010-0347-5
http://www.ncbi.nlm.nih.gov/pubmed/20865438
https://doi.org/10.1038/nature12060
http://www.ncbi.nlm.nih.gov/pubmed/23563266
https://doi.org/10.1186/1471-2105-15-276
https://doi.org/10.1186/1471-2105-15-276
http://www.ncbi.nlm.nih.gov/pubmed/25123979
https://doi.org/10.4081/gh.2015.348
https://doi.org/10.4081/gh.2015.348
http://www.ncbi.nlm.nih.gov/pubmed/25826307
https://doi.org/10.1371/journal.pntd.0006737


10. Messina JP, Kraemer MU, Brady OJ, Pigott DM, Shearer FM, Weiss DJ, et al. Mapping global environ-

mental suitability for Zika virus. eLife. 2016; 5:e15272. https://doi.org/10.7554/eLife.15272 PMID:

27090089

11. Rasmussen CE, Williams CKI. Gaussian processes for machine learning. Cambridge, MA: MIT Press;

2006.

12. Ergonul O, Whitehouse CA, editors. Crimean–Congo hemorrhagic fever, a global perspective. Dor-

drecht, The Netherlands: Springer; 2007.

13. Ergonul O. Crimean–Congo haemorrhagic fever. Lancet Infect Dis. 2006; 6(4):203–214. https://doi.

org/10.1016/S1473-3099(06)70435-2 PMID: 16554245

14. Estrada-Peña A, Zatansever Z, Gargili A, Aktas M, Uzun R, Ergonul O, et al. Modeling the spatial distri-

bution of Crimean–Congo hemorrhagic fever outbreaks in Turkey. Vector Borne Zoonotic Dis. 2007;

7(4):667–678. https://doi.org/10.1089/vbz.2007.0134 PMID: 18047397

15. Ergonul O. Crimean–Congo hemorrhagic fever virus: New outbreaks, new discoveries. Curr Opin Virol.

2012; 2(2):215–220. https://doi.org/10.1016/j.coviro.2012.03.001 PMID: 22482717

16. Ergonul O, Akgunduz S, Kocaman I, Vatansever Z, Korten V. Changes in temperature and the Cri-

mean–Congo haemorrhagic fever outbreak in Turkey. Clin Microbiol Infect. 2005; Suppl. 11:360.

17. Randolph S, Ergonul O. Crimean–Congo hemorrhagic fever: Exceptional epidemic of viral hemorrhagic

fever in Turkey. Future Virol. 2008; 3(4):303–306. https://doi.org/10.2217/17460794.3.4.303

18. Ince Y, Yasa C, Metin M, Sonmez M, Meram E, Benkli B, et al. Crimean–Congo hemorrhagic fever

infections reported by ProMED. Int J Infect Dis. 2014; 26:44–46. https://doi.org/10.1016/j.ijid.2014.04.

005 PMID: 24947424

19. Nguyen L, Hu G, Spanos C J. Spatio-temporal environmental monitoring for smart buildings. In Pro-

ceedings of the 13th IEEE International Conference on Control and Automation. 2017; 277–282.

20. Luttinen J, Ilin A. Efficient Gaussian process inference for short-scale spatio-temporal modeling. In

Prooceedings of the 15th international conference on Artificial Intelligence and Statistics. 2012; 741–

750.

21. Airola A, Pahikkala T. Fast Kronecker product kernel methods via generalized vec trick. IEEE Trans.

Neural Netw. Learn. Syst. In press. https://doi.org/10.1109/TNNLS.2017.2727545 PMID: 28783645

22. Wang Y Chaib-draa B. A KNN based Kalman filter Gaussian process regression. In Proceedings of the

23rd International Joint Conference on Artificial Intelligence. 2013; 1771–1777.

23. Chen N, Qian Z, Meng X, Nabney I T. Short-term wind power forecasting using Gaussian processes. In

Proceedings of the 23rd International Joint Conference on Artificial Intelligence. 2013; 2790–2796.

24. Säarkkä S, Hartikainen J. Infinite-dimensional Kalman filtering approach to spatio-temporal Gaussian

process regression. In Proceedings of the 15th International Conference on Artificial Intelligence and

Statistics. 2012; 993–1001.

25. Andrade-Pacheco R. Gaussian Processes for Spatiotemporal Modelling. PhD thesis. The University of

Sheffield; 2015.

26. Vanhatalo J, Pietilainen V, Vehtari A. Approximate inference for disease mapping with sparse Gaussian

processes. Stat. Med. 2010; 29(15):1580–1607. https://doi.org/10.1002/sim.3895 PMID: 20552572

27. Andrade-Pacheco R, Mubangizi M, Quinn J, Lawrence N. Consistent mapping of government malaria

records across a changing territory delimitation. Malar. J. 2014; 13(Suppl 1):P5. https://doi.org/10.

1186/1475-2875-13-S1-P5

28. Senanayake R, Callaghan S O, Ramos F. Predicting spatio-temporal propagation of seasonal influenza

using variational Gaussian process regression. In Proceedings of the 13th AAAI Conference on Articial

Intelligence. 2016; 3901–3907.

29. Bhatt S, Cameron E, Flaxman S R, Weiss D J, Smith D L, Gething P W. Improved prediction accuracy

for disease risk mapping using Gaussian process stacked generalisation. J. R. Soc. Interface. 2017;

14(134):20170520. https://doi.org/10.1098/rsif.2017.0520 PMID: 28931634

30. Le Q, Sarlós T, Smola T. Fastfood–Computing Hilbert space expansions in loglinear time. In Proceed-

ings of the 30th International Conference on Machine Learning. 2013; 244–252.

31. Bonilla E V, Chai K M A, Williams C K I. Multi-task Gaussian process prediction. In Advances in Neural

Information Processing Systems 20. 2007; 153–160.

32. Finley A O, Banerjee S, Waldmann P, Ericsson T. Hierarchical spatial modeling of additive and domi-

nance genetic variance for large spatial trial datasets. Biometrics. 2009; 65(2):441–451. https://doi.org/

10.1111/j.1541-0420.2008.01115.x PMID: 18759829

33. Stegle O, Lippert C, Mooij J, Lawrence N, Borgwardt K. Efficient inference in matrix-variate Gaussian

models with iid observation noise. In Advances in Neural Information Processing Systems 24. 2011;

630–638.

Spatiotemporal prediction of infectious diseases

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006737 August 17, 2018 19 / 20

https://doi.org/10.7554/eLife.15272
http://www.ncbi.nlm.nih.gov/pubmed/27090089
https://doi.org/10.1016/S1473-3099(06)70435-2
https://doi.org/10.1016/S1473-3099(06)70435-2
http://www.ncbi.nlm.nih.gov/pubmed/16554245
https://doi.org/10.1089/vbz.2007.0134
http://www.ncbi.nlm.nih.gov/pubmed/18047397
https://doi.org/10.1016/j.coviro.2012.03.001
http://www.ncbi.nlm.nih.gov/pubmed/22482717
https://doi.org/10.2217/17460794.3.4.303
https://doi.org/10.1016/j.ijid.2014.04.005
https://doi.org/10.1016/j.ijid.2014.04.005
http://www.ncbi.nlm.nih.gov/pubmed/24947424
https://doi.org/10.1109/TNNLS.2017.2727545
http://www.ncbi.nlm.nih.gov/pubmed/28783645
https://doi.org/10.1002/sim.3895
http://www.ncbi.nlm.nih.gov/pubmed/20552572
https://doi.org/10.1186/1475-2875-13-S1-P5
https://doi.org/10.1186/1475-2875-13-S1-P5
https://doi.org/10.1098/rsif.2017.0520
http://www.ncbi.nlm.nih.gov/pubmed/28931634
https://doi.org/10.1111/j.1541-0420.2008.01115.x
https://doi.org/10.1111/j.1541-0420.2008.01115.x
http://www.ncbi.nlm.nih.gov/pubmed/18759829
https://doi.org/10.1371/journal.pntd.0006737
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37. Saatçi Y. Scalable Inference for Structured Gaussian Process Models. PhD thesis. University of Cam-

bridge; 2011.

38. Liaw A, Wiener M. Classification and Regression by randomForest. R news. 2002; 2(3):18–22.

39. Ridgeway G, Edwards D, Kriegler B, Schroedl S, Southworth H. gbm: Generalized Boosted Regression

Models; 2015. R package version 2.1.1.

Spatiotemporal prediction of infectious diseases

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006737 August 17, 2018 20 / 20

https://doi.org/10.1214/14-BA872
https://doi.org/10.1109/TPAMI.2013.192
https://doi.org/10.1109/TPAMI.2013.192
http://www.ncbi.nlm.nih.gov/pubmed/26353252
https://doi.org/10.1371/journal.pntd.0006737

