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Abstract

Envenomation by the bushmaster snake Lachesis muta muta is considered severe, charac-

terized by local effects including necrosis, the main cause of permanent disability. However,

cellular mechanisms related to cell death and tissue destruction, triggered by snake ven-

oms, are poorly explored. The purpose of this study was to investigate the cytotoxic effect

caused by L. m. muta venom in normal human keratinocytes and to identify the cellular pro-

cesses involved in in cellulo envenomation. In order to investigate venom effect on different

cell types, Alamar Blue assay was performed to quantify levels of cellular metabolism as a

readout of cell viability. Apoptosis, necrosis and changes in mitochondrial membrane poten-

tial were evaluated by flow cytometry, while induction of autophagy was assessed by

expression of GFP-LC3 and analyzed using fluorescence microscopy. The cytotoxic poten-

tial of the venom is shown by reduced cell viability in a concentration-dependent manner. It

was also observed the sequential appearance of cells undergoing autophagy (by 6 hours),

apoptosis and necrosis (12 and 24 hours). Morphologically, incubation with L. m. muta

venom led to a significant cellular retraction and formation of cellular aggregates. These

results indicate that L. m. muta venom is cytotoxic to normal human keratinocytes and other

cell lines, and this toxicity involves the integration of distinct modes of cell death. Autophagy

as a cell death mechanism, in addition to apoptosis and necrosis, can help to unravel cellular

pathways and mechanisms triggered by the venom. Understanding the mechanisms that

underlie cellular damage and tissue destruction will be useful in the development of alterna-

tive therapies against snakebites.

Author summary

In this work, we investigate cellular events and mechanisms involved in in cellulo enven-

omation by Lachesis muta muta snake, which is one of the snakes responsible for the ophi-

dic accidents in Brazil. Since the venom pathological effects are related to local symptoms

such as edema and tissue necrosis, we evaluate venom action on normal human keratino-

cytes, skin cells directly affected during envenomation. Our data show the chronological
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analysis of cellular events triggered by L. m. muta venom, which stimulates autophagy,

affects mitochondrial membrane potential and activates mechanisms that lead to cell

death by apoptosis and necrosis. Crude venom also causes cell morphology and epithelial

colony alterations. These findings give the first evidence about which cell death mecha-

nisms are elicited by L. m. muta venom in skin cells. Understanding the pathways that

underlie cellular damage will be useful to explain some of the pathological effects observed

in local envenomation.

Introduction

Snakebite is still a worldwide health problem and according to the World Health Organization

(WHO), around 5.4 million people are bitten by snakes, resulting in 400,000 amputations and

more than 125,000 deaths each year [1, 2]. Snakes from the genera Bothrops, Lachesis, Crotalus
and Micrurus are responsible for the majority of envenomation cases in Brazil [3]. Snakes

belonging to Lachesis genus (family Viperidae), known as bushmasters, are the largest venom-

ous snakes inhabiting Central and South America and are divided into four species: L. steno-
phys, L. melanocephala, L. acrochorda and L. muta, which comprehends the subspecies L. m.

rhombeata and L. m. muta [4, 5].

Lachesis muta muta is found preferentially in primary forests, including the Amazon, and

despite being infrequent, human envenomation by this snake is considered severe due to its

potential of injecting considerably large venom amounts (200–400 mg) [4, 6–9]. According to

the Brazilian Ministry of Health, in the year 2015, this genus was responsible for 4% of the

envenomation incidents, with mortality rates around 40% [10]. Compared to other Viperidae

species, Lachesis venom has lesser toxicity and lethal activity, but due to the great quantity

inoculated during accidents, the effects can be extremely severe [11]. The main systemic patho-

logical effects triggered by envenomation include spontaneous hemorrhage, nausea, vomiting,

diarrhea, coagulation disorders, hypotension, cardiovascular shock and renal malfunction

[12]. Local effects are also observed and are characterized by edema, hemorrhage, ecchymosis

and necrosis, the leading cause of permanent disability [13, 14]. Observed symptoms are prob-

ably a consequence of the direct action of venom toxins, such as snake venom serine protein-

ases (SVSP), snake venom metalloproteinases (SVMP), L-amino acid oxidase (LAAO),

phospholipases A2 (PLA2) and hyaluronidase, that interfere with coagulation cascade, normal

hemostatic system and tissue repair [6, 15].

Serum therapy by antivenoms is the only effective treatment used to neutralize circulating

venom toxins and, if administered early, is powerful against several of the systemic effects.

However, the progression of local effects can continue despite antivenom therapy and once

triggered, most of the established damage cannot be reversed [13, 16]. Clinical symptoms are

of greater importance due to complications related to tissue necrosis in L. m. muta envenom-

ings. Thus, understanding the cellular mechanisms of how the extensive necrosis comes about

at the bite site will help to identify ways to prevent tissue destruction.

Toxic effects caused by snake venoms in cell culture have been investigated by several

research groups in the last years. Studies reported that L. muta venom is cytotoxic to VERO

(derived from African green monkey kidney) and MDCK (derived from Madin-Darby canine

kidney) cells [9, 17]. However, the cellular pathways triggered by the venom and its toxins are

still poorly understood. Investigating the mechanisms of action of crude venom allows to

understand the synergistic action of its toxins and to produce relevant information on the

pathways triggered, being more closely related to what happens in real accidents.
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In this article, we present a comprehensive study concerning L. m. muta cytotoxicity and

the involvement of cell death mechanisms using normal human keratinocytes. These cells have

an essential role in skin biology and this tissue is commonly used to evaluate the toxicity of var-

ious agents [18], in addition of being remarkably affected in snakebite victims. Therefore, the

determination of events that underlie cellular damage and tissue destruction will help to iden-

tify pathways perturbed by crude L. m. muta venom and thus, explain some of the pathological

effects observed in local envenomation.

Methods

Venom

Crude venom from Lachesis muta muta, comprising a pool of venom extractions from differ-

ent individuals, was provided by Fundação Ezequiel Dias (FUNED), located in Belo Horizonte,

Brazil. The venom was lyophilized and kept at -20˚C until its use. To perform the tests the

venom was reconstituted in ultra-pure water and protein concentration was measured by

Lowry [19] or BCA method (Thermo Scientific), according to manufacturer’s instructions.

Cell culture

The cell lines VERO (from normal epithelial monkey kidney), EA.hy926 (from human umbili-

cal vein) and HeLa (from human cervical adenocarcinoma) were obtained from the American

Type Culture Collection (ATCC—USA). The cell line MGSO-3, derived from human breast

cancer tissue, were kindly provided by Dr Goes group from UFMG [20]. All cell lines were

maintained in Dulbecco’s Modified Eagle’s (DMEM, Sigma Aldrich), high glucose, supple-

mented with 10% fetal bovine serum (FBS, Thermo Scientific—HyClone), 0.2% gentamicin

(Gibco by Life Technologies) and kept in controlled atmosphere (5% CO2 incubator at 37˚C).

Normal human keratinocytes from neonatal foreskin were obtained from a private collec-

tion isolated in 1995 and frozen down. These cells were cultured on a monolayer of 3T3 fibro-

blasts (also obtained from a private collection) treated with mitomycin C (4 μg/mL—Sigma

Aldrich), for at least two hours, and maintained in FAD medium (DMEM:F12, BioWittaker,

Lonza) supplemented with 10% FBS (Sera Laboratories International), 1.8 mM CaCl2, 5 mM

glutamine, 100 units/mL penicillin, 100 μg/mL streptomycin, 5 μg/mL insulin, 10 ng/mL epi-

dermal growth factor, 0.5 μg/mL hydrocortisone (all Sigma Aldrich) and 0.1 nM cholera toxin

(Quadratech Diagnostics). Cells were kept in controlled atmosphere (5% CO2 incubator at

37˚C).

Cell viability assay

Cell viability was analyzed by Alamar Blue (Thermo Scientific) assay, according to Damico

et al., with modifications [9]. Prior to the assay, 1x104 cells/well (VERO, EA.hy926, MGSO-3

and HeLa) were plated on 96-well plates (Nunc) and incubated in a humidified 5% CO2 incu-

bator at 37˚C for 24 hours. Keratinocytes were plated on a monolayer of 3T3 fibroblasts, previ-

ously treated with mitomycin C (4 μg/mL—Sigma Aldrich), at a density of 2.2 to 3.2x104 cells/

well and incubated in a humidified 5% CO2 incubator at 37˚C until the colonies reached 60–

80% confluence. Then, cells were incubated with different amounts of L. m. muta venom

diluted in DMEM (VERO with 0.3–10 μg/mL; EA.hy926 and HeLa with 1.25–40 μg/mL;

MGSO-3 with 0.6–20 μg/mL) or with different amounts of L. m. muta venom diluted in FAD

medium (Keratinocytes with 0.6–20 μg/mL), containing 1% FBS, for 24 hours. After incuba-

tion period, the culture supernatant was removed and Alamar Blue, diluted in DMEM (10%

v/v), was added to each well. The plates were incubated for 3 hours and then the produced
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fluorescence was measured using a fluorescence plate reader (Synergy 2, Bio-tek) at 540 nm

for excitation and 590 nm for emission. Cell viability was determined by comparing values of

fluorescence with the mean fluorescence of the control (without venom and considered as

100% viability). The software GraphPad Prism 5 was used to calculate venom half maximal

Effective Concentration (EC50—amount of venom able to reduce 50% of cell viability) from

cell viability experiments.

Cell death assays

To perform apoptosis and necrosis assays, keratinocytes were plated on 60x15 mm plates

(Nunc), on a monolayer of 3T3 fibroblasts, previously treated with mitomycin C (4 μg/mL—

Sigma Aldrich), at a density of 1 or 2x105 and maintained in a humidified 5% CO2 incubator

at 37˚C until the colonies reached 80% confluence. To Sytox Green staining, keratinocytes

were seeded on glass coverslips in 4 or 24-well plates (Nunc) at a density of 2 to 3x104 and

maintained in a humidified 5% CO2 incubator at 37˚C, until the colonies reached 60%

confluence.

Cells were treated with 2x EC50 (i.e., concentration able to kill 100% of cells) of L. m. muta
venom for 6, 12 and 24 hours or with a solution of 1μM staurosporine or 0.1% Triton X-100

for 3 hours or 50 μM FCCP (Carbonyl cyanide 4-trifluoromethoxy phenylhydrazone—Sigma

Aldrich) for 15 minutes, as positive controls for apoptosis, necrosis or mitochondrial mem-

brane depolarization, respectively. Venom and positive controls were diluted in FAD medium

containing 1% FBS. Cells incubated only with FAD medium were used as a negative control.

Staining

Cells were detached using trypsin-EDTA solution (Sigma Aldrich), followed by centrifugation

at 800 rpm for 5 minutes. Then, 1x105 cells, from each time point (6, 12 and 24 hours), were

stained using Annexin V-FITC (1:500 –Chemometec), to assess apoptosis, and Hoechst 3334

(10 μg/mL—Chemometec) for 15 minutes. Cells were centrifuged at 2000 rpm for 2 minutes

and were then stained with Propidium Iodide (PI, 5 μg/mL—Chemometec), to assess necrosis.

To evaluate mitochondrial membrane potential, 1x106 cells from each time point (12 and 24

hours) were stained using JC-1 (2.5 μg/mL—Chemometec). Cells were centrifuged at 2000

rpm for 2 minutes and were then stained with DAPI for 15 minutes. The samples were ana-

lyzed by flow cytometry (NC-3000, Chemometec). All procedures were carried out according

to the manufacturer’s instruction.

To further investigate necrosis, cells were stained with a solution of 1x TBS (Tris-buffered

saline) and 10% FBS containing 167 nM Sytox Green (Thermo Scientific), for 30 minutes at

room temperature in the dark. In the next step cells were stained with DAPI (Sigma Aldrich)

for 15 minutes at the same conditions. After staining, coverslips were mounted in mowiol

(Calbiochem).

Autophagy assay

Keratinocytes were seeded on glass coverslips in 4 or 24-well plate (Nunc), on a monolayer of

3T3 fibroblasts, previously treated with mitomycin C (4 μg/mL—Sigma Aldrich), at a density

of 2 to 3x104 and maintained in a humidified 5% CO2 incubator at 37˚C. After colonies

reached the number of 20 to 30 cells, keratinocytes were transfected with GFP-LC3 (microtu-

bule associated protein 1 light chain 3) construct using Fugene transfected reagent (Promega),

as per manufacture’s instruction. After 24 hours incubation, cells were treated with the calcu-

lated 2x EC50 of L. m. muta venom for 1.5, 3 and 6 hours (diluted in FAD medium containing

1% FBS) or with EBSS (Earle’s Balanced Salt Solution—Sigma) for 30 minutes, as a positive
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control for autophagy. Cells incubated with FAD medium containing 1% FBS were used as a

negative control. Transfection efficiency was qualitatively evaluated using EVOS XL micro-

scope on fluorescence mode (magnification 20x) (Thermo Scientific). Normal keratinocytes

are difficult to transfect and we estimate transfection efficiency at 30%. Cells were then fixed,

stained with DAPI, as described above, and mounted in mowiol (Calbiochem).

Microscopy

Phase contrast images following cell viability assay were obtained using Evos XL microscope

(magnification 20x) (Thermo Scientific).

Images of Sytox Green stained cells and autophagic cells (LC3-puncta) were acquired with

an Olympus Provis BX51 microscope (magnification 20x), a SPOT RT monochrome camera

and SimplePCI software (Hamamatsu). Randomly selected images were analyzed using FIJI

software.

Quantification

For quantification of necrosis, the channel containing nuclei stained by DAPI or Sytox Green

were subjected to image threshold followed by “fill holes” and “watershed” functions to iden-

tify all nuclei from the image. Then, “analyze particle” function was used and the size of the

particles was adjusted to 15–1000 in order to count the nuclei. The number of necrotic cells

(stained with Sytox Green) was divided by the number of nuclei stained by DAPI, to obtain

the percentage of necrotic cells.

For quantification of LC3 puncta, the channel containing puncta was subjected to “find

edges” function followed by image thresholding to identify all puncta from the image, exclud-

ing other structures in the cell. “Analyze particle” function was used and the size of the parti-

cles was manually adjusted to 0.8–2 in order to count the puncta. The number of LC3 puncta

was calculated per image and then divided by the number of transfected cells, to obtain the

average of puncta per cell.

Statistical analysis

Results were expressed as means ± standard error of the mean (SEM). The statistical analysis

was performed with GraphPad Prism 5 software. Student’s t test was used to compare venom-

treated group and its control. A one-way analysis of variance (ANOVA), followed by Bonferro-

ni’s test, was used to compare treated groups (4 time points). Two-way ANOVA, followed by

Bonferroni’s test, was used to compare treated groups and their respective controls. A value of

p< 0.05 indicated significance.

Results

Venom cytotoxicity in different cells was evaluated after 24 hours using Alamar Blue reagent,

which monitors the reducing environment of living cells and therefore evaluates metabolic

function and cellular health [21]. This reagent is based on a fluorogenic redox indicator called

resazurin, that is reduced to resorufin by viable cells metabolism in culture [22, 23]. L. m. muta
venom decreased cell viability of tumor (MGSO-3 and HeLa), immortalized (VERO, EA.hy

926) and normal cells (keratinocytes) in a concentration-dependent manner. However, dis-

tinct levels of toxicity triggered by the venom were observed for each cell type (Fig 1). The rela-

tive cytotoxic activity was determined as the amount of venom capable of reducing 50% of cell

viability or Effective Concentration (EC50). As shown in Fig 1, Vero cells were the most sensi-

tive to the venom (EC50 = 0.83 μg/mL) followed by MGSO-3 (EC50 = 2.26 μg/mL) and
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Fig 1. Lachesismuta muta venom cytotoxicity and EC50 curves against different cell lines. (A) VERO. (B) EA.

hy926. (C) MGSO-3. (D) HeLa. (E) Keratinocytes. Cells were treated for 24 hours with serial dilutions of venom (0.3–

40 μg/mL). Cell viability was analysed with Alamar Blue assay. The software GraphPad Prism 5 was used to calculate

venom EC50. Data are represented as means ± SEM (n = 3, data were collected from three independent experiments).

Venom-treated groups were compared using one-way ANOVA (���p< 0.001).

https://doi.org/10.1371/journal.pntd.0006427.g001
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keratinocytes (EC50 = 2.42 μg/mL), in comparison to EA.hy926 (EC50 = 5.57 μg/mL) and HeLa

(EC50 = 7.14 μg/mL), which were more resistant. In addition, the venom response curve for

VERO and HeLa cells did not follow a sigmoidal shape as those of other cell types. These

results highlight the importance to identify the appropriate venom dosage when assessing cel-

lular effects in different cell types.

Keratinocytes were selected for follow up studies, as they are normal human cells and thus

could provide a response closer related to tissues affected by the venom at the bite site. These

cells have been used previously to assess the cytotoxic effect and molecular mechanisms trig-

gered by snake and spider venoms [24–26] and the therapeutic effect of bee venom [27]. Anal-

ysis of keratinocyte morphology treated for 24 hours with serial dilutions of L. m. muta venom

(0.6–20 μg/mL) showed progressive cell retraction leading to colony collapsing after treatment

with concentrations higher than 2.5 μg/mL (Fig 2).

To assess apoptotic and necrotic properties of the venom, we evaluated the levels of

Annexin V-FITC and Propidium Iodide (PI) on human keratinocytes. Annexin V-FITC has

been used to detect phosphatidylserine externalization during apoptosis, whereas PI detects

necrosis by binding to DNA in necrotic cells when the cell membrane is compromised. Nor-

mal keratinocytes were treated for 6, 12 and 24 hours with 2x EC50 of L. m. muta venom (i.e.,

concentration able to kill 100% of cells) or for 3 hours with staurosporine, a well-known

inducer of apoptosis. Cells were stained and analyzed by flow cytometry (Fig 3). Keratinocyte

cultures, treated with venom for 12 and 24 hours, had reduced number of viable cells and a

larger proportion of apoptotic cells (labelled with Annexin V) compared to untreated control

cells (Fig 3A–3C). Using this assay, late apoptotic (double labelled) or necrotic cells (labelled

with PI) were not observed after treatment with venom during the time frame tested (Fig 3D

and 3E).

Cellular events triggered during cell death by apoptosis include caspase activation, DNA

fragmentation and mitochondrial membrane permeabilization. Mitochondrial alterations can

be a decisive event between survival and cell death, as the permeabilization of the membrane

can be responsible for the release of apoptogenic factors to initiate apoptosis [28]. To investi-

gate the role of mitochondrial dysfunction in L. m. muta venom-induced cell death, keratino-

cytes were treated with venom for 12 and 24 hours or with FCCP for 15 minutes to assess

depolarization of plasma and mitochondrial membrane. Cells were then stained with JC-1 dye.

In normal cells, the negative charge established by the mitochondrial membrane potential

allows accumulation of JC-1 in the mitochondrial matrix, as red fluorescent aggregates. In apo-

ptotic cells, mitochondrial potential collapses and JC-1 locates in the cytosol in its monomeric

green fluorescent form. After treatment for 12 hours with the venom, a significant decrease in

the proportion of cells that have intact mitochondrial membrane (polarized) was observed

(56%), compared to untreated control (75%) (Fig 4A and 4B). Conversely, a higher proportion

of cells containing depolarized mitochondria was seen in venom-treated samples (Fig 4A and

4C). This effect was transient at 24 hours, as treatment of keratinocytes with venom did not

trigger any changes in mitochondrial membrane potential (Fig 4A–4C).

To confirm our previous result that necrosis is not stimulated by venom treatment (Fig 3),

a more sensitive probe, Sytox Green, was used. In necrotic cells, when the integrity of mem-

brane is lost, the probe penetrates and binds to nucleic acids resulting in a>500-fold increase

in fluorescence emission. Cells were treated with 2x EC50 for 6, 12 and 24 hours, stained with

Sytox Green and analyzed by fluorescence microscopy. Treatment with venom for 6 hours did

not induce necrotic events (Fig 5A and 5B). On the other hand, a significant increase in the

proportion of cells stained by Sytox Green was observed after 12 and 24 hours of venom addi-

tion, when compared to untreated control (Fig 5A, 5C and 5D). By 24 hours, colony retraction

and formation of cellular aggregates were also reproducibly observed (Fig 5A). Thus, using
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Fig 2. Morphological changes in keratinocytes after treatment with L. m. muta venom. Cells were treated for 24

hours with serial dilutions of venom (0.6–20 μg/mL). Control group was kept in culture medium for the same period

of time. Images were acquired using widefield Zeiss Axio Observer microscope. Scale bar = 50μm.

https://doi.org/10.1371/journal.pntd.0006427.g002
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Fig 3. Apoptosis induced by L. m. muta venom in keratinocytes. (A) Representative cytometry plots for

keratinocytes treated with staurosporine 1 μM for 3 hours, 2x EC50 of L. m. muta venom for 6, 12 and 24 hours, or left

untreated. Cells were stained with Propidium Iodide (PI) and Annexin V-FITC. B—E Graphs show the percentages of

viable cells (B), apoptotic cells (labelled with Annexin V) (C), cells undergoing late apoptosis or necrosis (double

labelled with Annexin V and PI) (D) or necrotic cells (labelled with PI) (E). Data are represented as means ± SEM

(n = 3, data were collected from three independent experiments). Venom-treated groups were compared to their

control using two-way ANOVA (�p< 0.05, ���p< 0.001).

https://doi.org/10.1371/journal.pntd.0006427.g003
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this more sensitive marker, we confirmed that necrosis occurs after 12 and 24 hours of L. m.

muta venom treatment.

To evaluate if autophagy is activated in response to the cellular damage caused by crude

venom, autophagosome formation was analyzed by transfection with GFP-LC3, a regulatory

protein widely used to monitor autophagy. In normal, untreated cells, LC3 appears as a diffuse

fluorescence signal in the cytoplasm. When cells are exposed to an autophagic stimulus, LC3 is

cleaved into LC3 puncta and is recruited to the autophagosome membrane [29, 30]. Cells were

treated with 2x EC50 for 1.5, 3 and 6 hours and analyzed by fluorescence microscopy. Data

obtained revealed an increase in autophagosome formation (showed as number of LC3 puncta

per cell) after treatment with venom for 6 hours, suggesting that autophagy plays a significant

role in keratinocytes death by L. m. muta venom (Fig 6A and 6B).

Fig 4. Mitochondrial membrane depolarization triggered by L. m. muta venom in keratinocytes. (A) Representative cytometry plots for

keratinocytes mitochondrial membrane potential after treatment with FCCP 50 μM for 15 minutes, 2x EC50 of L. m. muta venom for 12 and 24

hours, or left untreated. Cells were stained with the dye JC-1. Graphs showing the percentages of normal (polarized) (B) and damage (depolarized)

cells (C). Data are represented as means ± SEM (n = 3, data were collected from three independent experiments). Venom-treated groups were

compared to their control using two-way ANOVA (�p< 0.05).

https://doi.org/10.1371/journal.pntd.0006427.g004
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Chronological analysis of cellular events during envenomation in cellulo showed that the

venom stimulates autophagosome formation, depolarizes mitochondrial membrane and acti-

vates mechanisms that lead to cell death via apoptosis and/or necrosis. These events are

accompanied by changes in cell morphology and retraction of the epithelial colony.

Discussion

In developing countries, an important economical and societal impact of snake envenomation

is the permanent damage due to scarring and potential amputation of affected limbs at the bite

site [31]. This fact has received attention in the last years, with an increase in studies searching

to unveil the cellular mechanisms involved in the pathogenesis of local envenomation [32–35].

In the present study, we report and describe the cytotoxic effect and cell death mechanisms

triggered by L. m. muta venom on normal human keratinocytes, cells from epidermis, a tissue

directly affected by lachetic accidents.

Cytotoxicity has been studied as a property of some viperid venoms using normal and can-

cer cell lineages [36–40]. Cytotoxic characterization studies have been previously performed

Fig 5. Necrosis induced by L. m. muta venom in keratinocytes. (A) Representative images of keratinocytes treated with 0.1% Triton X-100 for 30 minutes, 2x

EC50 of L. m. muta venom for 6, 12 and 24 hours, or left untreated. Cells were stained with Sytox Green and DAPI to evaluate necrotic and normal cells,

respectively. Scale bar = 100μm. Graphs showing the percentages of stained nucleus after treatment during 6 hours (B), 12 hours (C) and 24 hours (D). Data are

represented as means ± SEM (n = 3, data were collected from three independent experiments). Venom-treated group was compared to control using Student’s t

test (��p< 0.05, �p< 0.05).

https://doi.org/10.1371/journal.pntd.0006427.g005
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by our group to demonstrate the toxic effects of Bothrops spp. venoms on VERO, MGSO-3

and HeLa cells [41, 42]. In the present study, exposure to L. m. muta venom also induced a sig-

nificant decrease in viability of all lineages tested, but at different dosages (i.e. different EC50

values). While in our hands, cells were highly labile by exposure to L. m. muta venom in com-

parison with previous results [9, 17]. It is possible that the Alamar Blue test used herein is a

more sensitive technique than those previously used. In addition, one also has to consider the

distinct toxin stability and activities from different venom extraction and storage conditions.

An important aspect of envenomation is the pathological effects at the site of venom injec-

tion, which encompasses skin, connective tissue and muscle [4, 12, 43, 44]. More than 95% of

epidermal tissue is composed of keratinocytes. These cells have been used for the study of skin

related diseases, toxicity assessments [18] and an in vitro model for cutaneous loxoscelism

Fig 6. Autophagic events induced by L. m. muta venom in keratinocytes. (A) Representative images of autophagic vesicles and LC3 aggregation in

keratinocytes starved using EBSS for 30 minutes, treated with 2x EC50 of L. m. muta venom for 1.5, 3 and 6 hours, or left untreated. Scale bar = 20 μm (B) Line

graph showing the average of LC3 puncta per transfected cells after starvation or treatment for 1.5, 3 and 6 hours with venom. Data are represented as

means ± SEM (n = 3). Venom-treated groups were compared using two-way ANOVA.

https://doi.org/10.1371/journal.pntd.0006427.g006
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(dermonecrosis) caused by spider venoms [25, 26]. Our data show that L. m. muta venom

induces keratinocytes death via apoptosis and necrosis, which cannot be separated temporally.

However, the proportion of apoptotic cells is higher than necrotic cells, suggesting that apopto-

sis may be the predominant form of cell death. It may be challenging to distinguish apoptosis

from necrosis temporally, as the two processes can occur independently, sequentially or simul-

taneously. Furthermore, the mechanism of cell death (i.e. apoptosis or necrosis) caused by

envenomation likely depends on the cell type and/or the extent (low or high doses) of stimuli

[45, 46].

Biochemical events linked to apoptotic cell death include alterations of mitochondrial

membrane permeabilization [47]. L. m. muta venom causes a transient mitochondrial mem-

brane depolarization after treatment for 12 hours, suggesting the pore opening and release of

pro-apoptotic molecules. Such events delimit the borderline between death or survival of cells

and provide information about the intrinsic (mitochondrial) pathway of the apoptotic pro-

cesses [48, 49]. On the other hand, extrinsic pathway involves activation of cell-death receptors

on the cell surface via specific ligands [48]. Activation of extrinsic pathway leading to apoptosis

has been reported following treatment with Bothrops jararacussu and Bothrops asper venom

toxins [50, 51]. However, mass spectrometry of different snake venoms has not yet identified

such ligands. It is possible that the extrinsic pathway could be activated indirectly in a para-

crine manner rather than a specific action of a toxin in the venom. To address this issue, addi-

tional studies are necessary to investigate the potential role of toxins purified from L. m. muta
venom in the activation of extrinsic apoptotic pathway.

Autophagy represents an essential function for cell homeostasis and adaptation in response

to environmental alterations, such as starvation and clearance of intracellular proteins and

abnormal organelles [29, 52]. The study of the ability of animal venoms to trigger autophagy is

an emerging trend in toxinology field, and very few studies addressing this matter are found in

the literature [53, 54]. Data presented here show an increase in the number of autophagic vesi-

cles (autophagosomes) after treatment with L. m. muta venom. The timing of autophagy

induction preceding venom-induced apoptosis/necrosis, indicate an unsuccessful, attempt by

cells to cope with stress and restore homeostasis [47]. The dynamics in cell-death pathways

triggered by a viperid venom is demonstrated here for the first time.

Crude venom is composed of several components, such as L-amino acid oxidases (LAAO),

phospholipases A2 (PLA2), serine (SVSP) and metalloproteinases (SVMP) [6, 12]. The bio-

chemical, immunological and in vivo properties of specific snake toxins have been extensively

studied in the past. However, the cellular effects have been poorly explored so far. With respect

to L. m. muta toxins, LAAOs are cytotoxic when tested in tumor cell lines (a gastric and breast

cancer), while PLA2s do not reduce cell viability of MDCK (kidney) or C2C12 (skeletal mus-

cle) [9, 55]. It is feasible that more than one toxin may contribute to disrupt cell homeostasis.

Additional studies are necessary to identify which specific toxin(s) stimulate the autophagic,

apoptotic and necrotic effects reported herein. However, as venom toxins act synergistically

when injected to victims, as a result of targeting the same protein or biochemical pathway,

understanding the effects caused by crude venom as a whole may be more adequate to eluci-

date the pathophysiology of local envenoming, enlightening the mechanism involved to sug-

gest potential better treatments [56].

This study demonstrates that L. m. muta venom reduces cell viability in different cell lines

and induces autophagy, apoptosis and necrosis in normal human keratinocytes. We speculate

that autophagic events are probably triggered in an attempt to help to eliminate the toxic stim-

ulus and to repair damaged cells. To the best of our knowledge these findings give the first evi-

dence about which cell death pathways are elicited by L. m. muta crude venom in skin cells.

Future studies will dissect which specific toxins from L. m. muta venom are responsible for
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triggering the temporally and mechanistically distinct modes of cell death shown herein:

autophagy, apoptosis and necrosis.
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sion and cytotoxicity induced by Bothrops moojeni snake venom in cultured renal tubular epithelia. Toxi-

col Appl Pharmacol. 2002; 181(2):124–32. https://doi.org/10.1006/taap.2002.9404 PMID: 12051996.

39. de Sousa FC, Jorge AR, de Menezes RR, Torres AF, Mello CP, Lima DB, et al. Bothrops erythromelas

() venom induces apoptosis on renal tubular epithelial cells. Toxicon. 2016; 118:82–5. Epub 2016/04/

23. https://doi.org/10.1016/j.toxicon.2016.04.040 PMID: 27112269.

40. Nascimento JM, Franchi GC, Nowill AE, Collares-Buzato CB, Hyslop S. Cytoskeletal rearrangement

and cell death induced by Bothrops alternatus snake venom in cultured Madin-Darby canine kidney

cells. Biochem Cell Biol. 2007; 85(5):591–605. https://doi.org/10.1139/o07-067 PMID: 17901901.

41. Guerra-Duarte C, Lopes-Peixoto J, Fonseca-de-Souza BR, Stransky S, Oliveira D, Schneider FS, et al.

Partial in vitro analysis of toxic and antigenic activities of eleven Peruvian pitviper snake venoms. Toxi-

con. 2015; 108:84–96. https://doi.org/10.1016/j.toxicon.2015.09.007 PMID: 26365916.

42. de Souza LL, Stransky S, Guerra-Duarte C, Flor-Sá A, Schneider FS, Kalapothakis E, et al. Determina-
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