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Abstract

Infection is a complex and dynamic process involving a population of invading microbes, the

host and its responses, aimed at controlling the situation. Depending on the purpose and

level of organization, infection at the organism level can be described by a process as simple

as a coin toss, or as complex as a multi-factorial dynamic model; the former, for instance,

may be adequate as a component of a population model, while the latter is necessary for a

thorough description of the process beginning with a challenge with an infectious inoculum

up to establishment or elimination of the pathogen. Experimental readouts in the laboratory

are often static, snapshots of the process, assayed under some convenient experimental

condition, and therefore cannot comprehensively describe the system. Different from the

discrete treatment of infection in population models, or the descriptive summarized accounts

of typical lab experiments, in this manuscript, infection is treated as a dynamic process

dependent on the initial conditions of the infectious challenge, viral growth, and the host

response along time. Here, experimental data is generated for multiple doses of type 1 den-

gue virus, and pathogen levels are recorded at different points in time for two populations of

mosquitoes: either carrying endosymbiont bacteria Wolbachia or not. A dynamic microbe/

host-response mathematical model is used to describe pathogen growth in the face of a

host response like the immune system, and to infer model parameters for the two popula-

tions of insects, revealing a slight—but potentially important—protection conferred by the

symbiont.
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Author summary

Infection is usually assayed as a static observation of a pathogen within a host; it is, never-

theless, a dynamic process that cannot be described from a single time point and arbitrary

conditions. Results based on the usual methods are a snapshot of a convenient laboratory

condition; a more comprehensive data set is required to describe the entire process of

infection from inoculation of the host with a microorganism to establishment of a sys-

temic infection, or elimination of the threat by the host. We design an experiment that

takes into account increasing pathogen challenges to a mosquito host and viral levels

along time; we use a dynamic mathematical model to analyze the resulting data set. The

entire framework is used to compare susceptibility to dengue virus of Aedes aegypti mos-

quitoes either carrying the Wolbachia symbiont or not. Instead of a simple pairwise com-

parison, we are able to compare infection profiles and parameters associated to host

immune processes in this insect-symbiont-virus system.

Introduction

Infection is a complex and dynamic process that starts with a host coming in contact with

pathogens, and ends with the latter either being eliminated by the former or becoming estab-

lished inside it. A comprehensive analysis of host invasion by a microorganism requires a thor-

ough description of the host biology, such as physical compartments and barriers, important

tissues and organs, and immune responses, as well as the microbial processes, and the interac-

tion of these many components [1]; missing parts in this description limit the thorough under-

standing of infection.

Due to constraints in time, resources, as well as analysis tools, any study must simplify its

scope. Experimental assays typically rely on static measurements such as pathogen level at

some specific time point, as well as restrictive laboratory conditions like a typical challenge

dose [2]. While these traditional approaches can be useful to determine the effect of a large per-

turbation to the host-microbe system—such as gene knockouts or different pathogen strains—

they are limited to a snapshot of the process under arbitrary conditions.

On the theoretical side, mathematical models of within-host pathogen dynamics are often

disconnected from data, or use convenience data samples [3]. Because of that, the findings

from modeling studies are only rarely comparable to those of more traditional experimental

approaches.

Despite having lagged the establishment of population transmission—or between-host—

mathematical models by several decades [4], quantitative descriptions of pathogen prolifera-

tion along time within-host have considerable history [5, 6]. Typically these take the form of a

few coupled differential equations, and include simple constant-rate pathogen growth, with

immune response-dependent pathogen death, and immunity described as either induced by

the pathogen [7], constitutive [8], or both. Most models assume deterministic increase in path-

ogen load after entering the host, elimination being possible only by chance; less common are

models that deterministically predict bistable outcomes in the form of either establishment or

elimination [9].

Describing infection dynamically beyond a purely theoretical construct therefore requires

specific time course data on the components described by the mathematical model; ideally, the

data and its interpretations should also relate to the bulk of experimental research in host-

pathogen infection experiments, and to the existing theoretical models available.

Model-based inference reveals dengue virus infection profiles in Aedes aegypti

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006339 March 20, 2018 2 / 16

(0775/2014). RMF received funding from Grant

Grupos Emergentes, Fundação de Amparo à
Pesquisa do Estado do Rio de Janeiro (E 41/2013)

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0006339


This work does not purport to, on its own, change and unify disparate fields, but instead it

is a complete attempt at design, execution, and model-based analysis of a large experiment

consisting of multiple initial dose challenges and time points that describe a range of progres-

sions along time and outcomes of infection, from elimination to establishment. The data set

produced illustrates how looking at any one dose and time point can only give a limited

glimpse into the process of infection. Given the patterns visible in the data, a bistable model is

found to be suitable to the broad features observed: it is able to describe increase in microbe

levels up to establishment of systemic infection, as well as decrease and elimination of the

pathogen.

Aedes aegypti mosquito hosts were infected with serotype 1 of dengue virus (DENV-1) pre-

viously circulating in the city of Rio de Janeiro, Brazil. The choice of the less tractable DENV-1

is a deliberate one, considering the small literature availability, and also the fact that experi-

ments are mainly conducted with DENV-2, due to its ease of cultivation in C6/36 mosquito-

cell culture. This bias further restricts knowledge about dengue more generally, and perpetu-

ates many knowledge gaps in the difference between dengue serotypes. Besides using a system

relevant to human health for a novel analysis, we infect a population of mosquitoes carrying a

strain of the bacterium Wolbachia, a maternally inherited symbiont introduced as means of

controlling dengue as well as Zika and chikungunya viruses [10, 11].

We fit the model to data of mosquito populations either carrying the symbiont Wolbachia
or not, and compare the dynamic profiles and parameters estimated. Because the data set and

model take into account both time and dose dimensions, the results are more general than

those for typical laboratory conditions. In the light of the mathematical model and its inferred

parameters, Wolbachia is shown to protect the mosquitoes from dengue virus infection, given

the reduced time course profile of infection associated to increased recruiting and longer-lived

host response.

We discuss how these results compare to past experiments and what they bring to future

ones, the limitations we acknowledge in this particular work and how they can be overcome in

future similar efforts, as well as the implications for the study of infection more generally and

in other systems, particularly different dengue virus serotypes.

Materials and methods

Experiment design and execution

Around 1000 mosquito larvae were reared in plastic trays with approximately 1.5 liters of

dechlorinated water and 0.9 g of Tetramin Tropical Flakes1 added every two days. Adult Ae.
aegypti were maintained at 25 ± 3˚C and relative humidity of 80 ± 5% for about 2-3 days for

mating, with a sugar solution of 10% ad libitum. Two groups were used, wMelBR (formed by

backcrossing Brazilian wild males with Wolbachia infected Australian females, as showed on

[12] and wMelTET (obtained from treating wMelBR mosquitoes with the antibiotic Tetracy-

cline by three consecutive generations, healing Wolbachia in these insects). Thus, the two

groups have strong genetic similarities regarding their background.

Dengue virus infection was performed with DENV-1 samples recently isolated from a

patient in Rio de Janeiro and stored at −80˚C. DENV-1 was initially amplified to a 108

TCID50/mL and later passed through a ten-fold serial dilution, producing five different titers,

from 108 to 104 TCID50/mL.

Intrathoracic infection with dengue virus. In order to obtain better precision on the ini-

tial DENV-1 level in Ae. aegypti mosquitoes, we controlled the volume and viral load received

by each mosquito. To that end 207nL of solution of DENV-1 were artificially inoculated
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directly into each mosquito body cavity (haemocoel) through microinjections (Nanoject1

Drummond Scientific Company).

It is worth noting that when a mosquito is infected via intrathoracic inoculation, the viral

particles are deposited directly in the mosquito haemocoel, bypassing the midgut barrier, but

that there are nevertheless a number of further challenges for the pathogen to achieve systemic

infection [1].

Virus detection and quantification. The detection of viral RNA in each individual was

done by qRT-PCR [13]. Mosquitoes were kept under laboratory conditions. At three time

points—3, 7 and 14 days after intrathoracic infection (d.p.i.)—they were individually stored in

tubes and cryopreserved in a −80˚C freezer for the preservation of viral RNA. After the collec-

tion and storing of all mosquitoes in all doses and time points, Ae. aegypti were individually

assayed for viral load.

For RNA extraction each mosquito was, separately, put into a 2.0mL vial-tube with one

glass bead 2mm and 50 μL of PBS Buffer one-fold. The mosquitoes were then beaten for 90

seconds on Bead-beater machine (Biospec Products). After that, we performed the RNA

extraction using High Pure Nucleic Acid kit (Roche) commercial kit following the manufac-

turer instructions. The RNAs were then quantified on Nanodrop Spectrophotometer (Thermo

Scientific) and diluted to 50ng/μL. For virus detection, we used a pair of primers DENV-Forw:

5’-AAG GAC TAG AGG TTA GAG GAG ACC C- 3’ and DENV-Rev: 5’- CGT TCT GTG

CCT GGA ATG ATG- 3’ and DENV: 5’-HEX/AAC AGC ATA TTG ACG CTG GGA GAG

ACC AGA/3BHQ_1/3’ probe that amplifies a 109pb fragment.

Wolbachia detection. Detection of Wolbachia was based on amplification of WD0513

gene. The following primers were used to amplify a fragment of 110bp: TM513-Forw: CAA

ATT GCT CTT GTC CTG TGG and TM513-Rev: GGG TGT TAA GCA GAG TTA CGG,

and the probe 5’-/FAM/ TGA AAT GGA AAA ATT GGC GAG GTG TAG G—3BHQ_1/3’.

On the same reaction, a ribosomal gene from Ae. aegypti that amplifies a fragment of 68bp was

analyzed with the following primers: RPS17-Forw: 5’- TCC GTG GTA TCT CCA TCA AGC

T- 3’ and RPS-Rev: 5’- CAC TTC CGG CAC GTA GTT GTC- 3’. We also used the probe

RPS17: 5’-/HEX/CAG GAG GAG GAA CGT GAG CGC AG/3BHQ_1/-3’.

We carried out two different mixes, the first one, a monoplex, to detect dengue virus and

the second one, a duplex, to detect Wolbachia and Ae. aegypti genes. The qPCR reactions were

performed in a total volume of 10 μL, including 2.5 μL (125 ng) of RNA, 2.5 μL of TaqMan1

Fast Virus 1-Step Master Mix (Thermo Scientific), 0.5 μL of each primer (reverse and forward)

at concentration of 10 μM and 0.25 μL of each probe at 10 mM. Ultra-pure water was added to

adjust the final volume to 10 μL. In all 96-well plates, mosquito controls were used. Four wells

were used with a pool of five Ae. aegypti mosquitoes each, two infected with Wolbachia and

two with uninfected mosquitoes, all reared in insectary using the same protocol described in

the methods. For dengue virus, we used in addition to a positive control, a standard curve in a

serial dilution from 103 to 108. Additionally, a mock-infected control was used in all plates, as

well as a negative control with no RNA added. All samples were analyzed on ViiA7 Real-Time

PCR System (Thermo Scientific).

Structure of the data set

The experimental design, therefore included 6 different challenge doses and 3 time points for

both Wolbachia-carrying and Wolbachia-free groups. The numbers of mosquitoes assayed by

qPCR for each of the 36 experimental conditions are shown in a supplementary Table A in S1

Text. For the purpose of computing statistical correlations between dengue and Wolbachia
titers, only conditions with no fewer than four detectable pairs of data points were used to
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avoid obtaining artificially high correlations due to lack of data points. For inference purposes,

conditions with six or fewer mosquitoes and non-zero titers were not used.

To produce the final data set used for all analyses hereafter the levels of DENV-1 were nor-

malized by dividing by the mosquito Ribosomal Protein S17 (RPS) gene. The viral titers being

relative to the mosquito gene, the lowest value in the data set was set to unity, and all others

were adjusted accordingly and rounded to the closest integer values; this scaling neither affects

the relative titers nor the subsequent analyses.

The data set for viral levels in the wMelTET group is shown in the foreground of Fig 1, with

the viral titers for the wMelBR shown in light-shaded color for comparison. For ease of visuali-

zation, the data set for viral levels in the wMelBR group is shown in supplementary Fig A in S1

Text with this group in the foreground instead. For the wMelBR group, the symbiont levels

were computed relative to the same house keeping gene used as a standard for the viral titer

data; otherwise the procedure was the same as for the wMelTET group. The wMelTET group

was used as a negative control, and every sample had undetectable qPCR levels of the symbi-

ont, as expected. The Wolbachia levels are shown in Fig 2.

Fig 1. Viral levels in symbiont-free mosquitoes. DENV-1 viral titer data for wMelTET group (colors) overlaid to that

of the wMelBR group (light green).

https://doi.org/10.1371/journal.pntd.0006339.g001
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Mathematical models

The mathematical model used in this work is a slightly modified version from the model pro-

posed by Pujol et al. [9]. Most within-host models found in the literature describe microbe

reproduction as a constant rate, resulting in exponential growth in the absence of any other

process; most also treat microbe killing as an immunity-dependent process, resulting in non-

linear terms with both immune response and microbe density interacting [4–8]. These features

are also present in this model.

Other than that, descriptions often diverge in what is the origin of the immune response.

Models may assume it is constitutive, induced, or both [4]. Because these descriptions gener-

ally do not refer to any specific immune pathway, and it is more of a mathematical construct,

we henceforth describe this component of the model with the more generic term host

response. These features are included in our model, which is described by two differential

equations, one for the pathogens, one for host response (with terms for both constitutive and

Fig 2. Wolbachia levels in symbiont-carrying mosquitoes. wMelBR levels in symbiont-carrying population.

https://doi.org/10.1371/journal.pntd.0006339.g002
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induced processes), as shown by the system of Eq 1.

dP
dt
¼ rP � dPPR � kP2

dR
dt
¼ aþ lP � gR � dRPR

ð1Þ

In this model r is the growth rate of pathogens; growth is self-limiting due to the negative

quadratic term, −kP2. Additional decreases in pathogen numbers are governed by a non-linear

term, −δPPR, indicating an increased rate of destruction of pathogen units when there is a host

response R—the intensity of this response is governed by its own differential equation.

The host response can be described by pathogen-independent components, α, a constant

rate of recruitment of the response minus a linear death rate, −γR, as well as pathogen-depen-

dent components, λP, describing the rate of recruitment of the response in the presence of

pathogens minus a non-linear term, −δRPR, representing the pathogen-induced destruction,

use, or wear of the host response.

The difference between this formulation and that of Pujol et al. [9] is a logistic-like growth

profile induced by the quadratic term; in the absence of a host response, pathogens follow a

logistic growth, growing initially at nearly exponential rate and saturating as the population

reaches carrying capacity. The same is true for a small response incapable of eliminating the

pathogen; in that case growth is a little slower but at high levels it is limited mainly by the qua-

dratic decrease resulting in a stable level of pathogens and response, as opposed to unlimited

growth [9]. The importance of this feature to explain specific features of our data set, as well as

the implication for the possible mathematical solutions of the system are discussed in the

results section.

Statistics and inference

Correlations were computed between virus and Wolbachia, with the data stratified by dose

and time as well as with the entire aggregated data set, to assess quantitative relationships

between naturally changing symbiont levels and the observed viral levels.

Bayesian inference of the parameters for model (1) was performed using a Markov Chain

Monte Carlo implementation in the Python programming language [14]. A poisson distribu-

tion of errors was used to compute the likelihood of the parameters given the data. Conver-

gence was assessed by stability of the chains, and replicate chains were run to make sure the

same approximate values were obtained regardless of starting point of the Markov chain [15].

Burn-in was performed by discarding the initial samples; the first half was assumed to be

enough given the total lengths of the chains and trace of the likelihood values.

Besides the parameters described above, the initial condition parameter Phigh
0 and the dilu-

tion “dosefold” parameter were also estimated—because each dose is diluted equally from the

previous concentration, the two parameters define all initial conditions for all challenge doses

by successively dividing the highest dose by the dilution value. Most parameters were kept

fixed between the wMelTET and wMelBR groups, as described in the results section. The λ and

δR, as well as the initial condition P0 and dilution parameters are allowed to vary between the

two groups. These choices are detailed in the discussion section.

Uniform priors were used on a wide range of positive values; a gamma-distributed prior is

used for the dilution parameter, since it is known that a tenfold dilution was done for each

lower dose. To reduce uncertainty, a gamma prior is also used for the growth and initial condi-

tion parameters; to that end a simple linear least-squares regression is computed for the high-

est dose logarithmic values, where the slope of straight line would give the exponential growth
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rate, and the intercept the initial condition—those values are used as the mean of the gamma

distribution. In addition to the main analysis a generalized linear model is fitted to the data to

assess significance of the variables in the experimental design (see supplementary material).

Results

Data description and linear statistical analyses

Broad patterns can be observed directly from Fig 1: the two lower doses have essentially zero

infection, with only a couple of data points at very low levels. The intermediate dose has

already a higher proportion of infected individuals, but still at low levels. The higher doses

show a clear trend of increasing pathogen levels along time, with the exception of the second

highest dose at the last time point (107 TCID50); however, the unexpected pattern may be an

effect of the low number of data points for that condition. Given our criteria for number of

data points per condition described in the methods, this time/dose condition is not used for

the model-based inference. In any case, in the next section we discuss more sophisticated

methods that could be used in the future to deal with issues such as low number of data points

for any one condition without any ad hoc treatment.

One very important feature of the data is a number of data points far from the mean, which

could represent samples from a long-tailed or bimodal distribution. This is especially visible in

later time points of the second highest dose, but also on the highest challenge dose. The feature

could be explained by bistability in the viral dynamics, stochasticity, or the combination of

both, and it is further discussed later under the model predictions with and without

stochasticity.

Given that DENV and wMelBR titers were measured for each individual mosquito, the cor-

relation between virus and Wolbachia can be computed, and are shown in Fig 3 (separate pan-

els are shown per dose and time point in Fig B in S1 Text). There is a significant (p = 0.05) but

not high (R2 = 0.25) positive correlation for the whole data set.

We also compute the correlations for each time point and dose combination individually,

as long as there were more than 3 non-zero data points in the condition tested. Some correla-

tions were somewhat higher, but for the most part not significant at the 5% level, and were all

positive. These are shown in Table 1.

Fig 3. Wolbachia/DENV-1 level correlation. Correlations between DENV-1 and Wolbachia titers, displayed in log scale for

the entire data set (A), and per-dose subsets (B)—color code follows that of the raw data.

https://doi.org/10.1371/journal.pntd.0006339.g003
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Given these results, Wolbachia is therefore treated not as a quantitative variable, but as a

present/absent factor.

Model solutions and forward simulation

There are three mathematical solutions to the system of differential Eq (1); the simplest being

the pathogen-free solution (P�free ¼ 0), where constitutive recruitment and constant-rate elimi-

nation of immunity results in a stable equilibrium R�free ¼ a=g. The other two solutions repre-

sent a stable establishment of pathogens, i.e. a systemic, persistent infection, and an unstable

equilibrium that is of interest mainly to determine under which conditions the system will be

tipped one way or the other. All three solutions are shown below:

P�free ¼ 0; R�free ¼
a

g

� �

;

�

P�systemic ¼
rdR � ldP � gkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðldP þ gk � rdRÞ
2
� 4kdRðadP � grÞ

q

2kdR
;

0

@

R�systemic ¼
rdR þ ldP þ gk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðldP þ gk � rdRÞ
2
� 4kdRðadP � grÞ

q

2dPdR

1

A;

P̂ ¼
rdR � ldP � gk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðldP þ gk � rdRÞ
2
� 4kdRðadP � grÞ

q

2kdR

0

@ ;

R̂ ¼
rdR þ ldP þ gkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðldP þ gk � rdRÞ
2
� 4kdRðadP � grÞ

q

2dPdR

1

A

1

A

The bistability in the steady states of the model can produce the bimodal distribution of the

later viral titers, observed in the data, as long as there are differences in the initial conditions of

infection. Although the injected doses are controlled, it cannot be excluded that experimental

or biological variation in the host or virus initial conditions explains observed bimodal out-

comes in an otherwise adequate deterministic model. Alternatively, a stochastic implementa-

tion of the model acknowledges noise in the processes along the entire trajectory and gives a

non-zero probability of observing a bimodal distribution even for identical initial conditions.

Numerical simulation of the system illustrates not only the equilibria, but the dynamic tra-

jectory of the pathogens towards either establishment or elimination, and is shown in Fig 4. At

selected time points the levels of pathogens can be sampled from the simulation, generating a

pseudo-data set similar in structure to a real data set. With a somewhat arbitrary set of parame-

ters it can be seen that some of the broad features of our real data could be reproduced by a

Table 1. Virus/Symbiont correlation.

Dose (TCID50) time (d.p.i.) R2 p–value

107 7 0.88 0.049

14 0.1 0.82

108 3 0.50 0.093

7 0.57 0.14

14 0.21 0.474

https://doi.org/10.1371/journal.pntd.0006339.t001
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stochastic simulation of the model (Fig 4A), and that some of it could be captured by a deter-

ministic approximation (Fig 4B).

In the absence of the quadratic term the system has only one stable equilibrium, elimination

of the pathogen (identical to the one shown above), and one unstable equilibrium [9]; if patho-

gens manage to grow beyond control of the response their growth is unbounded. For real data

sets, pathogen levels are expected not to increase indefinitely, as is observed for our data set,

therefore our attempt to explain the data set with this model does include the logistic-like

term.

This forward approach gives us the output of the model given a set of parameters, but does

not give anything beyond qualitative interpretations of any data set; in the next section we use

the reverse approach with the Aedes-DENV-Wolbach ia data set to infer the parameter values

given our experimental data and compare the two populations of mosquitoes.

Model-based bayesian inference

The dynamic host-parasite model (1), described in the previous section, was fitted to the

experimental data, as described previously. The results of the inference are shown in Fig 5;

data points in the figure are a superposition of all panels in Fig 1, with the wMelTET group

data following the same color code, and the wMelBR in green. The lines are the model predic-

tion with the associated confidence intervals in a lighter shade.

The dynamic profile inferred (Fig 5A) shows not only lower initial pathogen levels, but gen-

erally lower titers along time for the population with Wolbachia. The highest two doses result

in establishment of infection, although the increase is slower for the hosts carrying the symbi-

ont. For the middle dose viruses are expected to persist at low levels and decay towards zero

after around 10 days in the wMelTET hosts, while in the Wolbachia-carrying hosts they drop

below detection before day 1. The two lowest doses for both the wMelTET and wMelBR groups

start from very low titers and rapidly decrease to even lower levels, making viral titers essen-

tially zero for the entire time course.

Besides the dynamic profiles inferred, the values of individual parameters are shown in the

lower panel (Fig 5B), breaking down which processes are responsible for the inferred dynam-

ics. The initial condition parameter PðhighÞ
0 is greater for the wMelTET group, and the dilution

parameter is greater for the wMelBR group, meaning estimated initial inoculum for the highest

dose is lower for the latter group, and they are progressively smaller for lower doses—

Fig 4. Model simulation results. Pseudo-data points sampled at different time points from a stochastic simulation,

with the trajectories shown (A), and a deterministic simulation shown over the sample pseudo-data (B). Parameter

values are: r = 3.5, δP = 0.042, α = 4.8, γ = 0.032, δR = 0.045, λ = 0.12, k = 10−5, P0 = 15, dilution = 2.

https://doi.org/10.1371/journal.pntd.0006339.g004
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Fig 5. Dynamic model estimate and posterior parameter distributions. (A) Fit of dynamic host-pathogen model.

Grayscale lines represent infection profiles from the wMelTET group; green lines are the profiles for wMelBR group.

Green data points are the experimental data for the wMelBR data, and the rest of the colors for the TET group. The

dashed line indicates a visual separation of the detection limit, such that anything below it is effectively zero or

undetectable. (B) Posterior distribution of estimated parameters. Where parameters are different between groups

green color represents the posteriors for the wMel-associated parameters.

https://doi.org/10.1371/journal.pntd.0006339.g005
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differences in the presumably equal initial inoculum are discussed in the next section. The

additional parameters that differ between the two groups are λ, the pathogen-induced recruit-

ment of the response, and δR, the rate of destruction of the response once in contact with the

pathogen. These parameters are greater and smaller, respectively, for the Wolbachia-carryi ng

group; therefore, as interpreted by the model-based inference, the wMelBR group recruits a

response faster than the wMelTET group, and this response wears out more slowly, i.e. persists

longer once recruited.

Discussion

Laboratory experiments are usually designed to maximize the success of infection by chal-

lenging susceptible mosquitoes with a single high viral dose, masking the range of possible

outcomes of the host-pathogen interaction (in our system Ae. aegypti and DENV plus Wolba-
chia). Rather than using static readouts that only provide a snapshot of this process, the

results shown here are a product of a multi-factorial experimental design. The interpretation

of these results requires a quantitative framework that describes the initial infectious dose of

the pathogen and considers the viral growth and the host response throughout time [9]. Per-

forming a multiple-dose infectious challenge assay with 3 time points and 5 different DENV-

1 dilutions on Ae. aegypti females—with the symbiont bacterium Wolbachia assumed to be a

discrete variable that is either present or absent—revealed a mild although potentially impor-

tant protection against the virus, conferred by the symbiont along time. To ascertain the

importance of these findings, future experiments should emulate more natural viral challenge

routes, and assess infection in specific host organs, such as the salivary glands given their role

in transmission.

The intensity of pathogen transmission is largely influenced by the ability of mosquitoes to

become infected by and transmit arboviruses. Ae. aegypti traits that are components of this

vectorial capacity, such as susceptibility to DENV and the duration of the extrinsic incubation

period (EIP), are likely to produce significant effects on the epidemiological trend during out-

breaks [16, 17]. Therefore, a thorough quantitative description of the process is necessary to

assess the impact of interventions on the vector population, and nevertheless excessive experi-

mental simplification may preclude a useful understanding of the system beyond qualitative

assessments or outright speculation.

The process of infection is extremely structured. Soon after the ingestion of an infected

blood meal from a vertebrate host, viral particles are detected on Ae. aegypti midgut, where

digestion takes place [18–20]. It is thought that some arboviruses can induce the activity of

particular proteases to help disassemble the basal lamina surrounding the midgut and corollary

disseminate to mosquito haemocoel [21]. The midgut infection barrier is an important bottle-

neck of viral replication inside the host [1]; by performing mosquito infection using intratho-

racic injections, we allowed DENV to bypass it entirely, so that the control of viral load is due

to other components of the host response, immunological or otherwise. Therefore, a compo-

nent of vectorial competence is artificially removed in this experiment; extrapolations based

on our data must take that into consideration because it should not fully represent a natural

route of infection [22].

It is worth noting that a more natural oral infection should also result in an observable bis-

table pattern if an appropriate range of doses is used; however, the variation associated to feed-

ing infected blood to mosquitoes, even in controlled laboratory conditions, as well as the

additional biological steps to a systemic infection would lead to increased variation that may

obscure the observed bistability.
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Bypassing the midgut allows greater control of the pathogen dose received by each mos-

quito, and clearly shows the possibility of two opposite outcomes of either elimination of the

pathogen, clearly seen for lower dilutions (104 and 105), or establishment, observed when the

females were inoculated with the higher doses (107 and 108 TCID50).

Intuitively, it is expected that DENV dynamics inside an Ae. aegypti host is dependent on

the initial amount of viral particles the mosquito has ingested during the infective blood meal.

From the raw data at the assayed data points it can be seen that wMelBR mosquitoes infected

with high DENV doses generally have lower pathogen loads at specific time points, supporting

the observation that Wolbachia has a protective effect. The viral growth can also be empirically

observed to be slower in the wMelBR group, which is supported by the model-inferred lower

profile of pathogen levels in that group. On the other hand, the effect of Wolbachia on infec-

tion was less pronounced on the two lowest DENV doses since the virus titers rapidly

decreased and remained close to zero for the entire time course for both groups.

Stochasticity is likely to play an important role on the observed infection outcomes. Duneau

et al. [23] observe variation in bacterial levels along the course of infection, and interpret a

bimodality in infection outcome under a two-piece model where each of the two outcome

groups is assigned different trajectories after some time when the host can still control infec-

tion. While the model described by the authors is also deterministic, variation in the initial

phase of infection is found to predict which hosts are able to reach a tipping point that would

determine whether an increasing or decreasing function describes infection levels from them

on. While bacteria and viruses will have many specificities to their invasion of a host, some

broad features of the data observed by Duneau et al. [23] may be shared between different

types of pathogens. We too interpret that variation in the initial phase, or conditions of infec-

tion may determine the final outcome, although under our model bistability is an emerging

property of the host-pathogen interactions. Stochastic versions of this and other models will be

able to further accommodate unexplained variation, as shown by our forward simulations, and

incorporating it into inference could significantly improve model-based analyses [24].

That the observed effect of Wolbachia depends on the dose does not mean that it cannot be

explained by a single, unified model. Dose-response models, for instance, can explain the

expected proportion for a binary (infected/uninfected) outcome as the effect of a single suscep-

tibility distribution [25]; similarly, the model proposed here explains viral levels along time

and ultimately opposite outcomes as a function of dose and time for a single set of parameters.

As inferred by the model, the observed differences are a consequence of differences in the ini-

tial pathogen loads and host responses. The predictions about host response parameters are

themselves hypotheses, both qualitative and quantitative, which can be compared to observa-

tions of the host immune response like the expression of specific pathways [26]. This is an

interesting future perspective that has nevertheless not been explored in this work.

Reproducing all the complexity of the real world in a controlled laboratory study is unreal-

istic, but we do make the distinction between not considering discrete categorical variables, as

opposed to fixing variables in a continuous scale [27]. An example of the former is a single

viral serotype or genotype which can cause an epidemic alone, and a factor like Wolbachia is

normally absent in the mosquito population. On the other hand mosquitoes will invariably

ingest blood from infected hosts with a potentially great range of DENV titers [28], artificially

fixing it is an example of the latter. This study aims at incorporating variation in quantitative

dimensions that are inescapable in any infection, although it does not exhaust all continuous

or otherwise extensive number of variables that are likely to be important in the process.

Notably, mosquito-virus interactions are related to the heterogeneity of DENV (serotypes, and

at a finer scale, genotypes) and mosquito populations with their genetic background and
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environmental factors [29, 30]; these are not explored beyond the inbred population used for

this study.

The model-based inferred DENV-1 infection profiles reveal otherwise obscure differences

between Ae. aegypti mosquitoes and their Wolbachia-carrying counterparts, and the underly-

ing parameters that determine the difference. These results corroborate the reported effect of

Wolbachia [10] in a broad sense, but are more comprehensive, and include observed and/or

predicted differences for specific conditions of previous studies. Therefore, previous results

can only be interpreted as particular cases of this study, not the other way around. Analo-

gously, the effect of other factors, when assessed, should be interpreted under a complete pic-

ture of their infection profiles, as opposed to looking at a single time point or challenge dose.

Ignoring these dimensions could be especially counterproductive when comparing susceptibil-

ity to or infectivity of discrete serotypes, for instance.

The work presented here shows the combination of a dynamic model with a multiple dose

challenge design that allows interpretation of a comprehensive data set beyond discrete factors

or pairwise comparisons, and allows more concrete hypotheses about the biology to be tested.

Improvement of the mathematical and statistical framework, as well as inclusion of more

detailed biological processes in the model description could further refine the interpretation of

infection.
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