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Abstract

Background

Biomphalaria pfeifferi is highly compatible with the widespread human-infecting blood fluke

Schistosoma mansoni and transmits more cases of this parasite to people than any other

snail species. For these reasons, B. pfeifferi is the world’s most important vector snail for

S. mansoni, yet we know relatively little at the molecular level regarding the interactions

between B. pfeifferi and S. mansoni from early-stage sporocyst transformation to the devel-

opment of cercariae.

Methodology/Principal findings

We sought to capture a portrait of the response of B. pfeifferi to S. mansoni as it occurs in

nature by undertaking Illumina dual RNA-Seq on uninfected control B. pfeifferi and three

intramolluscan developmental stages (1- and 3-days post infection and patent, cercariae-

producing infections) using field-derived west Kenyan specimens. A high-quality, well-anno-

tated de novo B. pfeifferi transcriptome was assembled from over a half billion non-S. man-

soni paired-end reads. Reads associated with potential symbionts were noted. Some

infected snails yielded fewer normalized S. mansoni reads and showed different patterns of

transcriptional response than others, an indication that the ability of field-derived snails to

support and respond to infection is variable. Alterations in transcripts associated with repro-

duction were noted, including for the oviposition-related hormone ovipostatin and enzymes

involved in metabolism of bioactive amines like dopamine or serotonin. Shedding snails

exhibited responses consistent with the need for tissue repair. Both generalized stress and

immune factors immune factors (VIgLs, PGRPs, BGBPs, complement C1q-like, chitinases)

exhibited complex transcriptional responses in this compatible host-parasite system.
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Significance

This study provides for the first time a large sequence data set to help in interpreting the

important vector role of the neglected snail B. pfeifferi in transmission of S. mansoni, includ-

ing with an emphasis on more natural, field-derived specimens. We have identified B. pfeif-

feri targets particularly responsive during infection that enable further dissection of the

functional role of these candidate molecules.

Author summary

Biomphalaria pfeifferi is the world’s most important snail vector for the widespread

human-infecting blood fluke Schistosoma mansoni. Despite this, we know relatively little

about the biology of this highly compatible African snail host of S. mansoni, especially for

specimens from the field. Using an Illumina-based dual-seq approach, we captured a por-

trait of the transcriptional responses of Kenyan snails that were either uninfected with S.

mansoni, or that harbored 1-day, 3-day, or cercariae-producing infections. Responses to

infection were influenced both by the extent of schistosome gene expression and infection

duration. We note and discuss several alterations in transcriptional activity in immune,

stress and reproduction related genes in infected snails and the B. pfeifferi symbionts

detected. Several host genes were highly up-regulated following infection and these might

comprise excellent candidates for disruption to diminish compatibility. This study pro-

vides for the first time a large sequence dataset to help in interpreting the important vector

role of B. pfeifferi in transmission of S. mansoni, including with an emphasis on more nat-

ural, field-derived specimens.

Introduction

Schistosomiasis is one of the world’s most prevalent neglected tropical diseases with over 218

million people worldwide requiring preventive chemotherapy in 2015, 92% of those occurring

in 41 countries in Africa [1]. Human schistosomiasis has a greater public health impact than

usually appreciated [2], often with a disproportionate impact on children, in whom it can

cause both cognitive and physical impairments [3–6]. There is a growing consensus that we

need to supplement chemotherapy with other control methods, including control of the oblig-

atory molluscan intermediate host of schistosomes [7–10]. Snail control has been identified as

an important component of the most successful control programs [11].

Among the most important schistosome species infecting humans and the one with the

broadest geographical range is Schistosoma mansoni. Biomphalaria pfeifferi is one of 18 Biom-
phalaria species known to transmit S. mansoni. Biomphalaria pfeifferi has a broad geographic

distribution in sub-Saharan Africa where the majority of cases of S. mansoni occur and exhibits

a high degree of susceptibility to S. mansoni [12–16]. For instance, B. pfeifferi typically shows

high infection rates (50%+) following exposure to S. mansoni from locations throughout

Africa, but even to isolates originating from the Americas [12]. For these reasons, it can be

argued that B. pfeifferi is the world’s most important intermediate host for S. mansoni. Under-

standing the role of B. pfeifferi in human schistosomiasis transmission becomes more critical

because expanding agriculture and water development schemes [17] and climate change
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[18,19] threaten to alter the geographic range of both this snail species and of S. mansoni as

well.

Given B. pfeifferi’s importance in transmission of S. mansoni, it is surprising we lack even

the most basic information at the molecular level about its interactions with, and responses to,

S. mansoni. Such responses could be particularly interesting in the case of B. pfeifferi because it

differs from other major S. mansoni-transmitting snail species in that it is a strong preferential

selfing species, a characteristic potentially resulting in low genetic diversity within populations

[20–23]. Our relative ignorance regarding B. pfeifferi reflects the simple fact that it is often dif-

ficult to maintain this species in the laboratory, in contrast to the Neotropical snail B. glabrata
which has been the standard model laboratory snail host for S. mansoni for decades [24]. Biom-
phalaria glabrata surely remains an important intermediate host of S. mansoni in the Neotrop-

ics, but given that the vast majority of S. mansoni cases occur in sub-Saharan Africa, it is

critical that we extend more attention to the relevant African snail, B. pfeifferi.
The advent of genomics approaches including high throughput sequencing techniques

have lead over the past decade to several studies of Biomphalaria snails and their interactions

with S. mansoni and other trematodes including echinostomes. All of these studies have been

undertaken with B. glabrata and have been amply reviewed and discussed [25–36]. In addition,

the report of the international consortium on the Biomphalaria glabrata genome has now been

published [37]. Ironically, the African Biomphalaria species that are responsible for transmit-

ting the most S. mansoni infections by far have been largely ignored with respect to application

of modern high-throughput sequence-based tools.

Projects going beyond the study of individual genes or gene families of B. glabrata began

with studies of expressed sequence tags [38–40], ORESTES studies [41,42], and then microar-

rays [43,44]. These studies showed B. glabrata has the capacity for more diverse immune

responsiveness than previously known, including production of diversified molecules like

FREPs (fibrinogen-related proteins) [28,45,46]. Hanington et al. [47] examined the transcrip-

tional responses of B. glabrata during the intramolluscan development of both S. mansoni and

Echinostoma paraensei, and showed snail defense-related transcripts were generally down-reg-

ulated starting shortly after infection. A later generation array including ~31,000 ESTs from B.

glabrata provided new insights into how the APO or amebocyte-producing organ of B. glab-
rata responds to immune challenge [48], and to the effects on B. glabrata transcriptional

responses of the molluscicide niclosamide that is commonly used for snail control operations

[49].

Additional recent studies of the interactions between B. glabrata and S. mansoni have

focused on genetic linkage studies to identify chromosome regions of interest that contain

genes influencing resistance to infection [32,50,51]. Functional studies have also used RNAi to

knock-down particular B. glabrata gene products shown to influence susceptibility to S. man-
soni [30–32,52].

Relevant to the present study, Deleury et al. [53] published the first Illumina sequencing

study with B. glabrata, and identified 1,685 genes that exhibited differential expression after

immune challenge. More recent studies employing RNA-Seq have identified B. glabrata genes

associated with a state of heightened innate immunity [54] or with differential response of

FREPs in B. glabrata strains differing in their susceptibility to S. mansoni [34]. Despite the

fairly extensive efforts with respect to gene and genomic sequencing, gene profiling, or tran-

scriptomics for B. glabrata and to a lesser extent for Oncomelania hupensis [55,56], the snail

host of Schistosoma japonicum, to date there have been no equivalent studies published for B.

pfeifferi, or for other schistosome-transmitting planorbid snails, including species of Bulinus,
several of which transmit members of the Schistosoma haematobium species group in Africa,

southern Europe and southwest Asia.
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With this in mind, we have undertaken an Illumina RNA-Seq study of B. pfeifferi, and of B.

pfeifferi infected with S. mansoni for 1 or 3 days, or with naturally acquired cercariae-shedding

or “patent” infections. The intramolluscan transcriptional responses of S. mansoni will be the

subject of a separate paper. The challenge of parsing S. mansoni sequences from the aggregate

of reads obtained from infected B. pfeifferi has been aided by availability of the S. mansoni
genome [57] and stage-specific transcriptional studies for S. mansoni [58–60].

Our view of schistosome-snail encounters has also been largely formed by studies of lab-

reared snails and schistosomes. RNA-Seq offers a way to bridge and expand upon these tradi-

tional views by revealing the detailed molecular and cellular mechanisms taking place in genet-

ically diverse hosts and parasites. This is the first Illumina study performed on samples of both

field-derived vector snails and their corresponding schistosome parasites, adding a unique per-

spective to our understanding of schistosome transmission “in the wild” in endemic regions.

This approach also serves to remind us that the snails targeted for infection by schistosome

miracidia in the field are best considered as holobionts with potentially complex sets of symbi-

otic associates [61,62]. Finally, we note that this study will add to the literature a considerable

amount of new data for B. pfeifferi, an important neglected vector species that has hitherto

been understudied. Included among the snail genes highlighted are several that relate to stress,

immune or reproductive functions, or that may be key players in influencing the noteworthy

widespread ability of this snail to support schistosomiasis transmission.

Methods

Ethics and permissions statements

We enrolled human subjects who provided fecal samples containing Schistosoma mansoni eggs

that were hatched to obtain miracidia used to infect some of the Biomphalaria pfeifferi snails

used in this study. Fecal samples were obtained and pooled from five S. mansoni-positive pri-

mary school children aged 6–12 years from Obuon primary school in Asao, Nyakach area,

Nyanza Province, western Kenya (00˚19’01”S, 035˚00’22”E). Written and signed consent was

given by parents/guardians for all children. The KEMRI Ethics Review Committee (SSC No.

2373) and the UNM Institution Review Board (IRB 821021–1) approved all aspects of this

project involving human subjects. All children found positive for S. mansoni were treated with

praziquantel following standard protocols. Details of recruitment and participation of human

subjects for fecal collection are described in Mutuku et al. [15]. This project was undertaken

with approval of Kenya’s National Commission for Science, Technology, and Innovation (per-

mit number NACOSTI/P/15/9609/4270), National Environment Management Authority

(NEMA/AGR/46/2014) and an export permit has been granted by the Kenya Wildlife Service

(0004754).

Sample collection and experimental exposures

Biomphalaria pfeifferi used in Illumina sequencing were collected from Kasabong stream in

Asembo Village, Nyanza Province, western Kenya (34.42037˚E, 0.15869˚S) in November 2013.

Snails were transferred to our field lab at The Centre for Global Health Research (CGHR) at

Kisian, western Kenya. Snails sized 6-9mm in shell diameter were placed into 24-well culture

plates and exposed to natural light to check for the shedding of digenetic trematode cercariae,

including cercariae of S. mansoni [15]. Snails found to be shedding cercariae of other digenetic

trematode species were excluded from this study.

Snails shedding S. mansoni cercariae and non-shedding snails (controls) were separated

and held for one day in aerated aquaria containing dechlorinated tap water and boiled leaf let-

tuce. After cleaning shells with 70% EtOH, whole shedding and control snails were placed
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individually into 1.5ml tubes with 1ml of TRIzol (Invitrogen, Carlsbad CA) and stored at

-80˚C until extraction.

Biomphalaria pfeifferi confirmed to be uninfected were exposed to S. mansoni using stan-

dard methods to hatch the parasite eggs [15]. Snails were individually exposed to 20 miracidia

for 6 hours in 24-well culture plates and then returned to aquaria. At 1 and 3 days post-infec-

tion (d), snails were collected and stored in TRIzol as described above. We chose not to main-

tain the field-derived snails for longer intervals post-infection as we did not want them to lose

their unique field-associated properties while maintained in laboratory aquaria.

In addition to the Illumina RNA-Seq samples indicated above and mentioned throughout

this study, we have RNA-Seq data from B. pfeifferi obtained from two 454 GS FLX (Roche,

Basel Switzerland) runs and six Illumina-sequenced B. pfeifferi exposed to molluscicide, all

field-derived from Kenya (Table 1). These reads were used to aid assembly of the B. pfeifferi de
novo transcriptome and were not included in expression studies.

RNA extraction, library preparation, and sequencing

Individual snails stored in TRIzol were homogenized using plastic pestles (USA Scientific,

Ocala FL). For each biological treatment (control, 1d, 3d, and shedding), total RNA was puri-

fied separately from three individual snails (each snail a biological replicate) using the TRIzol

protocol provided by the manufacturer (Invitrogen, Carlsbad CA). RNA samples were further

purified using the PureLink RNA Mini Kit (ThermoFisher Scientific, Waltham MA). Genomic

DNA contamination was removed with RNase-free DNase I (New England BioLabs, Ipswich

MA) at 37˚C for 10 minutes. This combination method based on the two RNA extraction

assays had been developed in our lab and proved to produce a high quality of RNA from snail

Table 1. Samples used for the study with total read numbers and the percent of reads mapping to the S. mansoni genome that were filtered prior

to de novo assemblies.

Field-collected samples Replicate Abbreviation Paired-end reads mapping to S.

mansoni genome‡

Paired-End Reads/Sample (post-

quality filtering)

B. pfeifferi control 1 control-R1 0.07% 28,903,992

2 control-R2 0.08% 34,318,971

3 control-R3 0.04% 27,557,936

B. pfeifferi x S. mansoni

1 day post infection (1d)

1 1d-R1 0.1% 36,450,649

2 1d-R2 1.5% 33,634,117

3 1d-R3 1.9% 30,932,207

B. pfeifferi x S. mansoni

3 days post infection (3d)

1 3d-R1 4.1% 30,648,913

2 3d-R2 0.1% 26,445,297

3 3d-R3 13.2% 31,159,822

B. pfeifferi shedding S. mansoni (S) 1 shedding-R1 3.7% 32,200,842

2 shedding-R2 8.2% 33,570,583

3 shedding-R3 0.5% 27,569,638

B. pfeifferi control x molluscicide 1 * * 35,289,769

2 * * 34,450,509

3 * * 25,652,418

B. pfeifferi shedding S. mansoni x

molluscicide

1 * * 30,587,208

2 * * 35,071,339

3 * * 28,843,961

*Samples used in the assembly but expression results not discussed in this paper
‡ See Methods for explanation of S. mansoni read mapping

https://doi.org/10.1371/journal.pntd.0005984.t001
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samples [47]. RNA quality and quantity was evaluated on a Bioanalyzer 2100 (Agilent Tech-

nologies, Santa Clara CA) and Nanodrop 2000 (ThermoFisher Scientific, Waltham MA).

Complementary DNA (cDNA) synthesis and Illumina Hi-Seq sequencing was performed

at the National Center for Genome Resources (NCGR) in Santa Fe, NM. Most liquid handling

was performed by a Sciclone G3 Automated Liquid Handling Workstation (Caliper Life Sci-

ences, Hopkinton MA) with Multi TEC Control (INHECO, Martinsried Germany). Synthesis

of cDNA and library preparation was prepared using Illumina TruSeq protocol according to

the manufacturer’s instructions (Illumina, Carlsbad CA). Complementary DNA libraries were

paired-end sequenced (2x 50 base reads) on a HiSeq2000 instrument (Illumina, Carlsbad CA).

Pre-processing of Illumina reads and isolation of B. pfeifferi reads

Sequencing adapters, nucleotides with a Phred quality score <20 within a sliding window of

4bp, and non-complex reads were removed using Trimmomatic v.0.3 [63]. Raw read quality

control checks were performed before and after Trimmomatic filtering using FastQC (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/).

To reduce assembly of chimeric transcripts, we created a novel pipeline to separate reads of

related organisms when only one organism has a sequenced genome while also allowing for

recovery of shared reads (Fig 1). First, all reads (including control samples) that passed quality

filtering were aligned to the S. mansoni genome (GeneDB: S. mansoni v5.0) using STAR v.2.5

2-pass method [64] or Tophat v.2 [65] (see Table 1 for alignment percentages). From examina-

tion of the percentage values in Table 1, it may be interpreted that unexposed control actually

harbor S. mansoni. However, the reads contributing to the positive percentage values for the

controls are ones that we have found to be shared with either B. glabrata or another organism

such that they represent a background level of sequence similarity obtained by chance.

Although partial mapping of reads may occur, none appear to be expressed S. mansoni tran-

scripts. None of the unexposed control reads mapping to the S. mansoni genome are unequivo-

cally S. mansoni. By contrast, S. mansoni-exposed snails (1d, 3d, shedding) all expressed bona

fide S. mansoni genes. Only in 1d, 3d, and shedding snails were transcripts clearly distinctive

to S. mansoni found, such as venom allergen proteins (SmVal) (Accessions: AAY43182.1,

AAY28955.1, AAZ04924.1, ABO09814.2), tegument allergen-like proteins (Accession:

P14202), and cercarial stage-specific proteins (Accession: ABS87642.1), verifying the presence

of a S. mansoni infection. This explanation also serves to verify that individual snails (such as

1dR2) with low S. mansoni percentages were indeed infected, such that they could be expected

to be responsive to infection. Therefore, relatively low S. mansoni genome mapping, especially

for shedding-R3, should not be interpreted that the infection was not successful, but rather as

an indication of the transcriptional activity.

Reads that mapped to S. mansoni were also cross-examined by mapping to the version

BglaB1 of the B. glabrata genome (https://www.vectorbase.org/organisms/biomphalaria-

glabrata) using STAR. Reads that first mapped to S. mansoni and then also to B. glabrata were

determined to be shared reads and added to the reads destined for B. pfeifferi transcriptome de
novo assembly.

One issue encountered was to deal with both paired- and single-end reads resulting from ini-

tial quality filtering and from discordant or single-mate mapping to the S. mansoni genome.

Pseudo-mate reads were created to allow maximum read usage in all stages of analysis (details

and script available at https://github.com/lijingbu/RNA-Seq-Tools). This tool, pseudoFastq-

Mate.pl, creates pseudo mate reads for single reads in a fastq file by generating a string of N’s

the same length and quality score as its mate read. Reads entirely made up with Ns were ignored

during the mapping process and have no impact on the final alignment and read counts.
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De novo transcriptome assembly and annotation

Unaligned paired and unpaired reads, determined not to solely belong to S. mansoni, were

assembled using Trinity v2.2 RNA-Seq de novo assembler [66,67]. Trinity de novo and B.

Fig 1. Overview of novel bioinformatics pipeline developed to isolate and analyze B. pfeifferi transcriptomic expression from dual RNA-Seq

data.

https://doi.org/10.1371/journal.pntd.0005984.g001
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glabrata genome-guided assemblies were employed to maximize the chances of recovering

unique B. pfeifferi transcripts. The de novo assemblies were concatenated and redundancy

reduced using the EvidentialGene tr2aacds pipeline [68]. EvidentialGene determines the best

set of transcripts based on the coding potential of transcripts generated from multiple assem-

blies. Only primary transcripts, denoted in EvidentialGene as “okay” and “okalt” were used in

further analysis. In silico translation of the transcriptome was done using TransDecoder v3.0

(https://transdecoder.github.io) [65] to extract long open reading frames (ORFs) and identify

ORFs with homology to known proteins with blast and pfam searches.

Biomphalaria pfeifferi CDS were annotated based on their closest homologs and predicted

functional domains in the following databases and tools: BLASTp with NCBI non-redundant

protein database (sequence identity >30%, E-value <10−06), BLASTn with NCBI nucleotide

database (sequence identity >70%, E-value < 10−06), Gene Ontology [69], KEGG [70], and

InterProScan5 [71]. For query CDS whose top hit was “uncharacterized”, “hypothetical”, or

otherwise unknown, the consensus hit (of up to 20 hits that also meet minimum sequence

identity and E-value requirements shown above is reported to help elucidate any putative func-

tion. Additionally, B. pfeifferi CDS were further scrutinized against molluscan transcripts and

proteins identified in the literature.

Identification of non-snail and non-parasite reads

As a consequence of sequencing field-collected specimens, we expected some reads to be of

non-B. pfeifferi and non-S. mansoni origin. Screening for the presence of third party symbionts

was one of our motivations for investigating field-derived snails in the first place. We per-

formed the de novo assembly pipeline without first removing non-snail or non-schistosome

sequences to get a more complete view of the complex environment in which S. mansoni devel-

opment takes place. CDS coverage, sequence identity, and E-value of BLASTn, BLASTp, and

MEGABLAST results were all taken into consideration when determining organism identifica-

tion. The BLASTn and MEGABLAST against the NCBI nucleotide database had minimum

sequence identity of 70% and E-value <10−06 and the BLASTp against the NCBI protein data-

base had a minimum sequence identity of 30% and E-value <10−06. Query coverage (qcov)

was also calculated in all BLASTs. When different BLASTs disagreed in their taxonomic

assignment, the hit with highest percent query coverage, highest sequence identity, and lowest

E-value was chosen, in that order. Although minimum parameters were set, nearly all CDS

BLAST hits exceeded these bounds. BLASTp hits tended to have better quality hits because

nucleotide sequences from the NCBI nucleotide database often contained non-coding regions

that our CDS lack. CDS designated as “undetermined” had hits that did not meet minimum

BLAST parameters. CDS that had a non-molluscan BLAST hit but still mapped to the B. glab-
rata genome (sequence identity >70%, E-value <10−06) were considered “shared” sequences.

Non-B. pfeifferi and non-S. mansoni CDS were categorized into 14 broad taxonomic

groups: Mollusca, Amoebozoa, SAR, Viruses, Plantae, Fungi, Bacteria, Rotifera, Platyhel-

minthes, Arthropoda, Annelida, Nematoda, Chordata, and Miscellaneous. Potential trematode

CDS were further filtered to require a minimum of 70% query coverage. Genomes and CDS of

specific symbionts of interest (if publicly available) were interrogated using BLASTn (>70%

identity, E-value <10−06, query coverage >70%).

Identification of toll-like receptors (TLR) and variable immunoglobulin

lectins (VIgLs)

Given that a number of previous studies of Biomphalaria immunobiology have focused on

molecules with TLR or immunoglobulin domains, we undertook an analysis of these groups of
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molecules. Biomphalaria pfeifferi CDS with a BLASTp or BLASTn annotation as a toll-like

receptor (TLR), were further screened for toll/interleukin-1 receptor (TIR), leucine-rich

repeats (LRR), and transmembrane regions with InterProScan5 and TMHMM (Transmem-

brane helix prediction based on hidden Markov model) [72]. CDS identified as complete TLRs

contained TIR, transmembrane, and LRR domains. Similarly, CDS annotated as a VIgL

(FREPs, CREPs, GREPs, and FREDs) were scanned for an immunoglobulin domain and a

fibrinogen, C-type lectin, or galectin domain using InterProScan5. For CDS to be identified as

a FREP, CREP, or GREP, they had to contain a lectin domain and at least one immunoglobulin

domain.

Transcriptome completeness

To estimate the completeness of our B. pfeifferi transcriptome assembly and assess similar tran-

scripts across related species, B. pfeifferi predicted ORFs were compared to other molluscan

peptides (the cephalopod Octopus bimaculoides, the oysters Crassostrea gigas and Pinctada
fucata, the owl limpet Lottia gigantea, the California sea hare A. californica, as well as two pul-

monates: B. glabrata and Radix balthica) using BLASTp (sequence identity >30%, E-value

<10−06). ORFs with 100 or more amino acids were extracted from each transcriptome. To

maximize sensitivity for retaining ORFs that may have functional significance, predicted ORFs

were scanned for homology to known proteins in the Uniref90 database with a subsequent

search using PFAM and hmmer3 to identify protein domains.

Differential expression analyses

Properly paired reads not filtered as S. mansoni were mapped to EvidentialGene-generated B.

pfeifferi CDS with Bowtie2 [73]. Read abundance was quantified with RSEM (RNA-Seq by

expectation maximization) [74]. Pairwise analyses for comparisons between control group and

other infected groups were run in EBSeq [75]. Transcripts with a posterior probability of dif-

ferential expression (PPDE) > = 0.95 were considered significant. With the aim of detecting

less abundant transcripts that may still have significant biologically effects (i.e. neuropeptides),

we deliberately did not set a minimum read count threshold for detection of DE CDS in

EBSeq.

Variation among infected snails with respect to representation of S.

mansoni reads, and testing among them for associated differences in

host responses

As noted above, field-collected specimens of both snails and schistosomes are naturally more

genetically diverse than lab-reared counterparts, so variation in response among infected snails

might be expected. In fact, by chance, for each of the time points studied, one of the 3 infected

snails examined differed notably from the other two in having fewer normalized S. mansoni
read counts (suggestive of less extensive parasite activity and/or more effective host limitation

of parasite development). We hypothesized that the snail response is influenced by the extent

of S. mansoni representation, as assessed by examining normalized parasite read counts from

each infected snail. In addition to doing “3 controls vs. 3 infected” (3v3) comparisons, for each

time point we also examined “3 control vs. 2 infected” (3v2) comparisons where the two snails

harbored higher S. mansoni read counts to identify CDS whose responses were associated with

S. mansoni abundance. We also performed “3 control vs. 1 infected” (3v1) comparisons where

the one infected snail was the one with low S. mansoni read counts. The overall DE results
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include all CDS that were differentially expressed in any of the three comparisons, the results

for each comparison being separately singled out and enumerated.

Quantitative PCR validation of differential expression

cDNA was synthesized from 5μg of total RNA from the original samples by the SuperScript II

First-Strand Synthesis Kit for RT-PCR (Invitrogen) in a 20μl reaction using random hexamers.

Manufacturer directions were followed for the reaction profile. An additional 80μl of molecu-

lar grade water was added to the cDNA for a final volume of 100μl. qPCR target primer

sequences were generated in Primer3 software [76] and details are shown in S1 Table. We

tested probes for single-copy genes only and final selection of qPCR targets were chosen to

highlight the variability between replicates. Primer testing verified one product was produced

in traditional PCR amplification and in melt curve analyses. RT-qPCR reactions were per-

formed in 20μl reactions according to manufacturer’s directions using SsoAdvanced Universal

SYBR Green Supermix (Bio-Rad Laboratories, Hercules CA) with 0.5μM primer concentration

and 2μl cDNA. Reactions were denatured at 95˚C for 2 minutes followed by 40 cycles of 95˚C

for 5 seconds and annealing/extension and plate read for 30 seconds. Melt curve analysis was

performed from 65–95˚C at 0.5˚C increments for 5 seconds. All biological replicates were run

in technical triplicate for each transcript on a Bio-Rad CFX96 system and analyzed with Bio-

Rad CFX Manager software.

Results

Transcriptome sequencing, assembly, and annotation

To investigate the gene expression profiles of B. pfeifferi following infection with S. mansoni,
we analyzed the transcriptome from Illumina sequencing of infected snails at 1-day (1d), 3-day

(3d), and from shedding snails using three biological replicates each (Table 1). The raw and

assembled sequence data are available at NCBI under BioProject ID PRJNA383396. The results

and statistics describing the B. pfeifferi assembly are summarized in Table 2. Trinity de novo
transcript assemblies and additional reads from two 454 runs resulted in 1,856,831 contigs.

The EvidentialGene program generated a non-redundant B. pfeifferi transcriptome of 194,344

protein-coding sequences (CDS) that includes isoforms. From nucleotide sequence length his-

tograms, we calculated that more than half of the CDS were between 300–499 nucleotides with

6.7% > = 1500 nucleotides (S1 Fig).

Five publicly available databases were used to annotate and obtain functional information

for the CDS (S1 File; Table 3). The top 20 most common GO assignments are shown in S2 Fig.

Six KEGG categories are shown with their constituent classes organized by abundance in S3

Fig. Altogether, 179,030 of 194,344 total (92.1%) CDS were annotated from at least one of the

five databases shown in Table 3.

Identification of toll-like receptors (TLRs) and variable immunoglobulin

lectins (VIgLs)

Pattern recognition receptors like TLRs and VIgLs (FREPs, CREPS, and GREPs) are key com-

ponents of the innate immune response and their involvement in the B. glabrata defense

response has been documented [28,77]. The B. glabrata genome contains 56 TLR (toll-like

receptor) genes, 27 of which encode complete TLRs [37]. Our B. pfeifferi transcriptome had

190 CDS annotated as a homolog to a B. glabrata TLR (Fig 2). Note that numbers assigned to

TLRs in B. glabrata were assigned in the order they were identified and not by homology to

vertebrate TLRs. The TLR numbers we refer to for B. pfeifferi match most closely the TLR with

Biomphalaria pfeifferi transcriptomic response to Schistosoma mansoni

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005984 October 18, 2017 10 / 42

https://doi.org/10.1371/journal.pntd.0005984


the corresponding number from B. glabrata. InterProScan5 analysis revealed 78 of B. pfeifferi
TLR CDS contain a TIR (toll/interleukin receptor) domain and 118 have at least one LRR (leu-

cine-rich repeat) domain. In total, we found 48 complete B. pfeifferi TLRs (TIR, transmem-

brane, LRR domains all present) and 142 partial homologs to B. glabrata TLRs (annotated as a

TLR, but not all domains complete and/or confidently identified) in our transcriptional study.

Others may certainly exist in the genome of B. pfeifferi.
There are 22 FREP genes in the B. glabrata genome [37,77] and all were represented in our

B. pfeifferi transcriptome, at least in part. Our BLAST annotations identified 249 B. pfeifferi
CDS homologous to B. glabrata FREPs and 12 of these were verified to be full-length FREP

homologs (Fig 3). There were no full-length, complete GREPs identified in our transcriptome,

but there were 5 CDS with a BLAST annotation homologous to one B. glabrata GREP identi-

fied by Dheilly et al. [77] (Fig 3). Four CREPs (C-type lectin protein) have been identified in B.

glabrata [77] with 2 of the 14 full-length, complete B. pfeifferi CDS homologous to CREP 1 in

B. glabrata (Fig 3).

Sequence homology between related mollusc species

A BLASTp comparison between B. pfeifferi and B. glabrata shows high sequence similarity

with 35,150 (95.8%) polypeptides shared between the two species (sequence identity >30%

Table 2. Illumina sequencing and B. pfeifferi de novo transcriptome assembly summary metrics.

Raw Illumina data

Number of paired-end reads sequenced 563,288,171

Number of reads sequenced 1,126,576,342

Reads surviving quality filtering and trimming 1,120,661,048

Reads surviving S. mansoni filtering 1,048,936,142

Filtered reads used in de novo assemblies 1,048,936,142

Assembled contigs 1,805,496

Trinity de novo Illumina 201,573

Trinity de novo Illumina including shared reads 225,929

Genome-guided Trinity de novo Illumina 62,682

Genome-guided Trinity de novo 454 71,199

Additional 454 reads 1,244,113

EvidentialGene clustering

Okay + Okay alternate coding sequences (CDS) 194,344

% GC 44.24

N50 654

Longest CDS length 28,302

Median CDS length 447

Average CDS length 634.57

Clusters > = 1Kb 24,802

% positive strand orientation 53.2%

% negative strand orientation 46.8%

TransDecoder-predicted open reading frames (ORFs)

Total predicted ORFs (minimum length = 100 aa) 166,921

Longest ORF length (aa) 9,434

Median ORF length (aa) 157

Average ORF length (aa) 232.07

Average ORF size of 1,000 longest CDS 2014.1

https://doi.org/10.1371/journal.pntd.0005984.t002
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and E-value <1e-06) (Table 4). We found 1,525 B. glabrata polypeptides without homologs in

our B. pfeifferi transcriptome. With respect to the 127,626 translated CDS that have homologs

to B. glabrata polypeptides, more than half of these have a sequence identity greater than 90%

(S4 Fig). To further assess the completeness and to enhance annotation of our B. pfeifferi tran-

scriptome, we searched for homologous polypeptides from genomes of two additional gastro-

pods (Aplysia californica and Lottia gigantea [78]), two bivalves (Pinctada fucata [79]) and

Crassostrea gigas [80]), and one cephalopod (Octopus bimaculoides [81]) (Table 4). Shown in

S5 Fig is one hypothesis of the phylogeny of molluscs, and mapped onto this are the mollusc

genomes that are currently available [82]. Note that the percent identity of homologous

sequences follows the general branching pattern. The California sea hare, A. californica, has

88.3% of its polypeptides homologous to B. pfeifferi peptides. The most distantly related

Table 3. CDS and predicted protein annotations using publicly available databases.

Public Database Annotation Summary

BLASTp x nr 140,484 CDSs (72.3%)

49,518 unique protein identities

BLASTn x nt 128,028 CDSs (65.9%)

26,708 unique nt identities

InterProScan 137,778 (70.9%)

Gene Ontology (GO) 50,870 CDSs (26.2%)

Unique Molecular Function 3,246

Unique Cellular Component 1,618

Unique Biological Process 8,282

KEGG 145,197 CDSs (74.7%)

Unique KEGG orthologous groups 3,824

Unique KEGG pathways 387

Unique KEGG classes 46

Unique KEGG categories 6

Cellular Processes 13,845

Environmental Information Processing 16,093

Genetic Information Processing 13,722

Human Diseases 32,748

Metabolism 41,022

Organismal Systems 27,767

https://doi.org/10.1371/journal.pntd.0005984.t003

Fig 2. Identification of the innate immune recognition receptors TLRs in B. pfeifferi. Partial CDS counts had a

BLAST hit against a known TLR but all necessary domains could not be confidently determined by InterProScan5.

https://doi.org/10.1371/journal.pntd.0005984.g002
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mollusc, the California two-spot octopus, O. bimaculoides, is 56.7% homologous at the protein

level to B. pfeifferi.

Other organismal sequences derived from the de novo assembly

Of the 194,344 CDS assembled post-S. mansoni read filtering, 18,907 (9.73%) of these were

determined to be of non-mollusc origin (Fig 4). Some of the non-B. pfeifferi transcripts found

were bacteria with most belonging to the genera Escherichia, Mycoplasma, Aeromonas, and

Pseudomonas (Fig 5). Among them, a CDS with homology to Neorickettsia sp, a known obliga-

tory symbiont of digenetic trematodes [83], was recovered and has read counts >10 in 2 of our

samples that also had relatively high counts of S. mansoni (3d-R3 and shedding-R1) (Table 1;

S2 File). In addition, there are three CDS assembled from the infected 454 B. pfeifferi sample

that were identified as Paenibacillus spp. and were similar, but not identical, to the snail patho-

gen Candidatus Paenibacillus glabratella (S2 File) [84].

Among the eukaryotic sequences retrieved from generation of the de novo assembly, there

are some familiar snail symbionts listed in S2 and S3 Tables including 1) Chaetogaster annelids,

2) Trichodina ciliates, and 3) Capsaspora owczarzaki [85] and 4) microsporidians [86–89] (see

also S2 File and Discussion for further comments).

Fig 3. Identification of the innate immune recognition receptors VIgLs in B. pfeifferi with initial BLAST

annotation and then verification of protein domains in InterProScan5.

https://doi.org/10.1371/journal.pntd.0005984.g003

Table 4. Number of polypeptides queried in various molluscs and matches with B. pfeifferi TransDecoder-predicted ORFs.

Reference # Reference

polypeptides

B. pfeifferi polypeptides matched to

reference polypeptides

Download location

Biomphalaria glabrata

v1.0 [37]

36,675 127,626 https://www.ncbi.nlm.nih.gov/genome/annotation_euk/

Biomphalaria_glabrata/100/

Aplysia californica

v3.0*
27,591 99,884 http://www.ncbi.nlm.nih.gov/genome/annotation_euk/

Aplysia_californica/101/

Lottia gigantea v1.0

[78]

188,590 74,494 http://genome.jgi.doe.gov/Lotgi1/Lotgi1.download.ftp.html

Pinctada fucata v2.0

[79]

31,477 77,341 http://marinegenomics.oist.jp/pearl/viewer/download?

project_id=36

Crassostrea gigas v9

[80]

45,406 80,505 ftp://ftp.ncbi.nlm.nih.gov/genomes/Crassostrea_gigas/

Octopus bimaculoides

v2.0 [81]

38,585 71,395 http://genome.jgi.doe.gov/pages/

dynamicOrganismDownload.jsf?organism=Metazome

*Genome is publicly available at link provided

https://doi.org/10.1371/journal.pntd.0005984.t004
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In addition to prokaryotes and eukaryotes, nearly 1,300 of our assembled CDS were provi-

sionally identified as viruses (Fig 4). Sample Control-R2 had the highest abundance of reads

mapping to the viral sequences compared to the other samples, though some putative viral

sequences were recovered from all 12 snails examined.

Lastly, even after the initial screening and removal of S. mansoni reads from the nine snails

with known S. mansoni infections, some reads remained that were classified as platyhelminth

in origin (Fig 4). Two individual snails in particular, control-R3 and 3d-R2, the latter a repli-

cate with low S. mansoni read counts, had many platyhelminth reads (Fig 5). We sequenced a

28S rRNA gene from cDNA of control-R3 using digenean-specific primers [90] to determine

if other digeneans were present in our sample. The resulting 28S sequence was identified as

belonging to the genus Ribeiroia, members of which are known to occur in East Africa and to

infect Biomphalaria [91]. Most of the platyhelminth CDS present in this sample were identified

as “hypothetical” but CDS with the highest read abundance are involved in membrane trans-

port and cell structural functions. For 3d-R2, cox1 mitochondrial gene primers amplified an

amphistome sequence that groups phylogenetically with an amphistome species (provisionally

Calicophoron sukari) that uses B. pfeifferi from East Africa as a first intermediate host [92].

Like control-R3, CDS with the highest read abundance in 3d-R2 were membrane associated

and structural with the addition of several myoglobins and surface glycoprotein CDS.

Variation among infected snails with respect to the representation of S.

mansoni reads, and associated responses

The extent of representation of S. mansoni in the dual transcriptome as measured by read

counts is variable among the three replicates for each development time sampled in shedding

snails (Table 1). Normalized read abundance of S. mansoni housekeeping genes remained

Fig 4. Identification of all de novo assembled transcripts after S. mansoni read filtering.

https://doi.org/10.1371/journal.pntd.0005984.g004
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consistently high across all samples, eliminating the possibility that S. mansoni read count vari-

ability was due to sampling effects. Because of this inherent variability, we performed addi-

tional DE comparisons to the traditional 3 control v 3 experimental (3v3) replicates isolating

either the two snails that contained higher S. mansoni read counts (3v2 analysis) or the one

snail with the fewest S. mansoni read counts of each triplicate time point (3v1). With respect to

the overall response patterns of snails that yielded either high or low numbers of S. mansoni
reads, in most cases, for both up- and down-regulated CDS, the majority of significantly differ-

entially expressed CDS fell into the 3v3 comparison category (Fig 6), indicative of uniformity

of response across infected snails. For up-regulated features, there were also substantial addi-

tional numbers of significant CDS in the 3v2 or 3v1 infected categories, with the latter being

greater in 2 of 3 cases. By contrast, for the down-regulated features, at 1d, the snails with high

or low S. mansoni read counts did not as clearly differentiate from one another, but the snails

with low read counts for S. mansoni (3v1) clearly showed an additional allotment of down-

Fig 5. Sum of non-B. pfeifferi de novo assembled CDS for each replicate. CDS were counted as present if read count >0.

https://doi.org/10.1371/journal.pntd.0005984.g005

Fig 6. Pie charts of unique CDS found to be differentially expressed in 3v3, 3v2, and 3v1 EBSeq

analyses.

https://doi.org/10.1371/journal.pntd.0005984.g006
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regulated features. For the other two time points, the snails with high and low S. mansoni read

counts did separate from one another, and especially noteworthy is the relatively small propor-

tion of down-regulated features in the 3v1 comparisons.

B. pfeifferi CDS responsive during S. mansoni infection

S3 File provides a summary of all CDS retrieved in the DE analysis, S4 File summarizes those

general, reproduction or immune system features that were most differentially expressed, and

Tables 5 and 6 distill CDS (see Discussion also) that we feel are most worthy of further func-

tional study in B. pfeifferi. Multidimensional scaling (MDS) plots show that for each of the

three groups of infected snails, overall transcript expression of the experimental groups is dis-

tinct from the control groups (Fig 7). At 1d, snails showed a slight preponderance of down-

regulated over up-regulated CDS, but in both 3d and shedding snails, the opposite trend was

observed (Fig 8A and 8B). Overall, the most transcriptional activity was in the 3d snails. All

three groups of infected snails (1d, 3d, shedding) showed distinct transcriptional profiles, sug-

gesting the snail response is different at each time point (Fig 8C). Generally, each of the three

groups has more unique responsive CDS than they do in common with one another. As antici-

pated, 1d and 3d snails have more shared transcripts both up- and down-regulated than either

do with the shedding snails.

It should also be noted that 59 CDS were up-regulated, and 63 CDS down-regulated in

common to all three groups of infected snails (Fig 8C). Those up-regulated across time points

include hemocytin, CD209 antigen-like, DBH-like monooxygenase, and a fibrinolytic enzyme.

Some ubiquitously down-regulated features include neural cell adhesion molecule 1-like, a

TNF receptor, peroxiredoxin 5, F-box/LRR repeat protein 4-like, the cytoprotective hypoxia

up-regulated protein 1-like that is triggered by oxygen deprivation and oxidative stress, gluta-

thione-S-transferase omega-1-like, type 1 serotonin receptor 5HT-1Hel, a feeding circuit acti-

vating peptide that induces feeding behavior [93], and TLR 7.

In addition to identifying those CDS up- or down-regulated in common to all three groups

of infected snails, we also identified CDS not known to be related to reproduction or defense

that exhibited the highest fold expression changes in shedding snails. Snail CDS most highly

up-regulated may represent molecules essential for the parasite to sustain a patent infection, or

conversely, those most strongly down-regulated may otherwise interfere with parasite develop-

ment in ways we do not presently understand. A selected few, that had an annotation and were

consistently expressed compared to controls in each replicate, are shown in Table 5.

Table 5. Highly up- or down-regulated B. pfeifferi CDS whose response may be required for maintaining a patent S. mansoni infection.

B. pfeifferi CDS Annotation Log2FC 3v3 Log2FC 3v2 Log2FC 3v1

evgTRINITY_DN89401_c6_g1_i1 GD13313-like 9.14 9.58 6.75

evgTRINITY_DN19832_c0_g1_i1 deleted in malignant brain tumors 1 protein-like 6.65 7.09 4.48

evgTRINITY_DN95353_c0_g1_i1 collagen alpha-3(VI) chain-like 6.41 6.80

evglcl|G0WVJSS02FGR88 cAMP-dependent prot kinase catalytic subunit-like 6.17 6.60 4.15

evgTRINITY_DN84392_c3_g1_i1 galactocerebrosidase-like 5.41 5.53 5.14

evgTRINITY_DN104940_c0_g1_i1 cAMP-dependent prot kinase catalytic subunit-like 5.32 5.79 3.06

evgTRINITY_DN84179_c0_g1_i1 uncharacterized transporter slc-17.2-like 5.31 5.21 5.20

evgTRINITY_DN16840_c0_g1_i1 papilin-like 5.05 5.55

evgTRINITY_GG_14665_c0_g1_i2 ctenidin-3-like -5.43 -4.89

evgTRINITY_DN92655_c9_g2_i1 deoxyribonuclease-1-like -4.84 -4.63

evgTRINITY_DN68720_c0_g1_i1 testisin-like -4.69 -4.18

https://doi.org/10.1371/journal.pntd.0005984.t005
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Table 6. Highlights of general, reproductive, and immune responses of B. pfeifferi in response to S. mansoni infection.

One day post-infection (1d)

General Reproductive Immune

UP-REGULATED

Overall phospholipase A2s Na and Cl dependent glycine

transporter 2-like

dermatopontins

endoglucanases neuropeptide Y receptor type 5-like ficolin-like proteins

Proteases and protease inhibitors DBH-like monooxygenase protein 1 macrophage man rec 1-like isoform X1

Guanine nucleotide-binding protein-

like 3

C-type lectin -6 member A-like

Translationally-controlled tumor

protein

acidic mammalian chitinase-like

chitinase-3-like protein 1-like

hemocytin

laccase-15-like

laccase-1-like

tyrosinase-1-like

Two snails with higher S. mansoni

read counts

FMRF-amide receptor-like Cu, Zn superoxide dismutase

Tyrosinase-like protein tyr-1 GTPase IMAP family members 4 and 7

beta 1,3 glucan-bind protein-like

precursor

complement C1q-like protein

fibrinogen-related protein 2 (FREP2)

One snail with least S. mansoni read

counts

ATP synthase FO6 macrophage expressed gene-1

spermine oxidase

glutathione-S-transferase

laccase-2-like

DOWN-REGULATED

Overall glyceraldehyde-3-phosphate

dehydrogenase

ovipostatin 2 FREP12 and its precursors

respiratory pigment hemoglobin tyramine/dopamine β-hydroxylase-

like

toll-like receptor 8

insulin-like peptide 7 –modestly down FMRF-amide isoform X2 –modestly

down

cytidine deaminase

pedal peptide 2 PTSP-like molecule zinc metalloproteinase /disintegrin-like

Na dependent nutrient aa

transporter1-like

pheromone Alb-1

enterin type 1 serotonin receptor

FMRF-amide isoform X2 schistosomin

cytidine deaminase

soma ferritins

COMPLEX (MIXED RESPONSES)

collagens

acidic mammalian chitinase-like

proteins

cytochrome c oxidases

Mucins

Cytochrome P450 family members

Multidrug resistance proteins

Some heat shock proteins

Three day post-infection (3d)

General Reproductive Immune

UP-REGULATED

(Continued)
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Table 6. (Continued)

Overall phospholipase A2s Na and Cl dependent glycine

transporter 2-like

GTPase IMAPs- complex, but mostly

up

endoglucanases temptin-like beta-1,3-glucan binding proteins

Proteases and protease inhibitors kynurenine 3-monooxygenase-like complement C1q-like proteins

17-beta hydroxysteroid

dehydrogenase type 6

probable serine carboxypeptidases (1–

5)

betaine homocysteine-

methyltransferase 1-like

glutathione S-transferases

translationally controlled tumor

protein homolog

laccase-2-like

hemoglobin type 1

Two snails with higher S. mansoni

read counts

insulin-related peptide-3-like Tyrosinase-like protein tyr-1 dermatopontins

cytochrome b Na- and Cl-dependent taurine

transporter-like

ficolins

serine proteases alpha and beta dopamine receptor 2-like Cu-Zn superoxide dismutases

ADP, ATP carrier-like protein C-type lectin domain family 6, A-like

heparinase-like isoform X! chitinase-3-like protein

serpin B6-like chitotriosidase-1-like

aplysianin-like proteins

FREP2, FREP5

macrophage-expressed gene 1

protein-like

laccase-15-like

tyrosinase-1-like

One snail with least S. mansoni read

counts

profilin ovipostatin 6 hemocytin

cathepsin B and L1-like yolk ferritin precursor hemagglutinin/amoebocyte aggreg

factor-like X1

neuroglobinase-like DBH-like monooxygenase protein 1 G-type lysozyme

chymotrypsin-like elastase family

member

sialate–O-acetylesterase-like protein

histone transcription factor peroxidase-like protein

fibrinogen-like protein A

FREP 7

peptidoglycan-recognition proteins

SC2-like

LRR-containing 15-like, toll-like

receptor 13

DOWN-REGULATED

Overall glyceraldehyde-3-phosphate

dehydrogenase

FMRF-amide-like isoform X2 –

modestly down

caveolin-1-like

aryl hydrocarbon recep nucl

translocator-like

tyramine/dopamine β-hydroxylase-

like

disintegrin/metalloprot containing prot

t17-like

FMRF-amide isoform X2 –modestly

down

FREP12 precursors

PTSP-like molecule LRR contain G-prot coupled rec 5-like

pheromone Alb-1 alpha-crystalline B chain-like

type 1 serotonin receptor toll-like receptors 4 and 8

schistosomin cytidine deaminase

Two snails with higher S. mansoni

read counts

tyramine/dopamine β-hydroxylase-

like

COMPLEX (MIXED RESPONSES)

(Continued)
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Table 6. (Continued)

ornithine decarboxylase

actins

collagens

tubulins

mucins

cytochrome P450 members- mostly

up

multidrug resistance proteins

heat shock proteins

thioredoxins

annexins

putative copper-containing amine

oxidases

soma ferritins

Shedding

General Reproductive Immune

UP-REGULATED

Overall FMRF-amide receptor-like—modestly

up

dopamine beta hydroxylase-like pcrotocadherein Fat 3 or 4-like

small cardioactive peptides FMRF-amide receptor-like ADAM family mig-17-like

phospholipases A2s ovipostatin 5 zinc metalloproteinase nas 13- &

14-like

arginase-1-like isoform X2 DBH-like monooxygenase protein ficolins

reverse transcriptase

protease inhibitors BPTI Kunitz-

domain class

ubiquitin ISG15

Angiopoietin–1 receptor

Angiopoietin-related 2-like

mucins—complex but most are up

soma ferritins

Two snails with higher S. mansoni

read counts

endonuclease G mitochondrial-like yolk ferritin-like and snail yolk ferritin

molecules

aplysianin-A-like

zinc carboxypeptide A 1-like Neuropeptide Y receptor type 5-like mammal ependymin-related prot 1- like

serpinB3-like protease inhibitor zinc carboxypeptidase A1-like

cystatin protease inhibitor beta-1,3-glucan binding protein-like

putative amine-oxidases (copper

containing)

FREP 2, 7 and 14

One snail with least S. mansoni read

counts

multiple epidermal growth factor-like

domains

macrophage-expressed gene

serine/threonine-protein kinase mos-

like

C-type lectin -6 member A-like

chitinase-3-like-protein

LRR and Ig domain containing protein

toll-like receptor 3

DOWN-REGULATED

Overall insulin-like gr fact protein acid labile

subunit

ovipostatin 2 toll-like receptor 7

pedal peptide 2 dopamine beta-hydroxylase-like galectin-6

profilin-like isoform X1 probable serine carboxypeptidase

CPVL

neuroglobin-like

calreticulin-like

tyrosinase tyr-3

(Continued)
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With respect to transcripts involved in reproduction and potentially associated with S. man-
soni-induced parasitic castration, we identified homologs to more than 100 invertebrate neu-

ropeptides, hormones, pheromones, and polypeptides involved in reproduction, most of

which have been identified in Lymnaea stagnalis, the sea hare Aplysia californica, or in B. glab-
rata (S4 File; Fig 9, and see Discussion). We also searched for over 500 different genes identi-

fied from previous publications that are related to immune, defense or stress responses to

various pathogens or environmental stressors (S4 File; Fig 10). Each gene of interest has been

organized into one of six broad functional groups for ease of interpretation, although it must

be noted that many of these genes have multiple roles and could belong in several functional

categories. After 1d, the majority of immune, stress and defense features were up-regulated.

Noteworthy from Fig 10B is that for snails with low reads counts for S. mansoni (3v1 compari-

son), proportionately more features were up-regulated than for snails with high S. mansoni

Table 6. (Continued)

Two snails with higher S. mansoni

read counts

hemoglobin dihydropyrimidinase

collagen-related macrophage man recep1-like protein

tyrosinase-3-like

One snail with least S. mansoni read

counts

tyrosinase-1-like

COMPLEX (MIXED RESPONSES)

collagens, mixed but mostly down

cathepsins

tubulins

cytochromes

ankyrins

Rho GTPase-activity protein 1-like

cytochrome P450 family members

multidrug resistance proteins

glutathione-S-transferases

dermatopontins

GTPase IMAP family members

thioredoxins—but mostly up

https://doi.org/10.1371/journal.pntd.0005984.t006

Fig 7. Multidimensional scaling (MDS) plots of pairwise comparisons of control versus 1d, 3d, and shedding replicates used for differential

expression analyses.

https://doi.org/10.1371/journal.pntd.0005984.g007
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read counts. In two out of three comparisons, snails with low read counts for S. mansoni had

fewer down-regulated genes than snails with high levels of S. mansoni read counts.

Expression patterns validated by qPCR

Quantitative RT-PCR (qPCR) was used to validate differential expression trends by quantify-

ing mRNA transcripts of four single-copy genes (3 up-regulated and 1 down-regulated) that

highlight varying expression patterns in 1d, 3d, and shedding snails. Overall expression pat-

terns are similar between the qPCR and Illumina DE results (Fig 11) with the same variability

in DE pattern between replicates echoed in the qPCR. The only difference seen was in the gene

DAN4 where the shedding group was not considered significantly DE in the qPCR analysis

but was in Illumina analysis.

Fig 8. Biomphalaria pfeifferi differential expression profiles in 1d, 3d, and shedding snails. (A) Overall expression profiles for up- and down-

regulated B. pfeifferi CDS in the 3v3 DE analysis with proportions shown for CDS with annotation known (white) and without annotation (gray) from one

of the 5 databases searched (Table 3). Numbers by bars refer to numbers of up- and down-regulated features. (B) Heat map of differentially expressed

B. pfeifferi CDS. (C) Up- and down-regulated B. pfeifferi CDS shared between 1d, 3d, and shedding snail groups in the 3v3 DE analysis are shown.

https://doi.org/10.1371/journal.pntd.0005984.g008

Biomphalaria pfeifferi transcriptomic response to Schistosoma mansoni

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005984 October 18, 2017 21 / 42

https://doi.org/10.1371/journal.pntd.0005984.g008
https://doi.org/10.1371/journal.pntd.0005984


Fig 9. Biomphalaria pfeifferi CDS identified as neuropeptides, hormones, or involved in reproduction

that are differentially expressed in 1d, 3d, and shedding snails. Note that the 3v3 comparison includes all 3

infected snails within a time point, whereas 3v2 includes the two infected snails with the most S. mansoni reads

and the 3v1 includes only the infected snail with the fewest S. mansoni reads.

https://doi.org/10.1371/journal.pntd.0005984.g009
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Fig 10. Differential expression of Biomphalaria pfeifferi defense-related CDS in 1d, 3d, and shedding snails. (A) Defense

CDS in the 3v3 DE analysis. (B) Pie charts of proportions of CDS found to be DE in 3v3, 3v2, and 3v1 analyses. (C) Heat maps show

expression levels from each of the three DE analyses highlighting the most relevant biological functional groups. Note that the 3v3

comparison includes all 3 infected snails within a time point, whereas 3v2 includes the two infected snails with the most S. mansoni

reads and the 3v1 includes only the infected snail with the fewest S. mansoni reads.

https://doi.org/10.1371/journal.pntd.0005984.g010
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Discussion

Considerations regarding the dual-seq dataset and pipeline

This paper represents a novel pipeline for dual RNA-Seq studies where the genome of just

one of the interacting partners, the parasite in this case, is available. It also highlights an

advantage of using field specimens in RNA-Seq studies to reinforce the notion that individ-

ual snails are actually holobionts, and the symbiont species they carry with them may play a

role in influencing susceptibility to schistosome infection or in modulating disease trans-

mission. Also, variance among the individual snails within the groups examined presented

challenges for traditional bioinformatics analyses but also revealed the heterogeneity that

realistically exists among naturally diverse snails and schistosomes as they encounter one

another in real-life settings in the field. We must also note that the identity and functional

role for many of the CDS remain unknown thus posing rich opportunities for study for the

future.

Fig 11. qPCR results validate Illumina RNA-Seq differential expression results. (A) Quantitative real-time PCR

verifies Illumina trends among biological replicates in 1d, 3d, and shedding samples. (B) Corresponding Illumina DE

results for the four genes tested. Asterisks indicate genes that are significantly DE.

https://doi.org/10.1371/journal.pntd.0005984.g011
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Considerations with respect to compatibility with S. mansoni

The specific B. pfeifferi-S. mansoni system studied here is noteworthy for the high degree of

susceptibility shown by the snail to infection [15,16]. Compatibility with S. mansoni is charac-

teristic of B. pfeifferi throughout its range [12]. As a consequence, all snails exposed to S. man-
soni or known to be shedding S. mansoni cercariae contained transcripts contributed by S.

mansoni. The extent of representation of S. mansoni in the dual transcriptome is variable

among the replicates for each time sampled (Table 1). Given the effects of both genetic diver-

sity in S. mansoni [94] and in Biomphalaria snail hosts [34,95] on the rate or extent of S. man-
soni development, it is not surprising that field-derived representatives will differ with respect

to extent of parasite development and transcriptional activity. Here it should be noted that

read counts may not always be fully indicative of S. mansoni biomass in snails as the transcrip-

tional activity of the parasite may vary temporally, both daily [96] and at longer time scales

[97], and in response to other stimuli, as noted in the following section regarding symbionts.

Recovered symbiont sequences

Whole snail transcriptome sequencing gave us the opportunity to identify sequences of non-

mollusc and non-schistosome origin, including viruses, bacteria and eukaryotes. These

sequences provide evidence of symbionts that are found in or on B. pfeifferi and/or S. mansoni.
Some of the symbionts identified are surely worthy of further future investigation and may

offer potential in application of novel and as yet unforeseen control efforts.

With respect to viruses, in general the array of viruses found in invertebrates has recently

been shown to be much more diverse than previously known, including in molluscs [98]. Of

the nearly 1,300 of our assembled CDS identified provisionally as viruses, most have homology

to Beihai paphia shell viruses, picorna-like viruses, and crawfish viruses. In terms of read abun-

dance, the five most abundant viral CDS we found in B. pfeifferi had the most similarity to the

Wenzhou picorna-like virus 33 from the channeled apple snail Pomacea canaliculata, Sanxia

picorna-like virus 4 from a freshwater atyid shrimp, Beihai picorna-like virus 47 from a sesar-

mid crab, bivalve RNA virus G2 a picorna virus from the gills of a bivalve [99], and Beihai

hypo-like virus 1 from a razor shell [98]. Picorna viruses have recently been described in both

B. glabrata from South America and B. pfeifferi from Oman [100]. Three novel RNA viruses

were reported in the B. glabrata genome, the first with similarities to an iflavirus, the second

with similarities to a Nora virus or Picornavirales, and the third with similarities to several

viruses [37]. Further study is required to confidently designate any of the putative viral

sequences recovered as actual infectious entities of snails, or possibly of schistosomes or other

digeneans. They might infect other potential hosts like rotifers or diatoms among the symbi-

onts living in B. pfeifferi.
The recovery of a few sequences of the digenean-inhabiting Neorickettsia from two infected

snails with relatively high percentages of S. mansoni reads (3d-R3 and shedding-R1) is sugges-

tive of an association. Neorickettsia has been found from non-human schistosomes [101] but

further study is needed to document the presence of Neorickettsia in human-infecting schisto-

somes. For example, the Neorickettsia might be associated with metacercariae of other digen-

eans that are commonly found encysted in B. pfeifferi from natural habitats.

With respect to eukaryotes, CDS representing the following groups were recovered: 1)

Chaetogaster annelids which mostly colonize the external soft surfaces of freshwater snails and

are known to ingest digenean miracidia and cercariae [102–105]; 2) Trichodina ciliates known

to live on the soft surfaces of snails but with poorly characterized influence on their snail hosts

[106]; 3) Capsaspora owczarzaki, a Filasterean amoeba-like symbiont known from Biompha-
laria glabrata [107,108]; 4) Microsporidians, not surprising for B. pfeifferi considering
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microsporidians are known from both Biomphalaria and Bulinus [109]; 5) Perkinsea, an

alveolate group of considerable commercial significance in marine bivalves, but with at least

two reports suggesting their presence in freshwater habitats as well [110,111]; 6) Rotifers

(possibly attached to the shell or ingested) and diatoms (probably ingested) were frequently

recovered as well; 7) Four tardigrade CDS were recovered, two from the uninfected control

454-sequenced snail similar to Richtersius coronifer and two from the Illumina de novo assem-

bly similar to Ramazzottius varieornatus. Control-R1 had read counts >10 for the two R. coro-
nifer CDS and 1d-R3 had read counts >10 for a R. varieornatus CDS. It is not unprecedented

to find tardigrades associated with snails. Fox and Garcı́a-Moll [112] identified the tardigrade

Echiniscus molluscorum in the feces of land snails from Puerto Rico. Although the tardigrade

may have been ingested along with food, the authors did not rule out the possibility that E.

molluscorum may be a symbiont of the snail.

It was not surprising that two of our snails yielded several reads mapping to sequences from

other digeneans. The first, control-R3, returned sequences consistent with Ribeiroia, represen-

tatives of which occur in East Africa and are known to infect Biomphalaria there [91]. It seems

most likely this snail had an infection with Ribeiroia sporocysts and/or rediae, though the

extent of this infection must have been minimal as the transcriptomics response of this snail

was not unusual compared to the other control snails. It may also have been infected with

Ribeiroia metacercariae which are most familiarly known to infect amphibians or fish

[113,114], but have been recovered and sequence-verified in specimens of Biomphalaria spp.

from Kenya (MR Laidemitt, personal communication, April 2017). The other snail, 3d-R2,

yielded confirmed amphistome sequences, probably from the commonly recovered species

Calicophoron sukari [91], so it may have harbored developing larvae of both S. mansoni and an

amphistome, reflective of real-life circumstances in the habitat of origin where this amphis-

tome species is the most common digenean to infect B. pfeifferi [92]. This co-infection may

help to explain the relatively low numbers of S. mansoni reads recovered from this snail relative

to 3d-R1 and 3d-R3. It has also been noted that B. pfeifferi ingests amphistome metacercariae

(A Gleichsner, personal communication, June 2017) which are abundant on the submerged

vegetation in the habitat from which the snail was collected, so this may be an alternative

explanation for the presence of amphistome reads in 3d-R2. The peculiar nature of infection

in this snail further justifies our rationale for including it in the separate analyses (3v1)

described in the results.

Some overall highlights of the response of infection

At 1d, snails showed proportionately more down-regulated CDS, possibly reflective of a strong

parasite-induced immunomodulatory effect during the establishment phase of infection [54].

For the two additional time points examined, the majority of features in B. pfeifferi were up-

regulated (Fig 8; S3 File). This pattern differed from a previous microarray-based expression

studies for susceptible B. glabrata for which a predominant trend of down-regulation was

noted from 2–32 days post-exposure to S. mansoni [47]. The more comprehensive transcrip-

tional picture resulting from next-gen sequencing provides a different overview of responses

following infection with S. mansoni (see also [54]).

Many host CDS responded uniformly across individual snails regardless of the number of

S. mansoni reads recovered. However, at 1d and 3d, snails with fewer S. mansoni reads had

higher proportions of up-regulated features than did snails with higher numbers of S. mansoni
reads. Furthermore, for both 3d and shedding snails, snails with low S. mansoni read counts

had smaller proportions of down-regulated features. These patterns are suggestive that up-reg-

ulated host responses might limit S. mansoni gene expression and that snails with less parasite

Biomphalaria pfeifferi transcriptomic response to Schistosoma mansoni

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005984 October 18, 2017 26 / 42

https://doi.org/10.1371/journal.pntd.0005984


gene expression may be less vulnerable to gene down-regulation, but care in interpretation is

required as alternative explanations may exist. For example, as noted above, replicate 3d-R2

also contained an amphistome infection. Negative interactions among the two digeneans

which are known to occur from experimental studies (MR Laidemitt, personal communica-

tion, April 2017) may account for the limited number of S. mansoni reads.

At 1d, up-regulated responses, as exemplified by CDS for phospholipases, endoglucanases,

and several proteases and protease inhibitors, were usually less pronounced than at 3d, sug-

gesting it takes a few days to mobilize responses. Notable at 1d were down-regulation of

CDS that might lower hemoglobin levels, and influence feeding behavior and heart beat rate.

Infected snails exhibited complex mixed responses with respect to mucins, multidrug resis-

tance proteins, glutathione-S-transferases and cytochrome P450 family members. Cytochrome

P450s are part of the stress response shown by B. glabrata snails following exposure to mollus-

cicides [49] and to biotic stressors [48]. For heat shock proteins, B. glabrata snails elaborated

more complex up-regulated responses following exposure to molluscicides [49] than B. pfeifferi
did following exposure to S. mansoni. Complex patterns in stress response gene families were

also noted for 3d and shedding snails. It is noteworthy that exposure to S. mansoni, a specific

extrinsic biotic stressor, also provokes components of a generalized stress response in B. pfeif-
feri and B. glabrata [115,116].

Snails with 3 day infections had the highest number of up-regulated CDS. Some of the fea-

tures down-regulated at 1d were again down at 3d. Additionally, one CDS (aryl hydrocarbon

receptor) associated with controlling circadian rhythm [117] was down-regulated. Daily feed-

ing patterns of infected snails [119–121] or patterns of release of cercariae [96] could poten-

tially be influenced by this CDS. Several gene families also showed complex patterns of

responses at 3d. Among them were amine oxidases which, as noted by Zhang et al. [48], are

involved in oxidation of amine-containing compounds including neurotransmitters, hista-

mines and polyamines [122].

The overall responses of shedding snails were surprising in not being more dramatically

altered relative to controls than they were. This is because snails with more advanced schisto-

some infections (28+ day infections) experience several noteworthy physiological changes,

including altered feeding behavior, decreased locomotory activity, increased heartbeat rate

[118–121,123] and castration (see section below). From our shedding snails, we noted up-reg-

ulated levels of FMRF-amide receptor and small cardioactive peptides that influence heart beat

rate. Shedding snails also uniquely showed up-regulated levels of CDS involved in collagen

synthesis or epithelial cell and blood vessel formation, processes involved in wound healing

[49,123,124], of relevance to a snail experiencing the tissue damage associated with cercarial

emergence. Other up-regulated features are indicative of stress. Modestly up-regulated levels

of reverse transcriptase are of interest because of previous reports of enhanced RT activity in

susceptible B. glabrata exposed to S. mansoni [115].

Down-regulated levels of features potentially helping to explain reduced growth rates

[125,126], reduced motility [119,120,127,128] or depleted levels of hemoglobin [129]

observed in shedding snails were noted (S3 File). Other down-regulated features of interest

were noted including tyrosinase, which is involved in melanin synthesis (see also discussion

of reproduction).

Consequences of infection on host reproduction

Snails infected with the proliferating larval stages of digenetic trematodes, including B. pfeifferi
infected with S. mansoni, suffer parasitic castration, marked by a sharp or complete reduction

in production of eggs [121,125,130]. In B. pfeifferi, egg-laying begins to decline 7–10 days
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following exposure to S. mansoni and is complete in most snails by 14 days. The time course

and extent of castration are influenced by the age of the snail at the time of exposure and by

the dose of miracidia received [130,131]. In some cases, a slight increase in egg production

compared to unexposed controls can be seen in the pre-shedding period, but this is followed

by castration [125,130,131].

Studies of the reproductive physiology of freshwater gastropods have identified a number

of peptides and non-peptide mediators (including biogenic monoamines) involved in neuro-

endocrine control of reproduction [132,133]. We found evidence for the presence and expres-

sion of homologs of over 50 of these neuropeptides in B. pfeifferi (S4 File; Fig 9) and several

additional neuropeptide precursors. It has also been noted that in B. glabrata castrated by S.

mansoni, repeated exposure to serotonin enabled snails to resume egg-laying [134]. Further-

more, dopamine is present in reduced levels in infected snails, and administration of this

catecholamine stimulated the release of secretory proteins from albumen gland cultures of B.

glabrata [135] and the related snail Helisoma duryi [136].

Although infections of 1 or 3 days duration are too young to manifest castrating effects, up-

regulation of some features with possible inhibitory effect on reproduction were noted at these

times. Several features were also down-regulated at 1 day, including ovipostatin 2, a type 1

serotonin receptor (relevant because of serotonin’s ability to stimulate egg-laying), and schisto-

somin. Schistosomin has been implicated in Lymnaea stagnalis in inhibiting hormones

involved in stimulating egg-laying or the albumen gland [137]. A role for schistosomin in

reproduction or trematode-mediated castration was not found in B. glabrata infected with S.

mansoni [138] and we saw no change in its expression in B. pfeifferi. Kynurenine 3-monooxy-

genase-like transcripts were up-regulated in all snails with 3 day infections. By degrading tryp-

tophan, this enzyme may limit concentrations of serotonin.

It was of interest to learn if the water-borne pheromones (temptin, enticin, seduction, and

attractin) that favor aggregation in Aplysia [139] were expressed in B. pfeifferi, especially given

its preference for self-fertilization. We found evidence only for the expression of temptin,

which was up-regulated at 3d, but otherwise was not differentially expressed. Likewise, only

temptin was isolated in proteins released from B. glabrata [37] and egg-mass proteins [140]. It

has been shown to be an attractant for B. glabrata [141].

Our results with shedding snails are most pertinent with respect to parasitic castration.

Several reproduction-related neuropeptides, including caudal dorsal cell hormone, and neu-

ropeptides associated with production of egg and egg mass fluids such as snail yolk ferritin

(vitellogenin), galactogen synthesis, lipopolysaccharide binding protein/bacterial permeabil-

ity-increasing proteins (LBP/BPI) or aplysianin/achacin-like protein [140] were not strongly

down-regulated as a consequence of infection. Some of the most obvious changes we noted

were up-regulated levels of transcripts encoding dopamine beta hydroxylase and especially

dopamine beta-hydroxylase–like monooxygenase protein 1, both of which convert dopa-

mine to noradrenaline so their enhanced expression may help to explain the declining

levels of dopamine noted in S. mansoni-infected snails [134]. This may in turn help to

explain diminished egg production given dopamine’s effect on release of albumen gland pro-

teins. Tyrosinase-1, involved in production of melanin, is down-regulated in shedding snails

and this may have the effect of preserving dopamine levels in these snails. At both earlier

sampling points, tyrosinase-1 is strongly up-regulated especially in snails with abundant S.

mansoni reads, and thus may mark an early phase in initiation of castration by diverting

tyrosine to production of melanin as opposed to dopamine. Transcription of enzymes

involved in dopamine metabolism are strongly affected in S. mansoni-infected snails. Tyrosi-

nase-1 is also discussed in the next section regarding its potential involvement in defense

responses.
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There are numerous ovipostatins produced in Biomphalaria (we found 6 different versions

in B. pfeifferi), with ovipostatin 5 being the most prominent responder in shedding snails. In L.

stagnalis, ovipostatin is passed in seminal fluid from one individual to another during mating

and inhibits oviposition in the recipient [132]. Although B. pfeifferi is predominantly a self-fer-

tilizer [20], ovipostatin 5 could potentially down-regulate oviposition in ways not reliant on

copulation. Neuropeptide Y inhibits egg-laying in L. stagnalis [142] and though we did not

observe up-regulation of this neuropeptide, up-regulated transcripts for neuropeptide Y recep-

tor type 5-like protein in our shedding snails is consistent with a possible enhanced inhibitory

effect on reproduction of neuropeptide Y. Strong up-regulation of transcripts for yolk ferritin-

like and snail yolk ferritin molecules (vitellogenins) in shedding snails was also observed and is

somewhat paradoxical but may suggest they are diverted to the parasite for metabolism since it

is known that schistosomes require iron stores for development [143]. Notably, the extent

of up-regulation for yolk ferritin-like and snail yolk ferritin, ovipostatin 5, neuropeptide Y

receptor type 5-like, and dopamine beta-hydroxylase-like, was the least in the shedding snail

expressing the lowest number of normalized S. mansoni reads.

Wang et al. [133] recently used proteomics methods (liquid chromatography tandem mass

spectrometry) to examine and identify neuropeptides in central nervous system (CNS) ganglia

dissected from B. glabrata, either from control snails or snails at 12 days post infection with S.

mansoni. They noted many reproductive neuropeptides, such as egg laying hormone 2, at sig-

nificantly reduced levels at 12d compared to controls. They also reported an increase in some

neuropeptides including FMRFamide, luqin, NKY, and sCAP in infected snail CNS. Based on

predicted protein interaction networks, Wang et al. [133] suggested that snail-produced leu-

cine aminopeptidase 2 (LAP2) interacts with several S. mansoni miracidia peptides so may be

a key player in regulating parasite-induced changes in host physiology. A homolog to the B.

glabrata LAP2 was present in our transcriptome but was not differentially expressed in any

sample. When comparing our results to those of Wang et al. [133], it should be noted that our

approach was transcriptome-centered, examined different time points post-infection, and was

based on whole body extractions of B. pfeifferi, rather than B. glabrata. Our methods may bias

against detection of changes in expression of potentially rare neuropeptide transcripts, but cast

a wider net for potential downstream effects of castration, so provides a valuable complemen-

tary view to the approach taken by Wang et al. [133].

Immune response of B. pfeifferi infected with S. mansoni

At 1d (S4 File; Fig 10), several immune-relevant CDS were up-regulated in all three snails

including dermatopontins (frequently noted in B. glabrata studies), ficolins [48], and chitinase

attacking enzymes [42,48]. For the two snails with the highest proportions of S. mansoni reads,

up-regulated responses were observed for a number of additional immune features. Cu,Zn

SOD is of particular interest because previous work has implicated high expression of certain

alleles of Cu,Zn SOD with resistance to S. mansoni in the 13-16-R1 strain of B. glabrata,

because of Cu,Zn SOD’s involvement in converting superoxide anion to schistosomicidal

hydrogen peroxide [144–146]. Our study is in agreement with Hanington et al. [47] who

noted up-regulated levels of Cu,Zn superoxide dismutase (SOD) at early time points following

exposure of susceptible M line B. glabrata to either S. mansoni or E. paraensei.
Hanington et al. [47] also found both FREP2 and FREP4 to be consistently up-regulated fol-

lowing exposure of M line B. glabrata to S. mansoni or E. paraensei, so much so either might

be considered as markers of infection. Although a FREP2 homolog was consistently up-regu-

lated following exposure of B. pfeifferi to infection, a FREP4 homolog was not expressed in B.

pfeifferi at any of the time points we examined.
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In contrast, among CDS more up-regulated in the 1 day infected snail with a low propor-

tion of S. mansoni reads were macrophage expressed gene-1, known to be up-regulated in both

abalone following bacterial infection [147] and from resistant and non-susceptible strains of B.

glabrata in early exposure to S. mansoni [148]. Hemocytin was also up-regulated in the 1d

snail with low proportion of S. mansoni reads. Hemocytin, a homolog for an insect humoral

lectin with a role in hemocyte nodule formation [149], was consistently up-regulated in all S.

mansoni-infected snails at all three time points, especially at 3d when it was increased over

8-fold in expression. For both 1 and 3d, hemocytin expression was highest in those snails with

fewer S. mansoni reads. FREP3, previously implicated in resistance to S. mansoni in B. glabrata
[52], was minimally responsive in this compatible B. pfeifferi system. It was modestly up-regu-

lated only at 1d, in the snail with fewest S. mansoni reads.

Down-regulated immune features at 1d were relatively few but prominent among them

were FREP12 and its precursors, toll-like receptor 8 and cytidine deaminase. FREP12 down-

regulation has also been noted upon exposure of B. glabrata amebocyte-producing organs to

fucoidan, a fucosyl-rich PAMP chosen to mimic the surface of S. mansoni sporocysts [48], and

in B. glabrata exposed to S. mansoni [47]. A strain of B. glabrata resistant to S. mansoni exhibits

higher levels of a TLR on its immune cells, and exposure to S. mansoni significantly enhances

their expression, whereas compatible snails show little response following exposure to infec-

tion [31]. Our B. pfeifferi showed no conspicuously up-regulated TLR genes at 1d, and we

found no B. pfeifferi TLR with strong homology to the TLR reported by Pila et al. [31], but

the relatively strong down-regulation of TLR 8 in this model of compatibility is noteworthy.

Although the immune role of cytidine deaminase is not clear, Bouchut et al. [150] associated

higher levels of its expression with enhanced resistance to echinostome infections and Ittipra-

sert et al. [148] observed up-regulation of cytidine deaminase in resistant and non-susceptible

B. glabrata in early exposure to S. mansoni. Down-regulation of cytidine deaminase might

therefore be associated with lower responsiveness to S. mansoni infections, particularly early in

infection (down-regulation also noted at 3d, but not in shedding snails).

The responses of putative immune factors were most extensive in snails at 3d and this is not

surprising as this is a critical stage in the early establishment of the parasite. Several CDS men-

tioned with respect to the 1d response were again noted at 3d. Snails with more S. mansoni
reads had high levels of several transcripts including for aplysianin-like proteins and FREP 5.

Aplysianin, first described from Aplysia, is an L-amino oxidase that has tumoricidal and bacte-

ricidal effects [151], and a distinct aplysianin-like protein exists in egg mass fluids of B. glab-
rata [140]. Aplysianin-like transcripts were more abundant in echinostome-resistant than

susceptible strains of B. glabrata [150]. FREP 5 was shown to be down-regulated in microarray

studies of B. glabrata in response to successfully developing S. mansoni or Echinostoma paraen-
sei [47].

The snail with relatively few S. mansoni reads at 3d revealed a different group of up-regu-

lated transcripts, with hemocytin again being prominent. Also notable were distinctive CDS

potentially involved in hemocyte aggregation [152], FREP 7, peptidoglycan-recognition pro-

teins SC2-like (PGRPs), and TLR 13. PGRPs are well-known anti-bacterial factors and were

found to be up-regulated following exposure of B. glabrata to LPS [153] and to bacteria [53].

Down-regulated features for snails with 3d infections again included cytidine deaminase,

FREP12 precursors, and TLR 4 and 8 among others.

Laccases and tyrosinases are two groups of phenoloxidases observed to be responsive in

early S. mansoni infection within B. pfeifferi (Table 6; S4 File). Tyrosinase has been isolated

from B. glabrata egg masses with a presumptive immunoprotective effect for offspring

[140,154]. As mentioned earlier with details of its reproductive consequences, tyrosinase-1 was

up-regulated at 1d and 3d. Tyrosinase-1 was down-regulated in the shedding replicate with the
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least S. mansoni reads and tyrosinase-3 was down-regulated in the two replicates with the most

S. mansoni reads. Another type of phenoloxidase, laccase, was shown to have decreased activity

in B. glabrata hemolymph beginning at 7 weeks post-infection with S. mansoni [155]. We

found laccase-15-like was up-regulated in all three comparisons (3v3, 3v2, 3v1) at both 1d and

3d. Laccase-1-like was up-regulated in all three comparisons at 1d and laccase-2-like was up-

regulated in all comparisons at 3d. Laccases were not significantly DE in shedding snails. In B.

pfeifferi, the up-regulation of two phenoloxidases, tyrosinase and laccase, at 1d and 3d suggests

an increase in the synthesis of early-stage reactions in the melanin pathway, however, further

work is needed to determine if melanization is involved in schistosome killing, especially in

the B. pfeifferi model characterized by its compatibility.

It is worth noting that members GTPase IMAP family (GIMAP) were found to be up-regu-

lated in 1d and 3d (mostly up-regulated in 3d). The possible role of GIMAPs in immunity has

not been realized in protostomes until it was shown that several GIMAPs were up-regulated in

the amebocyte organ of B. glabrata following exposure to extrinsic stimuli [48]. This finding

was reconfirmed by later work, which demonstrated that GIMAPs not only play a role in

immunity, but are highly diverse in the eastern oyster Crassostrea virginica where they were

down-regulated following exposure to bacterial infection. GIMAPs may promote hemocyte

survival by inhibiting apoptosis [156].

Immune-related responses for shedding snails were surprising for being mostly up-regu-

lated (Fig 10), with only a few features being modestly down-regulated, among them galectin-

6. Galectins recognize carbohydrates associated with schistosome surfaces and are implicated

as pattern recognition receptors for other pathogens as well [157]. Dihydropyrimidinase and

cytidine deaminase, also down-regulated, are additional CDS potentially affecting pyrimidine

levels in infected snails. Interestingly, in contrast to 1d and 3d responses, shedding snails did

not show up-regulated Cu,Zn SOD levels.

Among those up-regulated features, shedding snails with high levels of S. mansoni reads

had distinctly higher responses for aplysianin-A-like, beta-1,3-glucan binding protein-like,

and FREPS 2, 7 and 14. By contrast, the snail with a low percentage of S. mansoni reads

expressed higher levels of macrophage-expressed gene, chitinase-3-like-protein, a distinct CDS

with a leucine rich repeat and immunoglobulin domain, and TLR 3.

Features highlighted in recent genetic linkage studies [32,50,51] including components of

the “Guadeloupe Resistance Complex” were sought among B. pfeifferi transcripts. Most did

not show strong patterns of up- or down regulation in this compatible species following expo-

sure to S. mansoni, but zinc metalloproteinase/disintegrin-like was down-regulated at 1d and

zinc metalloproteinase nas-13- and -14-like showed some up-regulation in shedding snails.

Probable serine carboxypeptidases (versions 1–5) revealed a mixed pattern of expression at 3d,

but were mostly up-regulated, whereas probable serine carboxypeptidase CPVL was down-reg-

ulated in shedding snails. Granulin, a growth factor that drives the proliferation of immune

cells was up-regulated at both 1d and 3d [30,33].

Genes showing either extraordinary up- or down-regulation following

exposure to S. mansoni infection

Unlike B. glabrata for which isolates or inbred lines are known that are resistant to S. mansoni,
B. pfeifferi is a species typically discussed in the context of its high compatibility with many S.

mansoni isolates. Although particular lineages of B. pfeifferi may certainly come to light that

exhibit strong incompatibility, key factors that dictate compatibility might best be sought not

among the putative immune factors that characterize the B. glabrata response, but among

those genes that exhibit the strongest transcriptional responses, up or down, to S. mansoni
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exposure (Table 5; S3 File). Strongly up-regulated snail genes may be responsible for encoding

proteins essential to S. mansoni development, and those strongly down-regulated may repre-

sent parasite-manipulated factors that if left un-manipulated would otherwise discourage

parasite development. Certainly such a role has been proposed for schistosomes in altering

expression of genes in compatible snails to their advantage [158–160].

Although many B. pfeifferi CDS that were highly altered in their expression are unknowns

and thus represent intriguing subjects for future research, some did have homologs in the data-

base and could also represent outstanding future targets for manipulation to discourage S.

mansoni development. For example, we note the up-regulation of the protease inhibitor papi-

lin-like and galactocerebrosidase-like. Galactocerebrosidase is an enzyme that removes galac-

tose from galactocerebrocide (a ceramide sphingolipid with a galactose residue) to form a

ceramide, an important lipid signaling molecule that has been reported in Crassostrea gigas
[161]. A transcript coding for deleted in malignant brain tumor 1 protein-like (DMBT1) was

also highly up-regulated in all shedding snails. DMBT1 is a pattern recognition receptor in

mammals that belongs to a group of secreted scavenger receptors involved in pathogen bind-

ing [162]. However, its role in invertebrate systems needs to be established [159].

In conclusion, provided here is a de novo assembled transcriptional database based on over

half a billion paired-end reads for an understudied schistosome vector, B. pfeifferi, one that is

probably responsible for transmission of more S. mansoni to people than any other Biompha-
laria species. We have deliberately chosen to emphasize the study of field-derived B. pfeifferi
and S. mansoni to provide a more realistic view of the context in which they live, and how they

interact in the wild, including with third party symbionts. Our approach has revealed that

the extent of S. mansoni transcriptional activity varies among snails and this is reflected in dif-

ferent transcriptional responses of the snails, suggestive of diverse trajectories in what is typi-

cally a highly compatible host-parasite model. We have highlighted several snail features

warranting further study with respect to their roles in potentially supporting or enabling para-

site development, that might limit the extent of development, and that might play a role in the

diminished egg production typically shown by snails with shedding S. mansoni infections.

Another generation of research exploiting the power of techniques like CRISPR-Cas, when it

becomes available for snails, will enable further dissection of the functional role of these candi-

date molecules. A further challenge will then be to determine how the responses of compatible

snails, or perhaps of the schistosome parasites within, can be exploited, ideally to prevent or

suppress in a highly specific manner the development of schistosome parasites in snails.
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