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Abstract

The bacterium Burkholderia ubonensis is commonly co-isolated from environmental speci-

mens harbouring the melioidosis pathogen, Burkholderia pseudomallei. B. ubonensis has

been reported in northern Australia and Thailand but not North America, suggesting similar

geographic distribution to B. pseudomallei. Unlike most other Burkholderia cepacia complex

(Bcc) species, B. ubonensis is considered non-pathogenic, although its virulence potential

has not been tested. Antibiotic resistance in B. ubonensis, particularly towards drugs used

to treat the most severe B. pseudomallei infections, has also been poorly characterised.

This study examined the population biology of B. ubonensis, and includes the first reported

isolates from the Caribbean. Phylogenomic analysis of 264 B. ubonensis genomes identified

distinct clades that corresponded with geographic origin, similar to B. pseudomallei. A small

proportion (4%) of strains lacked the 920kb chromosome III replicon, with discordance of

presence/absence amongst genetically highly related strains, demonstrating that the third

chromosome of B. ubonensis, like other Bcc species, probably encodes for a nonessential

pC3 megaplasmid. Multilocus sequence typing using the B. pseudomallei scheme revealed

that one-third of strains lack the “housekeeping” narK locus. In comparison, all strains could

be genotyped using the Bcc scheme. Several strains possessed high-level meropenem

resistance (�32 μg/mL), a concern due to potential transmission of this phenotype to B.

pseudomallei. In silico analysis uncovered a high degree of heterogeneity among the lipo-

polysaccharide O-antigen cluster loci, with at least 35 different variants identified. Finally,

we show that Asian B. ubonensis isolate RF23-BP41 is avirulent in the BALB/c mouse
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model via a subcutaneous route of infection. Our results provide several new insights into

the biology of this understudied species.

Author summary

The pathogenic bacterium Burkholderia pseudomallei causes the disease melioidosis,

which occurs in most tropical regions across the globe. The true burden of melioidosis is

unknown but has been predicted to affect 165,000 people every year, resulting in 89,000

deaths. B. pseudomallei is easily confused with its close relative B. ubonensis as both species

are frequently found in the same environmental niche and can appear phenotypically

identical using serotyping and laboratory culture methods. B. ubonensis is a poorly charac-

terised species but has recently gained interest in the research community as a potential

biocontrol agent in B. pseudomallei-endemic regions, and for production of unusual and

versatile biocompounds that are now being exploited for industrial applications. B. ubo-
nensis is thought to be non-pathogenic, although other members of the B. cepacia complex

to which it belongs are known for their ability to cause clinical disease that can be fatal in

immunocompromised patients and people with cystic fibrosis. In this study, we investi-

gated the biology of B. ubonensis to better understand its genetics, genomics, global distri-

bution, virulence potential and antibiotic resistance. We show that this organism is highly

genetically diverse, is avirulent in the mouse model, and can naturally encode high levels

of meropenem resistance. We also identify B. ubonensis in the Caribbean for the first time,

with phylogenomic analysis revealing distinct clades corresponding to geographic origin.

Introduction

The Gram-negative soil- and water-dwelling bacterium B. ubonensis is a member of the

Burkholderia cepacia complex (Bcc) [1], a genetically related group of metabolically diverse,

highly adaptable and widely dispersed environmental species [2]. The Bcc, which comprises at

least 20 species, includes some members known for their ability to cause clinical disease, such

as severe sepsis in the immunocompromised and progressive pulmonary disease in cystic

fibrosis patients [3]. Many Bcc species are also recognised for their unique biotechnological

potential, particularly in bioremediation applications and in the production of antibiotic and

antifungal compounds [4]. Novel compounds produced by B. ubonensis have been proposed

as potential agents in biocontrol against Burkholderia pseudomallei [5] and in biodiesel cataly-

sis [6].

B. pseudomallei, the causative agent of the tropical infectious disease melioidosis, is fre-

quently isolated from the same soil samples as B. ubonensis in regions where both species are

endemic [7]. Melioidosis is a diagnostically challenging and often deadly disease that affects

humans and many animals, and remains underdiagnosed in many regions across the globe

[8]. As B. pseudomallei is not a part of the healthy human flora, the ‘gold standard’ method for

melioidosis confirmation is growth of B. pseudomallei from clinical specimens. For maximum

isolation of B. pseudomallei from non-sterile sites such as sputum and pus, clinical laboratories

require selective culture methods such as Ashdown’s agar containing gentamicin [9] and Ash-

down’s broth containing colistin [10]. These media have also been used to successfully isolate

B. pseudomallei from microbiologically complex environmental samples such as soil and sur-

face water, which would otherwise yield growth and dominance of many other species [11].
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We have previously demonstrated that B. ubonensis is the most commonly co-isolated species

when using B. pseudomallei enrichment methods in the melioidosis-endemic “Top End” of the

Northern Territory, Australia, in part due to the indistinguishable nature of certain B. ubonen-
sis and B. pseudomallei morphotypes [7]. In addition, it has been reported that the atypical B.

pseudomallei O-antigen type B is found in 25% of B. ubonensis strains from Australia [12], fur-

ther complicating the differentiation between these species due to their immunological cross-

reactivity.

Little is currently known about the population biology and genomics of B. ubonensis,
although a clearer picture is emerging. The first B. ubonensis isolate (“B. uboniae” EY 3383, iso-

lated from soil in Ubon Ratchathani in 1989) was reported in 2000 [13], and the first B. ubo-
nensis genome (MSMB0022, isolated from soil in Darwin, Australia, in 2001) was sequenced

to closure in 2015 [14]. The MSMB0022 genome encodes three circular replicons totalling

~7.2Mbp, which is approximately the same size as the two-chromosome B. pseudomallei
genome. In Bcc species, the third replicon, a megaplasmid called pC3 (formerly chromosome

III), has been shown to be important for stress resistance, virulence, and antifungal and pro-

teolytic activity in several strains [15, 16]. This replicon is not essential for survival, with ~4%

of tested Bcc isolates having spontaneously lost pC3, and additional strains able to be cured of

this replicon either by plasmid incompatibility or by removal or toxin-antitoxin systems [15].

Although pC3 loss in B. ubonensis has been achieved in vitro, pC3 loss in wild-type B. ubonen-
sis strains has not yet been identified.

Previous work has shown that Bcc species can encode for innate high-level resistance

towards many clinically relevant antibiotics, including the carbapenem antibiotic meropenem

[17]. Meropenem is a critical antibiotic for melioidosis therapy, being considered the treat-

ment of choice for those with life-threatening sepsis [18, 19]. To date, the vast majority of B.

pseudomallei isolates have been fully susceptible to meropenem [20], although recent evidence

has shown that decreased susceptibility towards meropenem can occur after prolonged use of

this antibiotic in melioidosis patients with severe sepsis [21]. Certain Bcc species such as B.

vietnamiensis, B. cepacia and B. cenocepacia [22], as well as B. pseudomallei [23, 24], exhibit

high rates of intra-species recombination. This observation raises the concern that antibiotic

resistance genes may spread amongst Burkholderia species in the environment and potentially

to the globally important pathogen B. pseudomallei.
The current study describes the first comprehensive analysis of the population biology of B.

ubonensis from Australia and Asia. In addition, we identify the first B. ubonensis isolates from

the Caribbean. Using large-scale comparative genome analysis, we interrogated 264 B. ubonen-
sis genomes to better understand the geographic distribution and genetic diversity of this spe-

cies, including potential loss of the pC3 megaplasmid. We also explored rates of meropenem

resistance in Asian and Australian B. ubonensis strains, lipopolysaccharide (LPS) O-antigen

cluster prevalence and diversity, and the virulence potential of an Asian B. ubonensis strain in

the BALB/c mouse model.

Methods

Ethics statement

Procedures and ethics approval for collection of the environmental specimens from which the

B. ubonensis isolates were recovered has been previously described [7, 25]. The murine chal-

lenge work was conducted according to the specific guidelines provided by the United States

Department of Agriculture Animal Welfare Act under approved protocols from the Northern

Arizona University IACUC (Protocol 14–011) and the USA Department of Defense Animal

Care and Use Review Office (ACURO approval for HDTRA1-12-C-0066_Wagner).
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Isolates and species determination

The 264 B. ubonensis isolates examined in this study originated from northern Australia

(n = 238), Central Australia (n = 4), Ubon Ratchathani, Thailand (n = 15), Papua New Guinea

(PNG; n = 1), and Puerto Rico (n = 6), and were obtained from samples of soil (n = 160), water

(n = 15), or plant material (n = 2) (S1 Table). DNA was extracted using protocols optimised

for B. pseudomallei [26], and quality-checked using a NanoDrop UV spectrophotometer. Prior

to WGS, all isolates were verified as B. ubonensis using the Bu550 real-time PCR [7], which tar-

gets the conserved iron-containing redox enzyme family protein encoded by BW23_5472 on

chromosome II of MSMB0022 (also referred to as MSMB22 [14]).

Genome sequencing, assemblies and annotation

Genomic data were already publicly available for 230 of the 264 isolates [14, 27]. For complete-

ness, we performed paired-end sequencing of the remaining 34 isolates using a HiSeq2000

instrument (Illumina Inc., San Diego, CA) at the Translational Genomics Research Institute

(Phoenix and Flagstaff; AZ, USA). Assemblies were performed with the Microbial Genome

Assembler Pipeline (MGAP; https://github.com/dsarov/MGAP---Microbial-Genome-

Assembler-Pipeline), which incorporates Trimmomatic [28], Velvet [29], VelvetOptimiser

(https://github.com/tseemann/VelvetOptimiser), GapFiller [30], PAGIT [31] and SSPACE

[32] into its workflow, using the closed B. ubonensis MSMB0022 genome [14] as a reference

for aligning, reordering and orientating contigs. All assemblies were quality-assessed by

BLAST against phiX, with any contigs corresponding to this bacteriophage removed. Assem-

blies were annotated using PGAP [33]. Reference accessions for all 264 genomes are listed in

S1 Table.

Comparative genome analysis

The default settings of SPANDx v3.0 [34] were used to identify biallelic single-nucleotide poly-

morphisms (SNPs) from the 264 B. ubonensis genomes for phylogenetic analysis. B. ubonensis
MSMB0022 was used as a reference genome for paired-end read alignment. BEDTools [35],

which is run by default in SPANDx, was used to determine gene presence/absence relative to

MSMB0022 using a 1kb locus ‘window’ size. Loci were considered variable if they had�99%

read coverage in one or more strains, and conserved otherwise. To confirm the loss of pC3

(previously called chromosome III) in 10 isolates and to rule out alternative replicons being

present in these strains, the unmapped reads from SPANDx for each strain were assembled

using MGAP.

BEDTools was also used to determine LPS O-antigen type based on mapping quality against

both known and novel LPS O-antigen clusters. Known clusters included B. pseudomallei
K96243 (Type A LPS; GenBank reference BX571965.1; coordinates 3196645–3215231), B. ubo-
nensis MSMB0057 (Type B LPS; GenBank reference JF745807), B. pseudomallei 576 (Type B

LPS; GenBank reference NZ_CP008777.1; coordinates 1383179–1418799), B. ubonensis
MSMB0122 (Type B2 LPS; GenBank reference HQ908420.1), B. pseudomallei MSHR0840

(Type B2 LPS; GenBank reference GU574442.1), B. thailandensis 82172 (Type B2 LPS;

GenBank reference JQ783347.1) and B. humptydooensis MSMB0043 (novel LPS; GenBank

reference CP013380.1; coordinates 971381–996024). B. ubonensis type strains for determ-

ining the prevalence of novel LPS O-antigen genotypes were: A21, BDU9, BDU12, BDU14,

INT1-BP158, MSMB0022, MSMB0054, MSMB0063, MSMB0083, MSMB0103, MSMB0268a,

MSMB0609, MSMB0742, MSMB0782, MSMB0827, MSMB1058, MSMB1137, MSMB1172,

MSMB1173, MSMB1178, MSMB1189, MSMB1206, MSMB1304, MSMB1471, MSMB1517,

MSMB1586, MSMB1591, MSMB2105, MSMB2123, MSMB2166, MSMB2180, MSMB2207,
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RF23-BP17, and RF32-BP11. Sequence coordinates for these LPS O-antigen clusters were

extracted from MGAP-assembled genomes based on Mega BLAST analysis against the

MSMB0057 O-antigen biosynthesis cluster [12].

Multilocus sequence typing (MLST)

In silico MLST was carried out on all isolates using the Bcc scheme (http://pubmlst.org/bcc/),

and on 173 of the 264 B. ubonensis isolates based on the B. pseudomallei scheme (http://

pubmlst.org/bpseudomallei/). Ninety-one strains could not be genotyped using the B. pseudo-
mallei scheme as they lack the narK housekeeping locus [36]. Sequence types (STs) were deter-

mined from assemblies using the BIGSdb tool, which is integrated into these MLST websites

[37]. ST assignments for both schemes are listed in S1 Table and are also searchable on the

online databases.

Phylogenetic analysis

The maximum parsimony function of PAUP v4.0a153 [38] was used for phylogenetic recon-

struction of genome-wide variants. The Ortho_SNP_matrix.nex output automatically gener-

ated by SPANDx was used as the PAUP input. Trees were constructed based on a heuristic

search and bootstrapped using 100 replicates. FigTree (http://tree.bio.ed.ac.uk/software/

figtree/) was used to visualise PAUP outputs.

Laboratory passaging for pC3 megaplasmid loss

To promote pC3 loss in vitro, phylogenetically unrelated B. ubonensis strains MSMB0782

and MSMB1215 were passaged five times on Ashdown’s agar (37˚C for 24-48h), and strains

INT1-BP274 and RF23-BP41 were passaged 10 times. MSMB0782 and INT1-BP274 were also

subjected to five freeze/thaws ranging from -80˚C to room temperature, and INT1-BP274 was

passaged seven times at 42˚C or room temperature. Eighteen colonies of MSMB2036, which is

the same ST as the pC3-negative strain MSMB2035, were then examined for pC3 loss by pas-

saging once on Luria-Bertani agar and growing at 37˚C for 48h. DNA from all laboratory-pas-

saged strains was extracted using a chelex heat soak procedure [39] and diluted 1:10 prior to

PCR. pC3 detection was carried out with primers Bu_pC3_For1 (5’-CGATGAGCTATTCG

TTCGATCT) and Bu_ pC3_Rev1 (5’-AACGTGATCCGGTACAGCAC) to generate a 52bp

amplicon, using a slowdown PCR for GC-rich templates [40]. MSMB2035 was included as the

pC3-negative control. All DNA was verified for quality using the Bu550 assay [7].

Minimum inhibitory concentration (MIC) determination

Etests (bioMérieux, Baulkham Hills, NSW, Australia) were used to determine meropenem

MICs in 40 B. ubonensis strains (S1 Table). This subset of strains was chosen to represent geo-

graphically and phylogenetically diverse taxa, and to identify potential MIC differences among

strains of the same ST. Isolates were grown on Mueller Hinton agar for 24h at 37˚C in an oxy-

genated environment prior to MIC assessment.

B. ubonensis murine challenge

The ability of B. ubonensis to cause disease via the subcutaneous (sc) route of infection was

examined in a murine BALB/c model using a Thai environmental isolate, RF23-BP41 (S1

Table), collected by Northern Arizona University in 2007. We compared the results to sc infec-

tion with B. thailandensis type strain E264, which is known to cause death in mice at high

doses (>106 colony forming units, or CFU) when delivered via the intraperitoneal [41],

Population biology of Burkholderia ubonensis
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intranasal [42, 43] or aerosol [44] routes. Virulence testing was performed in a similar manner

as previously described [45]. After shipping, mice were acclimatised for five days before the

experiment; food and water were provided ad libitum throughout the study. Mice were lightly

anaesthetised with vaporised isoflurane and injected via a single 100μL sc injection in the scruff

of the neck. All mice in a single cage received the same infectious dose (B. ubonensis: 1.71 x

104, 105 or 106 CFU). Three infection control mice were injected in an identical way, but with

100μL of sterile 1x PBS instead of bacterial culture. Mice were monitored daily for health status

and euthanased on day 21 post-injection with CO2 gas followed by exsanguination.

Results and discussion

Phylogeographic analysis of B. ubonensis

The true global distribution of B. ubonensis is not known. To date, strains have only been

reported from the environment in Wuhan, China [6], Ubon Ratchathani, Thailand [13], north-

ern and Central Australia [7], and PNG [5]. In this study, we identified B. ubonensis in the

Caribbean environment for the first time, with six isolates retrieved from soil obtained from the

north-central and north-eastern regions of Puerto Rico (Juncos, Ceiba and Barceloneta). A

recent study of soil samples in the southern United States to determine the presence of Burkhol-
deria spp., and particularly B. pseudomallei, did not yield a single B. ubonensis or B. pseudomallei
isolate, although several other Bcc species were retrieved [40]. It is thus probable that neither B.

ubonensis nor B. pseudomallei are naturally found in the environment in North America. It

remains to be determined whether B. ubonensis is found in other melioidosis-endemic regions

such as Africa, Central America, the Indian Ocean islands, South America or South Asia.

A B. ubonensis phylogeny was reconstructed from 264 genomes derived from Australian,

Thai, PNG and Puerto Rican isolates to determine the existence of a continental phylogeo-

graphic signal, a phenomenon that has been described in B. pseudomallei [23, 46, 47]. Based on

589,433 biallelic SNPs, six distinct and well-supported clades were identified. Clades II, IV, V

and VI solely contained Australian B. ubonensis isolates (n = 240), whereas Clade I contained

all isolates from Thailand (n = 15), the PNG isolate A21, and two Australian strains from the

tropical “Top End” region of the Northern Territory, and Clade III was comprised of the six

Puerto Rican isolates (Fig 1; S1 Fig). Subclades within Clade I showed that the Thai strains

clustered most closely with one another (Fig 1), with A21 residing on its own branch and the

two Australian strains, MSMB2035 and MSMB2036, sharing a node with the PNG isolate. The

Puerto Rican isolates share a node with the Clade IV Australian isolates (Fig 1). Due to limited

availability of B. ubonensis from PNG, it could not be determined whether other PNG isolates

group with A21, although we hypothesise that PNG B. ubonensis strains will be related based

on the relatively narrow genetic diversity observed in PNG B. pseudomallei populations [47,

48]. Within Clade IV, four isolates from the arid region of Central Australia (MSMB2166,

MSMB2167, MSMB2185 and MSMB2186), which were obtained from the same soil sample,

grouped with other Australian strains, with the most closely related isolates originating from

the “Top End” region. Taken together, these results demonstrate that, like B. pseudomallei, B.

ubonensis populations exhibit a continental phylogeographic signal, although more samples

from Asia and PNG would be needed to improve resolution of subclades within Clade I.

Comparison of phylogenomic structure and MLST

We compared B. ubonensis MLST genotypes obtained using both the B. pseudomallei and Bcc

MLST schemes with phylogenomic assignment to determine whether the STs reflected isolate

relatedness on the genome level [49], or whether homoplasy was evident among STs as has

been observed with certain B. pseudomallei STs [50, 51]. For both MLST schemes, the ST and
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genomic data showed excellent concordance and no evidence of ST homoplasy, with all identi-

cal STs clustering closely on the phylogeny (Fig 1A; green box outlines) and non-identical STs

residing on separate branches. Unlike the Bcc scheme, where STs could be assigned from all

genomes, STs were not able to be determined for 91 (35%) isolates using the B. pseudomallei
MLST scheme due to these strains lacking the “housekeeping” locus narK [36]. We identified

five separate clusters within our phylogeny that lacked narK (Fig 1A; blue branches). The first

included all the Thai isolates (n = 15), with the remaining four comprising all Puerto Rican

(Clade III; n = 6) and Clade IV (n = 14) isolates, plus 57 isolates within Clade VI that were iso-

lated from various “Top End” locales. These results show that certain B. ubonensis strains cannot

be fully genotyped with the B. pseudomallei MLST scheme. However, in three instances where

strains could be genotyped, the B. pseudomallei scheme was superior at differentiating strains

that were related yet distinct on a genomic level (Fig 1, red branches; S1 Table). MSMBs 1225

and 1559 were both ST-1187 using the Bcc scheme but were different STs using the B. pseudo-
mallei scheme; MSMB2013 was assigned ST-1235 by both schemes but the other Bcc ST-1235

strains were found to be ST-1226 according to the B. pseudomallei scheme; and the Bcc ST-1148

strains were separated into ST-1266 and ST-1267 based on the B. pseudomallei alleles. In all

cases where additional STs were found, the isolates were obtained from distinct soil samples,

indicating greater resolving power of the B. pseudomallei MLST scheme in these cases.

Comparison of phylogenomic structure and meropenem MICs

We mapped meropenem MICs for 40 strains against the genome phylogeny to ascertain

whether meropenem-resistant, meropenem-intermediate or meropenem-sensitive strains

Fig 1. Phylogenomic analysis of 264 Burkholderia ubonensis genomes. A midpoint-rooted maximum parsimony phylogeny was constructed using

589,433 biallelic core-genome SNPs. A) Strains lacking the B. pseudomallei multilocus sequence typing (MLST) gene narK are labelled with blue

branches, and those lacking pC3 (previously known as chromosome III) are in bold italics. Highly related strains retrieved from single environmental

samples are outlined by green boxes. Red branches indicate instances where isolates could be differentiated by the B. pseudomallei MLST scheme, but

not the Bcc scheme. B) Heatmap of the meropenem minimum inhibitory concentration values for 40 tested B. ubonensis isolates. In both trees, the six

distinct clades (I, II, III, IV, V and VI) are labelled. Consistency index = 0.25. Bootstrap values below 80% are labelled on their corresponding branches.

https://doi.org/10.1371/journal.pntd.0005928.g001
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belonged to a single clade. Eleven strains (Bp8955, Bp8958, Bp8960, Bp8961, Bp8962, Bp8964,

MSMB1162, MSMB1471, MSMB2166, RF32-BP11 and RF32-BP3) showed high-level resis-

tance (�32 μg/mL) towards this antibiotic, including all six Puerto Rican strains. In contrast,

two Australian strains (MSMB1215 and MSMB2152) exhibited the lowest MICs at 2–3 μg/mL

(Fig 2). Both highly resistant and highly sensitive (2–6 μg/mL) strains were found in the Asian

and Australian populations, demonstrating that these phenotypes are not restricted to a certain

clade and that B. ubonensis populations from these two geographic regions encode for a range

of meropenem MICs (Fig 1B). Although our testing was not comprehensive, we did observe

similar MICs for closely related strains. For example, the closely related Thai strains RF23-

BP93, RF32-BP4 and RF32-BP6 all exhibited MICs of 24 μg/mL (Fig 1B). The lack of phyloge-

netic congruence of high-level meropenem-resistant strains supports the hypothesis that the

genetic mechanism conferring resistance is laterally transferred among strains. Alternatively,

resistance may have arisen multiple times or through multiple mechanisms during the evolu-

tion of B. ubonensis due to similar environmental pressures.

Many other Bcc species strains can exhibit high-level meropenem resistance [17, 52], indi-

cating that this trait is not specific to B. ubonensis, although the basis for this resistance and its

persistence in Bcc populations is not clear. In comparison, the highest meropenem MICs

recorded for B. pseudomallei to date are ~4 μg/mL [53, 54], with wild-type strains consistently

exhibiting MICs of 0.75–1 μg/mL. Unlike B. pseudomallei, where human-to-human transmis-

sion is exceptionally rare and where infections are almost always acquired from the environ-

ment [55], Bcc species can transmit between individuals, and indeed this a major clinical issue

in the management of cystic fibrosis cohorts [56]. The selective forces acting upon Bcc strains

in patients receiving meropenem or other antibiotics may encourage this phenotype to persist

in the population, although the lack of human B. ubonensis infections and the identification of

high-level meropenem resistance in environmental samples argue against this route of selec-

tion in the context of B. ubonensis. B. pseudomallei does not encode a carbapenamase, which

likely explains why high-level resistance has not been reported. However, it is conceivable that

B. pseudomallei may acquire a carbapenamase whilst residing in the environment, especially

from closely related species that share this niche, such as B. ubonensis or other Bcc species.

Determining the molecular basis for high-level meropenem resistance in B. ubonensis and in

Fig 2. Example Etest results in Burkholderia ubonensis towards meropenem. Left, sensitive isolate

MSMB2152 at a minimum inhibitory concentration (MIC) of 3 μg/mL; centre, intermediate isolate MSMB1183

at an MIC of 6 μg/mL; right, resistant isolate MSMB1162 at an MIC of�32 μg/mL.

https://doi.org/10.1371/journal.pntd.0005928.g002
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other Bcc species should be a focus of future studies to not only promote a better understand-

ing of resistance mechanisms in these species, but to also provide a basis for proactive moni-

toring of B. pseudomallei populations in the event of carbapenamase acquisition.

Genetic diversity of B. ubonensis

MLST revealed that B. ubonensis is a highly diverse species. We found 128 STs among the 173

strains that could be genotyped using the B. pseudomallei MLST scheme, and 182 STs among

the 264 strains based on the Bcc scheme, although these numbers underestimate diversity due

to multiple related isolates being tested from single environmental specimens in our study (S1

Table). Among the 33 Bcc scheme STs represented by two or more B. ubonensis isolates, 27

(82%) of these STs were found within a single sample; such samples are likely to be identical or

clonally related due to their physical proximity. We next examined B. ubonensis diversity

within our environmental samples. Of the 51 samples where two or more B. ubonensis isolates

were retrieved, 26 (51%) exhibited two or more STs, revealing that multiple B. ubonensis geno-

types commonly exist within single environmental samples. This result reflects similar obser-

vations made in studies examining B. pseudomallei diversity in environmental samples from

Thailand [57, 58], B. vietnamiensis in the United States [40], and B. cepacia genomovar III

(now known as B. cenocepacia) in the United States, Canada and Australia [59]. Whilst isola-

tion of multiple colonies from a single sample is a laborious endeavour, these studies reinforce

the need to collect multiple isolates from individual samples to maximise capture of population

diversity.

The megaplasmid pC3 is nonessential to B. ubonensis replication

Gene presence/absence analysis of the 264 B. ubonensis genomes against the MSMB0022 refer-

ence showed that 2.78Mbp (39%) of the B. ubonensis reference genome was variably present,

with the remaining 4.41Mbp conserved across these strains. Ten phylogenetically unrelated

strains (A21, MSMB0312a, MSMB0668, MSMB0705, MSMB1080, MSMB1509, MSMB1520,

MSMB1809, MSMB2035 and MSMB2108) failed to map reads against the entire sequence for

pC3, equating to one-third of the variable regions observed in our dataset (Fig 3). Certain

closely related strains did not share this pattern: for example, MSMB2035 and MSMB2036 are

clonal according to the two MLST schemes and the WGS phylogeny, yet only MSMB2035

lacked this replicon. Phylogenetic reconstruction using just pC3 as the reference showed no

evidence of lateral transfer, with the topology of the tree being highly similar to the phyloge-

netic tree constructed for chromosomes I and II (Fig 1). This result suggests that pC3 is proba-

bly ubiquitous in B. ubonensis strains found in the environment and that it largely follows a

vertical path of evolution, but, when propagated under certain conditions, segregation of this

replicon can occur spontaneously; in our study, segregation occurred in 4% of strains. Agnoli

and coworkers (2014) also observed that four of 110 Bcc isolates tested in their study (4%) had

lost pC3, with one of these events having been confirmed to have occurred following labora-

tory passage [15]. In the type strain MSMB0022, pC3 encodes for 669 genes that are involved

in myriad functions (S2 Table). When excluding this replicon, 1.86Mbp (26%) of the B. ubo-
nensis reference genome was variable among the 264 strains.

The conservation of pC3 and its phylogenetic relatedness to chromosomes I and II confirms

that pC3 is under strong selection pressure to be maintained in Bcc species, including B. ubo-
nensis. However, certain growth conditions appear to encourage pC3 segregation, raising the

possibility that this replicon may be a megaplasmid [60]. Based on the earlier work of Agnoli

and colleagues [15, 16], we attempted to cure B. ubonensis strains MSMB0782, MSMB1215,

INT1-BP274 and RF23-BP41 of pC3 by performing laboratory passage and growth under
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varying conditions, including multiple freeze/thaws, growth at 42˚C and room temperature, or

multiple passages. Despite these attempts, none were successful at segregating pC3. To exam-

ine whether an insufficient number of colonies were being tested, we next attempted passage

of 18 colonies of MSMB2036, which is closely related to the pC3-lacking strain MSMB2035.

Four (22%) colonies lost pC3 after a single passage on Luria-Bertani agar at 37˚C for 48h, as

observed by a lack of amplification using the Bu_pC3 primers. This finding demonstrates that,

as with other Bcc species, the third replicon of B. ubonensis is not necessary for the organism’s

survival, at least in a laboratory setting. It remains to be determined whether pC3 replicates

independently of the two chromosomes in B. ubonensis. It has been proposed that the second

(and where applicable) third ‘chromosomes’ found in approximately 10% of bacterial genomes

are in fact ‘chromids’, a term used to define replicons that are not strictly chromosomes or

plasmids [61]. To maintain consistency with the work of Agnoli and colleagues [15, 16], we

have chosen to refer to this replicon as a pC3 megaplasmid.

At 920kb, the B. ubonensis pC3 megaplasmid is unusually large, although such size is not

unprecedented, with B. cenocepacia H111 encoding a curable 1.04Mbp pC3 megaplasmid [16].

Larger megaplasmids have been identified in other soil- and rhizosphere-dwelling organisms

including a 1.8Mbp linear megaplasmid identified in the actinomycete Streptomyces clavuli-
gerus [62], and a 1.59Mbp megaplasmid in Azospirillum brasilense [63]. The pC3 replicon of B.

ubonensis MSMB0022 failed to be detected as a plasmid using the online PlasmidFinder and

Fig 3. Heatmap of variably present Burkholderia ubonensis genes across the MSMB0022 genome. A presence/absence

matrix was constructed across 1kb windows of the MSMB0022 reference genome for each of the 264 taxa. Green = 100%

mapped reads; red = 0% mapped reads. Taxa are in rows and the 1kb windows are in columns. Only regions containing <80%

window coverage for at least one strain are shown, representing 2.78Mbp of the MSMB0022 B. ubonensis genome. The

absence of pC3 in 4% of strains demonstrates that this megaplasmid can occasionally segregate, a finding consistent with pC3

in other Bcc species [15].

https://doi.org/10.1371/journal.pntd.0005928.g003
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VecScreen tools; however, we found that these tools also failed to identify the B. vietnamiensis
megaplasmid pBVIE01, possibly because PlasmidFinder has been optimised for plasmid iden-

tification in Enterobacteriaceae [64]. BLAST analysis of parA and parB genes from B. vietna-
miensis G4 pBVIE01 showed weak evidence of these partitioning system genes in MSMB0022

pC3, although more solid BLAST hits were obtained with chromosome I genes. This result

does not rule out the presence of plasmid maintenance loci encoded on this replicon, but

rather demonstrates the difficulties in identifying genetic homology across distantly related

species. Similarly, the presence of 5S, 16S and 23S ribosomal RNA-encoding genes on pC3

does not necessarily rule out this replicon as being a megaplasmid [16, 60]. Read depth cover-

age analysis of pC3 showed similar depth to the two chromosomes (e.g. MSMB0011: 108x for

pC3 vs 123x for chromosome I and 124x for chromosome II), indicating that this megaplasmid

is at a low or single copy number, a finding that is consistent with the generally low copy num-

ber of larger plasmids [65].

B. ubonensis exhibits high levels of LPS O-antigen diversity

Earlier work has shown that 25% of Australian B. ubonensis strains possess the unusual B.

pseudomallei type B LPS O-antigen [12]. Using our larger dataset, we examined LPS diver-

sity among the 264 strains in silico. Due to insufficient contig coverage across the LPS clus-

ter, 19 strains could not be fully genotyped using this approach; however, these strains did

not possess clusters matching to other LPS types. Of the remaining 245 strains that could be

genotyped, type B LPS was identified in 20 (8%). In total, 35 different LPS types were found,

compared with only four LPS types among 477 global B. pseudomallei strains using the same

in silico approach. The most abundant LPS type in the B. ubonensis cohort was MSMB0063

Type Novel, with 28 strains having this genotype; in contrast, eleven LPS types were seen in

only a single isolate (S1 Table). LPS genotypes were not restricted to particular STs or geo-

graphic regions. For example, the Thai strains RF25-BP1 and RF32-BP3 possessed an LPS

cluster that was also found in Australian strains MSMB0782, MSMB0783, MSMB1188,

MSMB1562, MSMB1603, and MSMB1635, and among these eight isolates, seven different

STs were present. Our findings are consistent with the presence of similar LPS types among

Burkholderia species. In addition, we show that B. ubonensis LPS is highly variable and is

not associated with the genetic relatedness or geographic origin of an isolate, and would

thus be a poor marker for such purposes.

B. ubonensis RF23-BP41 does not cause disease in the

immunocompetent BALB/c mouse model

Unlike other Bcc species or B. pseudomallei, B. ubonensis is thought to rarely, if ever, cause dis-

ease in humans [66], as evidenced by B. ubonensis being the only Bcc species not yet retrieved

from cystic fibrosis sputum [52]. Indeed, there is only a single report of B. ubonensis being iso-

lated from a human infection, a Thai nosocomial case (strain LMG 24263 [1]). Given the

absence of other reported B. ubonensis infections to date, the role of B. ubonensis as the aetiolo-

gic agent in this Thai case should be treated with scepticism; for instance, testing for the pres-

ence of known pathogens in the same clinical specimen was not stated. However, another

possibility is that certain B. ubonensis strains are in fact capable of causing disease, with such

cases remaining unreported due to insufficient or inaccurate differentiation of B. ubonensis
from other Bcc species.

To further examine the virulence potential of B. ubonensis, we inoculated BALB/c mice via

sc injection using 1.7x 104, 105, and 106 CFU of the Thai strain RF23-BP41. To our knowledge,

B. ubonensis virulence has not yet been tested in the mouse model. RF23-BP41 was chosen for
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several reasons. First, its Thai origin maximises the probability of genetic relatedness to the

putatively pathogenic LMG 24263 strain. Second, RF23-BP41 was isolated from a region

where individuals (particularly rice farmers) regularly come into contact with soil bacteria,

increasing the likelihood of successful human infection. Third, this strain demonstrated resis-

tance towards meropenem (MIC 16μg/mL), which would potentially confer a selective advan-

tage during antibiotic treatment. Finally, this strain harbours pC3, which has been shown to

impart virulence capacity in other Bcc species [15, 16]. Even at the highest dose of 1.7x106

CFU, no mice exhibited weight loss or lethargy during the 21-day challenge experiment, with

their health status identical to that of the three control mice. The same result was observed in

the BALB/c mice subcutaneously injected with B. thailandensis E264 at a similar dosage range

[45]. Certain B. thailandensis strains are capable of infecting immunocompromised humans

[67–69], and can be lethal in murine models when administered at high doses via other routes

[41–44]. In contrast, in other studies the 10-day LD50 of B. pseudomallei in BALB/c mice was

~1x103 CFU when delivered via the sc route [70], and between 10 and 6x104 CFU when

administered via the intraperitoneal route, with virulence reduced but not abolished in highly

laboratory-passaged strains [71, 72]. Other mouse model studies have shown that virulence of

Bcc species can vary; for example, the epidemic B. cenocepacia strain J2315 caused universal

mortality when inoculated at 103 cfu into gp91phox−/− mice via an intratracheal route, whereas

other B. cenocepacia strains were less virulent and B. vietnamiensis strain R2 was avirulent [73].

Another study using intranasal inoculation of leukopaenic BALB/c mice with ~104 cfu also

showed differential virulence within Bcc species, with some mice clearing their infections [74],

indicating that virulence potential varies among strains.

Based on the findings of these earlier studies, pathogenicity may also vary among B. ubo-
nensis strains. Characterising the virulence potential of other B. ubonensis strains may identify

unusual pathogenic strains, although we deem this unlikely based on the lack of verified

human infections caused by B. ubonensis. In consideration of the IACUC guidelines, we chose

not to carry out testing of further strains using the mouse model. We acknowledge that our

study only tested B. ubonensis in immunocompetent BALB/c mice via a sc route. The use of

immunocompromised or immune-deficient mouse models or infection via different routes

may reveal that B. ubonensis can cause disease in such cases. Bcc species carry various virulence

factors that are thought to contribute to their pathogenic potential, including extracellular

lipases, metalloproteases, serine proteases, flagella, pili, adhesins, toxins, siderophores and lipo-

polysaccharides [75]. We did not investigate the presence of virulence genes in B. ubonensis
compared with other Bcc species but doing so may shed further light on its potential virulence

capacity. It may be possible to use such in silico methods rather than further animal experi-

ments to determine whether B. ubonensis is unusual compared with other Bcc species due to a

lack of key virulence loci or pathways in its genome.

Conclusions

The metabolic diversity of Bcc species continues to spur interest in this highly adaptable group

of bacteria. Our study provides important new insights into the biology of B. ubonensis, a

largely neglected member of the Bcc due to its ostensibly avirulent nature. Genomic analysis of

264 B. ubonensis strains from Australia, PNG, Puerto Rico and Thailand revealed that B. ubo-
nensis is a genetically highly diverse organism, with at least 26% of its chromosomal DNA vari-

ably present among strains. Like B. pseudomallei, B. ubonensis has a distinct phylogeographic

signature that can be distinguished at the genomic level. It remains to be determined whether

B. ubonensis is found on other continents. ‘Chromosome III’ encodes a ubiquitous yet appar-

ently dispensable pC3 megaplasmid, similarly to other Bcc species, and can segregate in the
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laboratory setting. Like other Bcc species, we show that B. ubonensis strains exhibit variable

levels of meropenem resistance. Determining the molecular mechanism underpinning high-

level meropenem resistance in certain B. ubonensis strains will provide a better understanding

of the potential transmission of this phenotype to the melioidosis bacterium B. pseudomallei,
which frequently co-resides with B. ubonensis in the environment. Finally, using the immuno-

competent BALB/c mouse model, we show that an Asian B. ubonensis strain is not likely to

cause disease, providing evidence that at least some members of this species are probably avir-

ulent in immunocompetent individuals. Further studies are needed to confirm the avirulent

nature of B. ubonensis across a greater strain set using both immunocompetent and immuno-

compromised or immunodeficient animal models, or in silico analysis of the B. ubonensis
genome to identify intact virulence determinants. The apparent non-pathogenic nature of cer-

tain B. ubonensis strains may make them amenable to large-scale biotechnological applications,

such as biocontrol and biofuel production.
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