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Abstract

The human gut has been continuously exposed to a broad spectrum of intestinal organisms,
including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of
years of coevolution, and plays a central role in human health. The modern lifestyles of
Western countries, such as the adoption of highly hygienic habits, the extensive use of anti-
microbial drugs, and increasing globalisation, have dramatically altered the composition of
the gut milieu, especially in terms of its eukaryotic “citizens.” In the past few decades,
numerous studies have highlighted the composition and role of human intestinal bacteria in
physiological and pathological conditions, while few investigations exist on gut parasites
and particularly on their coexistence and interaction with the intestinal microbiota. Studies of
the gut “parasitome” through “omic” technologies, such as (meta)genomics, transcriptomics,
proteomics, and metabolomics, are herein reviewed to better understand their role in the
relationships between intestinal parasites, host, and resident prokaryotes, whether patho-
gens or commensals. Systems biology—based profiles of the gut “parasitome” under physio-
logical and severe disease conditions can indeed contribute to the control of infectious
diseases and offer a new perspective of omics-assisted tropical medicine.

Introduction

Every human subject has a specific gut microbiota that may change over their life span due to
complex interactions between host genetics, immune response, diet, and environment [1]
under physiological and pathological conditions [2]. Indeed, several recent studies have dem-
onstrated the multitude of ways by which the microbiota has influenced human health and
physiology [3]. Alterations in the human gut microbiota have been associated with a range of
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illnesses in the developed world, including inflammatory bowel disease (IBD), obesity, type 2
diabetes, allergies, and even autism, through the gut-brain axis [4, 5].
The definition of microbiota is related to the complex community of microorganisms
mainly composed of bacteria but also including viruses, Archaea, eukaryotes such as fungi,
and protozoa living in consortia in sites such as the gastrointestinal (GI) tract [3]. The human
gut “virome,” composed mainly of bacteriophages [6], and the “mycobiome,” composed of
yeasts and other fungi [7], have the potential to modify and regulate bacterial communities
and hence modify and regulate human health. Among others, parasitic protozoa [8, 9], worms
[10], and even eukaryotic commensals, such as Blastocystis hominis and Dientamoeba fragilis
[11], can be of great importance. Particularly, it is still a matter of debate whether Blastocystis is
associated or not with gut dysbiosis conditions [12], while interactions between helminths,
protozoans, and the host immune system have been demonstrated [13, 14], as in the case of
intestinal helminths, whose absence in the gut has been proposed as a risk factor for allergic/
autoimmune/inflammatory diseases, including IBD [13, 15, 16]. Moreover, interactions

between parasites and bacterial communities in the human gut may have a profound impact
on the alteration of parasite virulence, course of both mucosal and systemic parasitic infection,
and host immune response to the parasite, possibly explaining the observed variability in dis-
ease expression [14, 17, 18].

Based on such considerations, it is foreseeable that the exploration of parasites, protozoa,

and worms within microbiota communities by “omic” technologies may provide more fully
comprehensive information on gut prokaryote profiles.

Such “omics”-based approaches are built on a holistic vision of the systems analysed, sys-
tems in which “all components are considered in complex ecological networks” in order to
provide complete profiles of genes/transcripts/proteins/metabolites (Fig 1) [19, 20].

When applied to the study of prokaryotic consortia/communities, these technologies are
denominated metagenomics, metatranscriptomics, metaproteomics, and meta-metabolomics
and allow a non-targeted and high-throughput searching of the genetic scaffold and functional
reservoir of the microbiota system, providing profiles of different organisms at the same time
[21, 22]. Although some findings from metagenomic and metabolomic approaches to
neglected tropical diseases are already available [23], meta-omic developments in the study of

human gut “parasitome” are still in their infancy.
In this review, “omic” technologies (Table 1), applied to the study of human gut parasites
(i.e., gut “parasitome”), are presented with the aim of furthering the understanding of gut
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Fig 1. Summary of current “omic” technologies for “parasitome” investigations.
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parasite impact on intestinal ecology and dysbiosis. Much relevant work has been done on
“model” parasites that are not primarily associated with the gut—e.g., liver flukes and blood
flukes. As an example, an integrated transcriptomic and proteomic approach allowed researchers
to describe the Fasciola hepatica secretory proteome, thus identifying proteins such as cathepsin,
peroxiredoxin, glutathione S-transferase (GST), and fatty acid-binding proteins (FABPs) essen-
tial for the design of the first-generation anti-fluke vaccines and flukicidal drugs [24]. FABPs
were also found to be the most abundant excretion/secretion proteins (ESPs) of Schistosoma
japonicum, highlighting the vital importance of these proteins in the evasion process from the
host immune system [25]. Based on these pivotal discoveries, Schistosoma FABPs and GSTs were
selected by the World Health Organization as anti-Schistosoma vaccine candidates [26].

ESP-induced early changes in host cells highlighted by proteomics were also confirmed for
Opisthorchis viverrini [27, 28], and indeed, plasma actin-related protein 3 (ARP3) autoantibody
and 14-3-3 eta protein were identified as putative new diagnostic markers of opisthorchiasis
[29, 30].

Below, “omics”-based investigations on human gut protozoa and worms will be discussed
to update the state of the art on gut “parasitome” citizens by “omic” technologies.

Methods

Literature searches in PubMed until October 31, 2016 were performed using a search strategy
designed to identify relevant studies for this review from the following 2 categories: (i) evaluat-
ing genes, transcripts, proteins, and metabolites of parasites colonising/invading the human
gut and (ii) approaches in “omics”-based research methodologies. Two investigators indepen-
dently evaluated articles resulting from these searches and any relevant references cited in
those articles for inclusion in this study.

DNA-based “omics”: Genomics and metagenomics

Since the beginning of the 21st century, tremendous advances in DNA sequencing technolo-
gies have emerged, allowing for the study of genomes in greater depth and therefore better
decoding of their structural and functional attributes. In particular, next-generation sequenc-
ing (NGS) technologies have displayed high-throughput sequencing power and are composed
of a number of different modern methods that sequence nucleotides faster and cheaper than
Sanger capillary electrophoresis, including HiSeq/MiSeq Illumina, Roche 454, Ion torrent:
Proton/PGM, SOLID, PacBio, and Oxfordnanopore platforms [31].

Briefly, NGS pipelines are based on (a) sample collection, (b) nucleic acid extraction, (c)
library and (d) template preparation, and (e) sequencing reaction completed by (f) genome
and read alignments during the data analysis [32]. The application of NGS could be basically
divided into the following 2 categories: (a) de novo genomic sequencing by mate-paired and
whole genome shotgun (WGS) strategies for determining the complete DNA sequence of an
organism’s genome at a single time and (b) targeted sequencing of gene or locus for the analy-
sis of specific mutations and phylogenetic and evolutionary studies. 16S rRNA for bacterial
and 18S rRNA for eukaryotic genes are the most investigated targeted sequences because their
high degree of sequence conservation across many groups of organisms provides the most suit-
able method for microorganism identification by so-called targeted metagenomics.

Metagenomics to highlight gut bacterial and eukaryotic relationships

NGS platforms allow metagenomic studies, which have revolutionised microbiology and
related fields, to investigate whole prokaryotic communities in terms of the presence and rela-
tive abundance of microorganisms. Metagenomics is potentially important in describing the
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interplay of prokaryotic communities with their eukaryotic counterparts within the whole
intestinal ecological system. By using this approach, Blastocystis was described in healthy indi-
viduals but not in patients with Crohn’s disease [33]. Particularly, lower Blastocystis colonisa-
tion levels were observed in subjects characterised by a Bacteroides-driven enterotype as
compared with Prevotella- or Ruminococcus-driven enterotypes and were positively associated
with species richness [33]. This aspect is particularly interesting because disease enteropheno-
types, such as those related to IBD, obesity, and nonalcoholic fatty liver disease/steatohepatitis
(NAFLD), are generally inversely related to bacterial richness [34-36]. Hence, Blastocystis may
be considered a richness-dependent marker [33, 37].

Clearly, the biocomplexity of the intestinal lumen suggests that interactions between para-
sites and the intestinal microbiota would also influence inflammation. Recent studies have
investigated the potential therapeutic properties of GI nematodes in modulating regulatory
responses in the host gut and thereby promoting immune homeostasis [38]. Epidemiologic
studies noted a reduced susceptibility to inflammatory diseases (e.g., asthma) in the presence
of hookworm infection [39]. Indeed, it has been suggested that Necator americanus may allevi-
ate chronic inflammation in celiac disease but also maintain prokaryotic species richness,
thereby reestablishing the GI tract’s microbial eubiosis and immune homeostasis [38, 40].
Probably, the effects of N. americanus is explicit on microbiota species richness rather than on
community structure or relative abundance of individual bacterial species [41].

In an interleukin-10 (IL-10) gene-deficient murine model of IBD, infection by Heligmoso-
moides polygyrus was evaluated for treatment of colitis, and indeed, the amelioration of colonic
inflammation was observed in wild-type C57BL/6 mice [42]. One proposed mechanism was
that H. polygyrus infection favours the outgrowth or suppression of certain bacteria, which in
turn help modulate host immunity. Indeed, Lactobacillaceae significantly increased in abun-
dance in the ileum of the infected mice, supporting the concept that helminth infection shifts
the composition of intestinal bacteria [42]. The alteration of prokaryotic community structure
was also observed in an animal model (pig) during a Trichuris suis infection [43]. Interestingly,
the meta-taxonomy alterations were detected by both targeted metagenomics and WGS
sequencing. Amongst the 15 phyla identified, the abundances of Proteobacteria and Deferri-
bacteres were changed in infected pigs (IPs). Seventeen genera, such as Oscillibacter, Succinivi-
brio, Sporobacter, Spirochaeta, Paraprevotella, and Mitsuokella, were significantly affected
(P <0.05). The relative abundance of Oscillibacter, the second most abundant genus in the
colon microbiota of control pigs (CPs), decreased from 7.8% of CPs to 2.8% of IPs. Similarly,
the relative abundance of Succinivibrio decreased from 3.6% of CPs to 0.4% of IPs. On the
other hand, an 86-fold expansion in the relative abundance of Mucispirillum to 0.09% was reg-
istered in IPs, accounting for all observed changes in the phylum Deferribacteres [43].

Because “parasitome” is strictly related to environmental (e.g., geographic and temporal
clusters, etc.) and host determinants of parasite infection (e.g., age, immunological status, trav-
els, community behaviours) [44], socioeconomic and anthropologic factors were also evalu-
ated in a study on helminth colonisation and alterations of gut microbiota in a group of
Malaysian indigenous people [45]. An increased ecological diversity and a higher abundance
in the classes Alphaproteobacteria and Mollicutes, the order Bacteroidales, and in particular,
its family Paraprevotellacae were observed in helminth-infected people. In contrast, helminth-
negative people showed an increased abundance in the Bifidobacterium spp. [45]. Although
differences in the distribution of bacterial operational taxonomic units (OTUs) between
infected and noninfected Malaysian people were smaller than those observed between urban
United States and Malaysian residents, higher bacterial diversity (i.e., a- and B-diversity) defi-
nitely appeared associated with helminth colonisation, once more suggesting that helminth-
driven alterations of microbiota are especially evident in terms of richness [45].
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On the other hand, Trichuris-driven infections were observed to ameliorate colitis by
restoring mucosal barrier functions acting on mucus production and on diversity of mucosal
bacteria in a macaque model [46].

The above diversity in metagenomic reports are clearly due to different helminth species/
hosts investigated, dissimilar infectious doses used to inoculate human volunteers or animal
models, different technological platforms, and the different sample types studied (e.g., mucosa
versus faeces); however, such diversity of conclusions is also linked to the high complexity of
gut prokaryotic and eukaryotic communities. Hence, the standardisation of “omic” procedures
can represent the first step to making more homogenous report inferences.

Future of DNA-based studies on “parasitome” investigations: The
challenge of sequencing parasite genomes

The standardisation of procedures and a comparison of different results from different meta-
genomic pipelines are completely lacking in the specific field of “parasitome” characterisation.
High sequence similarities between related species and/or the absence of parasite sequences in
available current databases are still the major weaknesses of metagenomics-driven approaches
to obtaining accurate species-level identification of parasites. Enormous efforts have been
undertaken during the past few years to increase the availability of extended parasite databases
(http://parasite.wormbase.org/, http://www.sanger.ac.uk/science/collaboration/50HGP, http://
eupathdb.org/eupathdb/ [47]), as in the case of Ancylostoma ceylanicum [48] and N. ameri-
canus [49], for example. Hopefully, in the near future, genomes of more parasites will become
avaijlable. Nevertheless, 18S rDNA-based metagenomic approaches developed to facilitate the
detection of eukaryotic parasites are characterised by a sensitivity at least as high as the con-
ventional microscopy-based method [50, 51].

Epigenomics to highlight gut “parasitome” and host relationships

Among the application of NGS technologies, there is the study of the epigenome, i.e., the study
of any potentially stable and heritable changes in gene activity and expression without altering
DNA sequences. DNA methylation and histone modifications are examples of tightly regu-
lated mechanisms that produce such DNA changes.

DNA methylation sequencing and chromatin immunoprecipitation followed by sequencing
(ChIP -Seq) enable the precise genomic localisation of epigenetic markers to decipher gene
activity and expression as well as chromatin state. There is growing interest in epigenetics for its
role in the development and reproduction of parasites and host—parasite interactions through
potentially mutual modulation of genomes. Epigenetic studies of parasites are mostly linked to
malaria and schistosomiasis; only a few are related to gut-related parasitoses. Amongst proto-
zoa, Cryptosporidium parvum encodes candidate methyltransferases, although no proteins were
identified; in Entamoeba histolytica and Trichinella spiralis, methylated DNA was identified, as
well as the presence of DNA methyltransferases or their coding genes [52]. Also, the modulation
of epigenetic host processes was demonstrated in helminth-induced immune suppression [53].
Future epigenetic research on parasites will provide us with better knowledge of both environ-
mental signals and parasite sensor and executor molecules, which determine different parasite
development and virulence programs. Moreover, this knowledge will give us potential opportu-
nities for disease intervention.

RNA- and protein-based “omics”

The identification and quantification of transcriptionally active regions of the genome (the
transcriptome) and of the ultimate products of the transcription (the proteome) are of
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fundamental importance to elucidate biological functions. NGS technologies allow us to also
examine all the RNA and its differential expression, thanks to an additional step of the opera-
tive pipeline: after RNA extraction, researchers synthesise complementary DNA (cDNA) from
RNA [54]. Proteomics deals with the determination of proteins of a biological system by bio-
physical and biochemical methods. It has been revolutionised by the advent of mass spectrom-
etry (MS), a sensitive and rapid analytical method for protein identification and quantification
that enables large-scale, fast, and systematic measurements of proteomes in space and time.
Basically, an MS proteomic experiment consists of the following: (a) protein extraction and
purification from matrices, (b) direct analysis (top-down approach) or enzymatic digestion
(bottom-up approach), (c) optional protein/peptide separation based on liquid chromatogra-
phy, (d) mass-to-charge and intensity detection of protein/peptide and their induced frag-
ments by MS, and (e) protein identification and quantification by de novo or database-driven
data analysis [55].

Gut parasites have been analysed by transcriptomics or proteomics to highlight invasive
and diagnostic features, while, to our knowledge, metatranscriptomic or metaproteomic stud-
ies of gut prokaryotic and eukaryotic communities, including parasites, have not yet been
performed.

Elucidation of parasite life cycle stage—specific characteristics

Transcriptomic and proteomic studies may provide evidence of a parasite’s gene expression
products in order to have a more comprehensive, functional picture of each parasite’s vital
stages and metabolism [22, 56]. This effort has been supported by the introduction of
advanced bioinformatic resources for the handling of transcriptomic and proteomic data,
which integrate whole genome sequences and annotations with expressed sequence tags [47,
57, 58]. So far, proteomics has described the following parasite cycle features: (i) secretion and
excystation proteins of C. parvum oocyst/sporozoite stages [59, 60]; (ii) Giardia trophozoites’
peripheral and encystation-specific vesicles, organelles that have key roles in proliferation and
transmission to a new host, respectively [61]; (iii) Encephalitozoon cuniculi spore-rich cell pop-
ulations, representing the major protein reservoir expressed during late sporogony [62]; (iv)
Taenia solium activated oncospheres, involved in gut penetration and immune evasion
machineries [63]; and (v) Strongyloides stercoralis infective filariform larvae (L3i) [64]. More-
over, the transcriptome of S. stercoralis L3i has been annotated to provide a comprehensive
database for genomic, proteomic, and metabolomic explorations of S. stercoralis [65].

Focus on parasite surface and secreted proteins

Several proteomic investigations have focused on surface proteins because they are thought to
be involved in the host-parasite interactions, immune response, and disease processes [66]. In
the case of E. histolytica, more proteins than expected have been recently catalogued as surface
associated, a phenomenon that may be caused by its high membrane turnover [67]. The sur-
face-associated proteome can indeed elucidate molecular mechanisms that regulate virulence
in E. histolytica [68]. A large number of proteins that can potentially act as new virulence fac-
tors were highlighted by comparing the proteome of E. histolytica with that of the closely
related but nonpathogenic E. dispar [69] and investigating different virulent E. histolytica
strains [70].

Gut parasite secretory products have been intensively studied, especially with reference to
their proteolytic activities. Several enteric pathogens, in fact, can modulate the protease bal-
ance, which regulates the intestinal epithelial cell microenvironment, inducing intestinal
pathobiology [71]. Moreover, specific parasite-secreted proteases stimulate gut secretion or
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inflammation, alter gut integrity, inhibit host immunity, and therefore promote disease, such
as in Entamoeba spp. or Giardia spp. infections, in which cysteine proteases are effective viru-
lence factors. Secreted proteases were also characterised in Blastocystis culture supernatants,
allowing protease candidates to increase intestinal permeability [72]. The differences observed
in terms of virulence between E. histolytica and E. dispar were indeed demonstrated to be due
to the secretion of specific proteases and, specifically, to increased protease activity by E. histo-
Iytica [71].

In some cases, invasive stage highlights may contribute in providing new diagnostic tools.
Taenia solium metacestodes are able to maintain a host infection by developing many protec-
tive mechanisms, including the production of ESPs. Such ESPs were investigated by Victor
etal. [73] in an effort to unveil more proteins involved in parasite survival strategies as well as
to better understand the interaction between metacestodes and their host.

ESP proteomic analysis was also performed in A. caninum [74], a model for human hook-
worm infections, providing insight into the biology of hookworm and immunomodulatory
mechanisms by which these worms establish and maintain chronic infections in their host.
The identified ESPs could be useful in the development of both anti-helminthic vaccines/
drugs and therapeutic agents for inflammatory or autoimmune diseases. For example, 1 of
these identified secreted proteins of A. caninum, the tissue inhibitor of metalloproteinase
(TIMP)-like anti-inflammatory protein-2 (AIP-2), has been demonstrated to promote positive
regulatory T-cell response and suppress airway inflammation in a mouse model, thereby show-
ing a novel potential therapeutic drug for allergic asthma [75]. Also of interest is a recent prote-
omic work that investigated the physiological and biological influence of the gut microbiota
on the parasite T. spiralis, suggesting that specific gut microbes may be considered as therapeu-
tic agents to prevent trichinellosis [76].

Host—parasite relationships and immune response

The host immune response and, consequently, the development and manifestation of chronic
human inflammatory diseases may be modulated by infection with helminthic parasites, as in
the case of Trichuris trichiura, which exerts a protective effect against atopy, and allergic and
autoimmune diseases [77, 78]. Therefore, the immunomodulatory effect of T. trichiura adult
worm extract was investigated to identify proteins acting as drug molecules for allergic and
other inflammatory diseases [77]. The same authors characterised the adult stage transcrip-
tome of T. trichiura [78], which contributed to the functional annotation of a recently released
genome draft [79]. It is worthwhile to also mention the protein array technique (miniaturisa-
tion of thousands of assays on 1 small plate) facilitating the analysis of host immune response
to parasite antigens; Tang and colleagues probed the serum of patients infected with N. ameri-
canus with an array of 564 recombinant proteins inferred from the genome of the parasite and
identified 22 antigens that were significant targets of anti-hookworm immune responses and
might form the basis of sensitive and specific serodiagnostic tests [49].

Future direction for protein-based approach: New frontiers of post-
translational modifications and protein—protein interactions

Until now, human gut parasite transcriptomics and proteomics have not been analysed in
depth; modern technological MS-based platforms are able to perform more sophisticated anal-
yses, such as the study of the intact protein complexes and the detection of direct protein-pro-
tein interactions, the application of which in the interpretation of host—parasite interaction
networks will be of invaluable help in the battle against infection [80]. Elucidation of protein
post-translational modifications (PTMs; i.e., phosphorylation, acetylation, glycosylation, etc.)
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is another fundamental target in research on parasites for their critical role in protein function
and therefore in the progression and outcome of infection. As an example, histone PTMs of E.
histolytica and G. lamblia might be involved in host-parasite interactions in terms of virulence
and morphological differentiation [81].

Metabolomics

The GI tract is a dynamic metabolic and immunologically active ecosystem, and its complete
set of metabolites reflects both the enzymatic pathways of host and gut inhabitants and the
complex network that connects them. Metabolomics aims to monitor metabolite components
in a system and determine their quantitative dynamic change. Two technologies commonly
associated with metabolome analyses are nuclear magnetic resonance (NMR) spectroscopy
and gas or liquid MS, well suited for identification and quantitation of small-molecular-weight
metabolites in a high-throughput fashion [82]. Recent findings describe the roles of microbial
metabolites in regulating host physiology, immunity, and pathology [83-85]. Therefore, meta-
bolomics provides a novel approach to studying the microbiota but also the “parasitome” and
its interactions with the host counterpart. Indeed, perturbations of gut metabolite profiles
reflect changes in cellular regulation and physiological processes that may result from parasitic
infections, and these profiles may provide a pathway for biomarker discovery, drug targets,
and improved diagnoses [23].

From metabolomic patterns to diagnostic and therapeutic tools for
protozoa

Despite the differences in faecal metabolite profiles in Cryptosporidium-infected humans [86]
and mice [87], metabolomics clearly differentiates between infected and uninfected states.
Such metabolic differential patterns may be useful for the diagnosis of Cryptosporidium infec-
tions and to improve microscopy or PCR-based diagnoses, which are often hampered by sensi-
tivity limits due to low numbers of oocysts in faeces because of intermittent shedding. Giardia
lacks mitochondria and depends on fermentative metabolism, showing unique metabolic
pathways. Volatile organic compounds (VOCs) may therefore represent specific markers of
Giardia infection in stools, hence presenting a potential role for the diagnosis of giardiasis
[88].

Because the elucidation of the encystation process could further the improvement of con-
trol measures against parasitic infectious diseases, metabolic and transcriptomic changes
occurring during the encystation of E. invadens, a relative of E. histolytica that infects reptiles,
have been investigated [89]. The encystation process leads to decreased levels of most metabo-
lites involved in glycolysis and of all nucleotides, while the intermediates of chitin biosynthesis,
some biogenic amines, and y-aminobutyric acid increase. Because chitin does not occur in ver-
tebrates, its synthetic pathway represents an excellent parasite-specific target for developing
new chemotherapeutics.

Metabolomic patterns to unveil bacteria, parasite, and host interplay

VOC-based analysis, coupled with metagenomic analysis, as previously described, was per-
formed on the luminal contents of pigs infected with T. suis [43]. Twenty-six percent of all
identified colonic metabolic pathways were affected by T. suis presence, with a drop out of
cofactors for carbohydrate and lysine biosynthesis. Moreover, the observed accumulation of
oleic acid in IPs suggested altered fatty acid absorption, hence enhancing local inflammation.
Therefore, T. suis exhibited a central role in the microbiota-host axis [43].
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Wang and collaborators [90] pioneered the strategy of metabolic profiling of blood and
urine to investigate biochemical consequences of N. americanus infection in an animal model
to determine the host metabolic response. One of the prominent changes noted was the alter-
ation of host energy-related metabolism, which was reflected in an increased concentration of
lipoprotein and lipids and a decreased concentration of glucose in the blood. Additionally, a
number of urinary metabolites was found to increase in infected hamsters, including p-cresol-
glucuronide and 2-aminoadipate [90]. The same authors performed the same metabolic inves-
tigation after coinfection with S. japonicum and N. americanus, noting again a reduced concen-
tration of the gut microbial-related metabolite hippurate in the hamster urine [91]. The
decrease in hippurate levels is common to all helminth infections studied to date. However, it
is evident that no single metabolite can be a specific marker for parasitosis: the metabolic sig-
nature itself, at least in theory, could be a diagnostic reference.

Conclusions and perspectives

The strength of “omic” approaches resides in their ability to provide complete profiles of
genes/transcripts/proteins/metabolites, overcoming the classical genetic/biochemical studies
based on single or few target molecules, giving a broader perspective of parasite biology and,
as a consequence, improving parasite control programs and diagnostics.

Research advances
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Fig 2. Multi-omic basic research will define molecular mechanisms on the basis of host—parasite-bacteria
cross-talk on the road to more effective translational research.
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After reviewing studies based on “omic” technologies, possible markers of parasite infection
have emerged, as well as putative vaccine targets. However, although interesting data have
been revealed, considerable work remains to improve current “omics”-based operational pipe-
lines in order to fully understand the 3-way interactions between host, prokaryotic communi-
ties, and parasites. Future research should include the extended sequencing of parasite
genomes; one of the actual shortcomings of “omic” studies is the poor characterisation of new
parasite genes both in their sequences and functions. More deeply curated annotations and
affordable metagenomic pipelines are needed for the description of parasites within the gut
microbiota environment. Moreover, new metaproteomic procedures (MS differential profiling
by multiple reaction monitoring-like acquisition), now available for prokaryotic communities,
need to be applied to eukaryotic citizens (the “parasitome”) of the gut ecological system in
order to greatly improve the distinction between host and parasite proteins as well as to iden-
tify as-yet unknown proteins.

Therefore, “omic” technologies are now promising tools capable of leading to the discovery
of new key pathways which may improve diagnostic and therapeutic approaches for parasite-
linked GI diseases within the context of microbiota/parasitome/host co-metabolism and
response to infections (Fig 2).

Key learning points

o The human gut is a complex ecological system composed of host and symbiotic pro-
karyotic cells and plays a central role in human health. Intestinal eukaryotic parasites
(i.e., protozoa and helminths) are the other important components of this coevolved
community, being able to modify the composition/activity of the gut prokaryotes
through excreted/secreted molecules or evoking a response from the host’s immune
system. At the same time, bacteria may exert profound effects on parasite physiology
and survival within the intestinal niche.

o The “omic” approaches (genomics, transcriptomics, proteomics, and metabolomics),
based on the recent development of efficient analytical and data mining methods,
allow the overall evaluation of gene/transcripts/protein/metabolite scaffolds of a bio-
logical system under specific conditions and time points. This offers non-targeted,
high-throughput, and deep systems biology analyses that may be the key to decoding
the functional activity of the human gut community.

« Metagenomic data pipelines, developed for studying prokaryotes, are valuable tools
for the detection of eukaryotic DNA signatures in gut microbiota communities; exist-
ing metagenomic data from studies across geographical reservoirs can be used to pro-
duce standard profiles of prokaryotes of healthy populations, enabling us to identify
dysbiosis. Such reference microbiota can be exploited to assess actual prokaryotic—
eukaryotic relationships within the ecology of the human intestinal niche.

o A deeper “omic” and new “meta-omic” profiling of both the parasite and parasite-
microbiota-host interplay will further assist the discovery of the entire biological
machinery of the gut community and will have a valuable impact in unveiling new
diagnostic and virulence markers as well as promising targets for vaccination.
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