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Abstract

Anthrax is hyper-endemic in West Africa. Despite the effectiveness of livestock vaccines in

controlling anthrax, underreporting, logistics, and limited resources makes implementing vac-

cination campaigns difficult. To better understand the geographic limits of anthrax, elucidate

environmental factors related to its occurrence, and identify human and livestock populations

at risk, we developed predictive models of the environmental suitability of anthrax in Ghana.

We obtained data on the location and date of livestock anthrax from veterinary and outbreak

response records in Ghana during 2005–2016, as well as livestock vaccination registers and

population estimates of characteristically high-risk groups. To predict the environmental suit-

ability of anthrax, we used an ensemble of random forest (RF) models built using a combina-

tion of climatic and environmental factors. From 2005 through the first six months of 2016,

there were 67 anthrax outbreaks (851 cases) in livestock; outbreaks showed a seasonal

peak during February through April and primarily involved cattle. There was a median of

19,709 vaccine doses [range: 0–175 thousand] administered annually. Results from the RF

model suggest a marked ecological divide separating the broad areas of environmental suit-

ability in northern Ghana from the southern part of the country. Increasing alkaline soil pH

was associated with a higher probability of anthrax occurrence. We estimated 2.2 (95% CI:

2.0, 2.5) million livestock and 805 (95% CI: 519, 890) thousand low income rural livestock

keepers were located in anthrax risk areas. Based on our estimates, the current anthrax vac-

cination efforts in Ghana cover a fraction of the livestock potentially at risk, thus control efforts

should be focused on improving vaccine coverage among high risk groups.
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Author summary

Anthrax is a soil-borne zoonotic disease found worldwide. In the West African nation of

Ghana, anthrax outbreaks occur annually with a high burden to livestock keepers and

their animals. To control anthrax in both humans and animals, annual livestock vaccina-

tion is recommended in endemic regions. However, in resource poor areas distributing

and administering vaccine is difficult, in part, due to underreporting, logistical issues, lim-

ited resources, and an under appreciation of the geographic extent of anthrax risk zones.

Our objective was to model high spatial resolution anthrax outbreak data, collected in

Ghana, using a machine learning algorithm (random forest). To achieve this, we used a

combination of climatic and environmental characteristics to predict the potential envi-

ronmental suitability of anthrax, map its distribution, and identify livestock and human

populations at risk. Results indicate a marked ecological divide separating the broad areas

of environmental suitability in northern Ghana from the southern part of the country,

which closely mirrors the ecotone transitions from southern tropical and deciduous for-

ests to the northern Sudanian and Guinea Savanna. Based on our model prediction, we

estimated >3 million combined ruminant livestock and low income livestock keepers are

situated in anthrax risk zones. These findings suggest a low level of annual livestock vacci-

nation coverage among high risk groups. Thus, integrating control strategies from both

the veterinary and human health sectors are needed to improve surveillance and increase

vaccine dissemination and adoption by rural livestock keepers in Ghana and the sur-

rounding region.

Introduction

Anthrax is a soil-borne, zoonotic disease found on nearly every continent (except Antarctica)

that primarily infects herbivorous animals while secondarily infecting humans through the

handling or ingestion of contaminated meat or animal by-products [1,2]. The geographic dis-

tribution of the disease appears to be limited by a combination of climatic (e.g. precipitation

and temperature) and environmental (e.g. alkaline soil pH) conditions [3,4]. Under the appro-

priate ecological conditions, which remain poorly understood, the causative agent of anthrax,

Bacillus anthracis, can survive for long-periods of time in the environment, perhaps years

[1,4]. Although it has received much attention as a potential agent of bioterrorism, the World

Health Organization (WHO) has listed anthrax as a neglected disease [5]. Poor livestock keep-

ers and their animals often experience a disproportionate burden of anthrax in the hyper-

endemic regions of Central Asia and West Africa [5,6]. Despite the effectiveness of regular ani-

mal vaccination and proper outbreak response following recommended guidelines in control-

ling anthrax in humans, underreporting of the disease often skews its true burden and

geographic distribution making it difficult to implement adequate vaccination campaigns

[1,7].

In Ghana, anthrax outbreaks have been reported annually in humans associated with con-

tact with infected livestock and their contaminated animal by-products (e.g. meat or hides)

[8]. Anthrax vaccine is manufactured locally by the Central Veterinary Laboratory in Pong-

Tamale, Ghana and is fully subsidized by the government. Despite this, animal outbreaks are

documented annually, and primarily affect cattle. Although both human and animal cases are

reported, few human cases are linked to confirmed animal cases [9]. As a result, surveillance

data alone provide limited information to efficiently plan prevention activities. Previous efforts
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to elucidate the environmental suitability of anthrax in Africa have been focused on southern

countries, such as Zimbabwe [10], or national parks [11]. A recent study from West Africa also

used a machine learning algorithm to map and model the distribution of anthrax and B.

anthracis in Cameroon, Chad, and Nigeria, however, that effort was based on limited sample

size and no comparable efforts have been carried out in Ghana [12].

To support Ghana’s national anthrax control and assessment, we our study had the follow-

ing objectives: (1) model the environmental suitability of anthrax; (2) identify environmental

and climatic factors associated with the occurrence of anthrax; (3) describe seasonal patterns;

and (4) estimate populations at risk.

Methods

Ethics statement

This work was performed on nationally available data on anthrax outbreaks in livestock from

the Ministry of Food and Agriculture in Ghana.

Anthrax occurrence data

We constructed a GIS of livestock anthrax outbreaks using data collected by the Ghana Field Epi-

demiology and Laboratory Training Program (GFELTP) and the Ministry of Food and Agricul-

tural Veterinary Services. (Fig 1). Outbreaks were mapped using GPS coordinates collected by

field personnel responding to outbreaks or the center of the village where the outbreak occurred.

We included data on outbreaks from 2005 through the first 6-months of 2016 included informa-

tion on the geographic coordinates, date, livestock species, and number of individual animals

infected (periodically recording mortality and survival status) for each outbreak. However, total

livestock populations on affected properties was rarely reported. For this study, an outbreak was

defined as any location with one or more anthrax cases in animals. We plotted the seasonality of

anthrax outbreaks in relation to the average rainfall during 1991–2015 using data obtained from

the Climate Change Knowledge Portal (http://sdwebx.worldbank.org/climateportal/index.cfm?

page=country_historical_climate&ThisCCode=GHA). We also obtained livestock anthrax vac-

cine administration data during 2005–2015 from the World Animal health Information Database

Interface (OIE; http://www.oie.int/animal-health-in-the-world/the-world-animal-health-

information-system/data-after-2004-wahis-interface/). Mapping and spatial analysis was per-

formed in Q-GIS version 2.14 (www.qgis.org) and the R statistical package (https://www.r-

project.org/). Final maps were produced in ArcGIS version 10.3.1 (ESRI, Redlands, CA, USA).

Environmental and climatic data

We used a combination of environmental and climatic variables at a spatial resolution of

30-arcseconds (approximately 1km x 1km) that followed, in part, recent studies in West Africa

[13] and Central Asia [14] (Table 1). Five “bioclimatic” variables describing measures of tem-

perature and precipitation were obtained from the WorldClim database (www.worldclim.org)

[15]. WorldClim variables are interpolated monthly measurements recorded at weather sta-

tions located worldwide between 1950 and 2000. WorldClim produces bioclimatic variable

grids to describe annual trends, seasonality, and ecological parameters such as temperature of

the coldest and warmest quarters. We also used a combination of physical (sand content),

chemical (soil pH), and taxonomic classifications of soil characteristics (cancerous vertisols

and humults). Soil data were obtained from the SoilGrids1km database http://www.isric.org/

explore/soilgrids) [16]. SoilGrid variables were created using spatial model predictions based

on a global database of soil profiles and a combination of environmental covariates.
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Furthermore, we used two normalized difference vegetation index (NDVI) variables describ-

ing average conditions and the amplitude of vegetation greenness, which were obtained from

the Trypanosomiasis and Land Use in Africa (TALA) research group (Oxford, United King-

dom) [17]. TALA variables were derived from temporal Fourier analysed (TFA) time series

data of advanced very-high resolution radiometer (AVHRR) satellite measurements taken

between 1992 and 1996 [17]. Mapped variables are shown in S1 Fig.

Data analysis

Random Forest (RF) modeling [18,19] was used to identify environmental characteristics

associated with the occurrence of anthrax outbreaks using the ‘randomForest’ package for

R. Previous studies have used this approach to map and model the distribution of Anopheles
spp. mosquito vectors in Africa and Europe [20] and reservoirs of avian influenza [21]. RF

Fig 1. Spatial setting of Ghana in West Africa (inset A) and the geographic distribution of anthrax outbreaks

(January 2005—June 2016) and generated pseudo absence data (inset B). The number of outbreaks by

region in Ghana (inset C). Political boundary data were downloaded from www.gadm.org and all maps were

produced in ArcGIS (www.esri.com; see Methods).

https://doi.org/10.1371/journal.pntd.0005885.g001

Modeling and mapping anthrax in Ghana

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005885 October 13, 2017 4 / 17

http://www.gadm.org/
http://www.esri.com/
https://doi.org/10.1371/journal.pntd.0005885.g001
https://doi.org/10.1371/journal.pntd.0005885


modeling has been described and compared to other modeling approaches in detail elsewhere

[18,22]. Briefly, RF is a non-parametric method derived from classification and regression

trees that consists of a combination of trees built using randomly selected bootstrap samples of

the training data (used to build the model), with the number of bootstrap samples equal to the

number of trees (ntrees) selected. Each tree is split by randomly sampling a number of predic-

tor variables to use (mtry) at each node and then choosing the best split. Model error estimates

are obtained by internal splits of the training data (63.2% for model building) and then pre-

dicting the data not used to build a tree (out-of-bag or OOB) and aggregating these predictions

for each ensemble of trees [18]. Since internal validation of the OOB data is performed, no

external testing data is required to validate the model, but testing splits (external data withheld

from the model) of the data are routinely utilized to assess model performance. Partial depen-

dence plots and variable importance of RF models were assessed for covariates in the model.

We used an ensemble modeling approach that incorporated information from multiple

random splits of our data into training (80%) and testing (20%) sets. Since our data consisted

of presence only records of anthrax outbreaks, we generated pseudo-absence data from all

available background data. Several studies have either relied on internal derivations of pseudo-

absence in species distribution models [23] or user-defined generations such as in the model-

ing of the global distribution of dengue virus [24]. The required number of user-defined back-

ground pseudo-absence draws for every presence location is not standardized. It has been

suggested that a 1:1 random draw of pseudo-absence to presence data in machine learning

algorithms such as RF produces optimal results [25], although variations of this (2:1 or 3:1

draws) have been adopted successfully [24]. Similarly, pseudo-absence data creation has been

shown to influence results; thus, research has recommended filtering pseudo-absence data

from locations that are known to fall within suitable habitat or that occur within a defined

proximity threshold [25,26].

We first filtered geo-located anthrax presence data in Ghana (n = 61) using a 5km x 5km

proximity threshold in order to improve model performance and avoid overfitting [27]. We

generated background pseudo-absence data (n = 200), from all available background [24], at a

ratio of four absence points to every one filtered presence point (n = 50), restricting pseudo-

absence data to exclude landscape within 5km of presence locations. We then generated 10

random draws each of 1:1, 2:1, and 3:1 pseudo-absence to presence data (30 total draws) with

replacement. Each randomly generated pseudo-absence to presence draw (n = 30) was ran-

domly divided into training and testing data splits to validate model performance. The final

Table 1. Environmental and climatic variables used in the random forest models.

Environmental variable Variable name Data source Reference

Elevation (m) elevation Worldclim [6]

Mean annual temperature (˚C) bio 1 Worldclim [6]

Annual temperature range (˚C) bio 7 Worldclim [6]

Annual precipitation (mm) bio 12 Worldclim [6]

Precipitation: wettest month (mm) bio 13 Worldclim [6]

Precipitation driest month (mm) bio 14 Worldclim [6]

Average soil pH soil pH SoilGrids1km [7]

Calcerous vertisols (% coverage) vertisol SoilGrids1km [7]

Humult (% coverage) humult SoilGrids1km [7]

Sand (% mass fraction) sand SoilGrids1km [7]

Temporal Fourier mean NDVI wd0114a0 TALA [8]

Temporal Fourier NDVI annual amplitude wd0114a1 TALA [8]

https://doi.org/10.1371/journal.pntd.0005885.t001
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RF models were built using a mtry = 4 at each split and ntrees = 1000 with a combination of var-

iables in which the ensemble list contributed to a mean decrease in accuracy>1%. The 30 indi-

vidual RF models were then combined into an ensemble prediction at a spatial resolution of

~1km x 1km and scaled from 0 (low suitability) to 1 (high suitability); uncertainty in the model

prediction was calculated by taking the range in the 95% confidence intervals of the ensemble

model scaled from 0 (low uncertainty) to 1 (high uncertainty) following Deribe et al. [28].

The resulting output of our ensemble RF model represents the environmental suitability of

anthrax in Ghana. To estimate the number of livestock and poor rural livestock keepers at risk

in anthrax suitable areas, we dichotomized the modeled environmental suitability into a suitable

versus not suitable prediction using a probability threshold that maximized sensitivity and spec-

ificity. We then overlaid a database of global livestock density at a spatial resolution of ~1km x

1km (http://www.livestock.geo-wiki.org/) [29] with the dichotomized anthrax prediction to

estimate the livestock populations (cattle, sheep, goats, and swine) at risk. Livestock populations

at risk were further stratified to estimate the population at risk within each of the livestock pro-

duction zones of Ghana using the livestock production systems data version 5 (http://www.

livestock.geo-wiki.org/) [29–31]. Furthermore, we estimated the number of low income rural

livestock keepers at risk within each livestock production zone by overlaying the dichotomized

anthrax suitable areas with estimates of the population of low income rural livestock keepers

provided in Robinson et al. [31] and deriving the fraction of cells that were within our model

prediction. Uncertainty in the populations at risk and 95% confidence intervals were calculated

by using the 2.5% (lower) and 97.5% (upper) bounds of the ensemble RF model prediction [28].

Model performance and validation was conducted for each individual RF model and

included the internal: OOB error classification, area under the receiver operating characteris-

tics curve (AUC), sensitivity, and specificity. Additionally, we performed accuracy assessments

on the external testing data, which consisted of thirty random subsets of 20% of the data sam-

pled with replacement. Mean values and 95% confidence intervals were estimated for each

accuracy metric. The AUC has been used extensively in species distribution modeling to mea-

sure the discriminatory performance of models [32]; an AUC value of 1 indicates a perfect dis-

crimination while values of>0.9 are outstanding, 0.8–0.9 excellent, 0.7–0.8 acceptable, and

<0.7 indicate poor discriminatory performance [28,33].

Results

Anthrax outbreaks

From 2005 through the first 6 months of 2016, there were 67 reported anthrax outbreaks in

livestock (61 that were geo-located) (Fig 1). Nationally, there was a mean of 6 (95% CI: 4, 7)

outbreaks per year with a peak in 2011 (n = 12) and lull in reporting in 2009 (n = 2) (Fig 2).

The geography of outbreaks shows a higher frequency of anthrax in northern Ghana in the

Upper East and Northern regions. Of the reported outbreaks, 4 (6%) were comprised of two or

more livestock types. Domestic cattle were reported in 53% (35) of outbreaks, followed by

sheep in 32% (21), goats in 11% (7), and swine in 5% (3). During 2005–2016, cattle anthrax

cases were reported every year except in 2009. Sheep cases were ubiquitous annually and were

characterized by a large number of deaths in 2012, the same year there was also a large number

of swine cases (n = 500) (Table 2).

The seasonality of anthrax outbreaks nationally and regionally are illustrated in Fig 3.

Nationally, outbreaks were reported, on average, across seasons and in every month (except

November). There was an increase in outbreaks in the late winter and early spring months,

with February through April having the highest reported number of outbreaks. On average,

there outbreaks appeared to occur in the dry season before the onset of the rains.
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Livestock vaccination

Trends in livestock anthrax vaccination among livestock type are shown in Fig 4. From 2000–

20015, there was a median of 17,957 doses [0–175 thousand] of anthrax livestock vaccine

administered annually livestock vaccination occurred annually with a median number of

doses administered of 19,709 [range: 0–175 thousand doses], followed by a decline in vaccine

administration during 2008–2015. No vaccination was administered during the years 2010,

2012, and 2013. During 2008–2015, there was a median of 542 [range: 0–147 thousand doses]

doses administered. In response to ongoing outbreaks, there was a vaccination campaign in

2014 that resulted in nearly an 8-fold increase in the number of doses administered compared

to the previous six years. Among livestock types, cattle were most frequently administered vac-

cine, followed by sheep, goats and swine (Fig 4).

Environmental suitability of anthrax in Ghana

The ensemble RF model suggests a latitudinal gradient in the environmental suitability of

anthrax in Ghana (Fig 5A). High environmental suitability was identified in the Northern,

Fig 2. Annual number of livestock anthrax outbreaks in Ghana during January 2005- June 2016.

https://doi.org/10.1371/journal.pntd.0005885.g002

Table 2. Cases of anthrax by livestock type in Ghana, 2005–2016.

Year Cattle Sheep Goats Swine

2005 27 1 0 0

2006 17 15 0 0

2007 15 9 3 0

2008 21 6 11 0

2009 0 2 0 0

2010 2 1 0 0

2011 13 7 0 3

2012 6 66 1 500

2013 50 14 0 0

2014 3 1 0 1

2015 26 1 0 0

2016 4 6 19 0

Totals 184 129 34 504

https://doi.org/10.1371/journal.pntd.0005885.t002
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Upper East, and Upper West regions of Ghana that encompass seasonal livestock migration

routes from Burkina Faso in the north. Conversely, low or no environmental suitability was

identified in southern Ghana among the more acidic soils in the Western, Ashanti, Central,

and Eastern regions. Uncertainty (range: 0–0.20) in the model prediction was scaled from 0 to

1 and showed it was highest in the Upper West and Northern regions (Fig 5B). The internal

OOB model validation indicated excellent discrimination with an AUC = 0.88 (95% CI: 0.87,

0.89). The external validation of anthrax outbreak locations withheld from the model (testing

data) also showed excellent discrimination (AUC = 0.87 [95% CI: 0.85, 0.90]).

The final list of variables used in the ensemble model are shown in Fig 6. A combination of

bioclimatic, environmental, and soil characteristics had the greatest impact on the OOB pre-

diction errors. The most important variables influencing accuracy were: soil pH, bio7 (annual

temperature range), and bio14 (precipitation of the driest month) (S2 Fig). The probability of

the occurrence of anthrax increased in a step like manner in response to soil pH, increasing as

the soil became more alkaline, between 5.5 and 6.5, and again between 6.5 and 7.0. Annual

temperature ranges between 16 and 20˚C were also related to a greater probability of occur-

rence. The occurrence of anthrax showed an affinity for low values of precipitation during the

driest month (0 to 10 mm) and then dropped off dramatically as precipitation increased from

10 to 40 mm. Furthermore, as average NDVI (wd0114a0) increased from 0.3 to 0.6 the proba-

bility of anthrax occurrence decreased linearly, with a more suitable range of vegetation green-

ness identified in the lower ranges between 0.1 and 0.3 (Fig 6).

Fig 3. Seasonal distribution of anthrax outbreaks (black bars) during 2005–2016 with average rainfall totals

(red line) in Ghana nationally (A) and by region: Upper West (B), Northern (C), Brong Ahafo (D), and Upper

East (E). Anthrax outbreaks by Region.

https://doi.org/10.1371/journal.pntd.0005885.g003
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Estimating populations at risk

To estimate livestock and human populations at risk, we dichotomized the environmental suit-

ability prediction (on a continuous probability scale) into suitable versus non-suitable environ-

ments for anthrax based on the optimal threshold (0.46) that maximized sensitivity (0.78) plus

specificity (0.89) (Fig 7). The dichotomized prediction shows a marked north-south demarca-

tion in the suitability of anthrax, with a majority of northern Ghana predicted as suitable

within the accompanying upper (97.5%) and lower (2.5%) confidence bounds.

The national livestock population located in areas environmentally suitable for anthrax was

estimated to be� 2.2 (95% CI: 2.0, 2.5) million (Table 3). More than 50% of the livestock pop-

ulations at risk were sheep and cattle (650 [95% CI: 583, 745] thousand and 480 [95% CI: 434,

527] thousand, respectively). Among livestock production systems, semi-arid rain-fed, mixed

crop livestock systems (MRA) contained the greatest number of livestock at risk > 1.2 (95%

CI: 1.1, 1.3) million (Table 3).

Nationally, there are approximately 3 million low income rural livestock keepers in Ghana

(Table 4). Our model suggests that� 805 (95% CI: 519, 890) thousand are located in areas suit-

able for anthrax, with the majority located in a humid and sub-humid, mixed crop livestock

system production zone (MRH).

Discussion

Anthrax is a globally distributed neglected disease that is often underreported, particularly in

West Africa where it is hyper-endemic [1,2,6,13]. Given the reliance of control on the vaccina-

tion of livestock, understanding the occurrence of anthrax is crucial for identifying popula-

tions at risk in order to disseminate limited resources. Here, we used data on the location of

livestock outbreaks to identify seasonal patterns and model the environmental suitability of

Fig 4. Annual livestock anthrax vaccine doses administered in Ghana during January 2005- June

2016.

https://doi.org/10.1371/journal.pntd.0005885.g004
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anthrax in Ghana. In keeping with previous studies, our findings indicate a defined outbreak

season with a combination of ecological constraints on the potential geographic distribution of

anthrax [3,34]. Our modeled prediction suggests a marked ecological divide separating the

broad areas of environmental suitability in northern Ghana from the southern part of the

country. Additionally, we estimated that populations characteristically at high risk for anthrax,

which included >3 million combined ruminant livestock and poor rural livestock keepers are

situated within the predicted anthrax risk zone. Based on our estimates, current anthrax vacci-

nation efforts cover only a fraction of the livestock potentially at risk. Hence, these findings

can be used to better direct public health intervention strategies and inform surveillance.

Official reports of livestock anthrax in endemic areas often go undocumented for a number

of reasons, including the inability or unwillingness to report, limited surveillance capacity, and

a lack of local knowledge about the disease [1]. In Ghana, livestock cases are likely underre-

ported due to the slaughter and consumption of sick or dead animals [8,35], consistent with

Fig 5. Environmental suitability of anthrax in Ghana as predicted by the ensemble random forest model (inset

A). Uncertainty was calculated as the range of the 95% confidence intervals in predicted probability of

suitability for each pixel, with areas of highest uncertainty in red, with greener colors representing low

uncertainty (inset B).

https://doi.org/10.1371/journal.pntd.0005885.g005
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findings in the Caucasus and elsewhere [1,6,36,37]. This practice is often undertaken as a

means of recouping economic losses from livestock mortality as well as providing food and a

readily available source of protein [1,8,35]. The livestock anthrax outbreak data we used in this

study were concordant with data reported to OIE during the same time frame suggesting Vet-

erinary Services in Ghana are compliant with international reporting requirements (http://

www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home).

Despite the close proximity to the equator, we identified marked seasonality in anthrax

reporting; outbreaks increased during the onset of the rainy season from February through

April. Similar patterns of anthrax outbreaks associated with the rainy-season have also been

reported in Namibia [34]. One hypothesis suggests that there is greater soil consumption

among ruminants during with the rainy season [34], although soil exposure during the dry sea-

son has also been hypothesized as a cause of anthrax outbreaks [1]. Regardless, these findings

suggest vaccination of livestock could be carried out in Ghana ahead of the peak outbreak sea-

son (September–November).

Fig 6. Partial dependency plots of environmental variables used in the random forest. Gray shading

represented confidence intervals derived from the model iterations.

https://doi.org/10.1371/journal.pntd.0005885.g006
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Livestock anthrax control in Ghana follows a similar trend in many endemic regions of

reactively vaccinating in response to anthrax outbreaks [1,38]. In Ghana, the livestock popula-

tion we identified at risk comprises approximately� 25% of the total national livestock popu-

lation [29]. Based on official vaccination reports (Fig 4), our estimates of the livestock

Fig 7. Dichotomized prediction of anthrax suitability with lower (2.5%) and upper (97.5%) occurrence

limits. Dichotomized prediction was calculated using an optimal probability threshold (0.46) that maximized

sensitivity plus specificity.

https://doi.org/10.1371/journal.pntd.0005885.g007

Table 3. Livestock production systems¥ and the livestock population in the Ghanaian anthrax risk zone.

Population at risk [95% CI] (thousands of livestock)

Livestock LGA LGH MRA MRH MIA

cattle 108.5 [83.1, 123.2] 38.2 [30, 48.8] 283.3 [272.3, 289.7] 49.2 [47.7, 63.8] 1.2 [1.1, 1.2]

sheep 166.2 [125.4, 188] 50.6 [41.2, 74] 368 [353.8, 376.6] 63.9 [61.6, 105.5] 1.2 [1.1, 1.2]

goats 262.3 [201, 301.7] 47.9 [38, 67.8] 509.9 [491.3, 524.2] 117.8 [115, 164] 1.1 [1.0, 1.1]

swine 32.1 [24.7, 36.1] 11.5 [9.8, 17.1] 70.6 [67.6, 72.2] 14.7 [13.9, 24.9] 0.2 [0.2, 0.3]

¥ Livestock production systems (http://www.fao.org/docrep/014/i2414e/i2414e.pdf)

LGA: Livestock only systems, arid and semi-arid

LGH: Livestock only systems, humid and sub-humid

MRA: Rainfed mixed crop/livestock system, arid and semi-arid

MRH: Rainfed mixed crop/livestock system, humid and sub-humid

MIA: Irrigated mixed crop/livestock systems, arid and semi-arid

https://doi.org/10.1371/journal.pntd.0005885.t003
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populations at risk indicates poor vaccine coverage; this finding is consistent with ongoing

outbreaks in endemic communities in Ghana where vaccination has not been officially docu-

mented for at least a decade [39]. Barriers to vaccine uptake such as practices of livestock keep-

ers my also affect coverage [1,40]. However, Ghana faces additional control challenges with the

potential presence of B. cereus biovar (bv) anthracis and West Africa strains (D and E Clades,

respectively [41]). The West African strains have been hypothesized to evade the Sterne vac-

cine, which is the vaccine used in Ghana and throughout much of the world [13,42]. Further

research is needed on vaccine efficacy and to understand what proportion of anthrax out-

breaks are due to either insufficient application methods or the vaccine itself.

Research has suggested that soil pH >6.1 in conjunction with high calcium levels are a cru-

cial component of B. anthracis spore survival [1,4,43]. Alkaline soils were also found to be asso-

ciated with the persistence of anthrax transmission over several years [43,44]. In keeping with

these findings, we identified an increasingly higher likelihood of anthrax occurrence in soils as

pH increased from 5.5 to 7.0 and with an increasing level of calcareous vertisols. The associa-

tion of anthrax suitability with lower levels of precipitation in our model is in line with reports

that have documented soil nutrient leaching in regions with high precipitation, which may

lead to soil acidification [45]. We predicted an area of environmental suitability for anthrax

that encompasses� 36% of Ghana’s total area (Fig 7); this is demarcated by a south (largely

unsuitable) to north (highly suitable) divide, which closely mirrors the ecotone transitions

from southern tropical and deciduous forests to the northern Sudanian and Guinea Savanna.

Our study had several limitations. As with all neglected zoonoses, our data likely represent

an underestimation of the true burden of disease due to underreporting and limited resources

for surveillance and testing. To better address issues with diagnostic testing and reporting we

used a more contemporary dataset of anthrax outbreaks recorded during the last decade.

Anthrax can also be transmitted from contaminated feed that is imported, and animal mortal-

ity may occur from livestock moved across long distances; however, we had no information on

any outbreaks arising in these instances [1,46]. The use of machine learning algorithms to

model the distribution of environmental pathogens has been well described, but such

approaches, by their definition in conjunction with the use of averaged climate data, may

over-generalize the landscape that supports the occurrence of anthrax outbreaks. Other factors

not included in our models that may influence the occurrence of anthrax include the health

and immune status of the livestock [47].

In conclusion, the current anthrax situation in West Africa, and in particular Ghana,

remains a public and veterinary health threat due to challenges with reporting, surveillance,

and control. Our findings suggest that broad areas of northern Ghana are environmentally

Table 4. Rural low income livestock keepers in the Ghanaian anthrax risk zone by livestock production system.

Population at risk [95% CI] (thousands of people)

Estimates ¥LGA LGH MRA MRH MIA

National 71.1 238.9 411.9 2152.9 1.2 [1.1, 1.2]

Modeled 48.6 [34.1, 56.9] 105.4 [65.7, 120.2] 300 [263.6, 325.1] 346.6 [155, 387.5] 0.4 [0.3, 0.4]

¥ Livestock production systems (http://www.fao.org/docrep/014/i2414e/i2414e.pdf)

LGA: Livestock only systems, arid and semi-arid

LGH: Livestock only systems, humid and sub-humid

MRA: Rainfed mixed crop/livestock system, arid and semi-arid

MRH: Rainfed mixed crop/livestock system, humid and sub-humid

MIA: Irrigated mixed crop/livestock systems, arid and semi-arid

https://doi.org/10.1371/journal.pntd.0005885.t004
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suitable for anthrax. Furthermore, based on recent vaccination efforts, our estimates indicate

that only a fraction of livestock at risk are being vaccinated. These findings can be used to help

improve differential diagnostics, vaccine coverage estimates, and surveillance efforts. Given

the reliance on agriculture and the large population of low income rural livestock keepers at

risk in the northern part of the country where predicted suitability was highest, future control

efforts should focus on improving livestock vaccination coverage and public awareness of the

disease, prioritizing communities in the predicted anthrax zone.

Supporting information

S1 Fig. The spatial distribution of environmental variables used in the random forest mod-

els. Variable names are matched to variable descriptions and sources from Table 1.

(TIF)

S2 Fig. Importance plot of variables included in the final ensemble random forest model

prediction. Bars in darker blue represent variables that were more important in discriminating

class prediction.

(TIF)
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