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Abstract

Background

Human African trypanosomiasis (HAT), a lethal disease induced by Trypanosoma brucei

gambiense, has a range of clinical outcomes in its human host in West Africa: an acute form

progressing rapidly to second stage, spontaneous self-cure and individuals able to regulate

parasitaemia at very low levels, have all been reported from endemic foci. In order to test if

this clinical diversity is influenced by host genetic determinants, the association between

candidate gene polymorphisms and HAT outcome was investigated in populations from

HAT active foci in Guinea.

Methodology and results

Samples were collected from 425 individuals; comprising of 232 HAT cases, 79 subjects

with long lasting positive and specific serology but negative parasitology and 114 endemic

controls. Genotypes of 28 SNPs in eight genes passed quality control and were used for an

association analysis. IL6 rs1818879 allele A (p = 0.0001, OR = 0.39, CI95 = [0.24–0.63],

BONF = 0.0034) was associated with a lower risk of progressing from latent infection to

active disease. MIF rs36086171 allele G seemed to be associated with an increased risk

(p = 0.0239, OR = 1.65, CI95 = [1.07–2.53], BONF = 0.6697) but did not remain significant

after Bonferroni correction. Similarly MIF rs12483859 C allele seems be associated with

latent infections (p = 0.0077, OR = 1.86, CI95 = [1.18–2.95], BONF = 0.2157). We confirmed

earlier observations that APOL1 G2 allele (DEL) (p = 0.0011, OR = 2.70, CI95 = [1.49–4.91],
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BONF = 0.0301) is associated with a higher risk and APOL1 G1 polymorphism (p = 0.0005,

OR = 0.45, CI95 = [0.29–0.70], BONF = 0.0129) with a lower risk of developing HAT. No

associations were found with other candidate genes.

Conclusion

Our data show that host genes are involved in modulating Trypanosoma brucei gambiense

infection outcome in infected individuals from Guinea with IL6 rs1818879 being associated

with a lower risk of progressing to active HAT. These results enhance our understanding of

host-parasite interactions and, ultimately, may lead to the development of new control tools.

Author summary

Human African Trypanosomiasis (HAT) known as sleeping sickness is a lethal neglected

disease in West and Central Africa, caused by the parasite Trypanosoma brucei gambiense
that is transmitted by tsetse flies Glossina palpalis gambiensis. The disease has long been

considered to be invariably fatal, but field studies show that T. b. gambiense infection leads

to a wide diversity of clinical outcomes. An acute form progressing rapidly to second

stage; spontaneous self-cure and individuals able to control parasitaemia at very low levels

(latent infections). In the present study, we test for associations between candidate gene

polymorphisms and different HAT phenotypes (HAT confirmed cases, latent infections)

and endemic controls, in order to identify relationships between the clinical diversity and

host genetic determinants. Our results, based on clinical, serological and parasitological

observations, combined with genotypes and association analysis form the most complete

study of host genetic determinants and clinical diversity of HAT in Guinea to date. We

show that host genes are involved in modulating responses in Trypanosoma brucei gam-
biense infected individuals. A new association was found between IL6 rs1818879 and a

reduced risk of progressing from latent infection to active HAT. These results constitute

an important stage toward the identification of the natural human mechanisms involved

in T. b. gambiense infection regulation.

Introduction

Human African trypanosomiasis (HAT) known as sleeping sickness is a neglected disease of

sub-Saharan Africa caused by two sub-species of trypanosomes, Trypanosoma brucei (T. b.)

gambiense (in West and Central Africa) and T. b. rhodesiense (in East and South Africa), with

T. b. gambiense causing > 95% of all cases [1]. In West Africa, Guinea is the country with the

highest prevalence for HAT, especially on the coast [2], where the vector, the tsetse fly Glossina
palpalis gambiensis is abundant [3]. In the active foci of Boffa, Dubreka and Forecariah preva-

lence in humans is generally around 0.5–1%, but can go up to 5% in some villages [1,3,4].

HAT caused by T. b. gambiense is classically described as a chronic disease with an early hae-

molymphatic phase (first stage) associated with nonspecific symptoms such as intermittent

fevers and headaches, followed by a meningoencephalitic phase (second stage) where the para-

site invades the central nervous system (CNS) leading to neurological disorders. In the absence

of treatment, HAT is widely assumed to be 100% fatal. However, asymptomatic carriers and

spontaneous cure without treatment have been described in old [5] and more recent reports
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[6], strengthening the evidence for human trypanotolerance / resistance [7–10]. Indeed, a

recent long-term longitudinal survey in Côte d’Ivoire found people who were initially diag-

nosed by microscopy but on follow-up examination, up to 15 years later, had no detectable

parasitaemia by microscopy, despite not having received treatment [6]. A drop in antibody

titers to seronegative levels was detected in some of these subjects, indicating that they have

self-cured. In contrast, others maintained a long-lasting serological response, being Card

Agglutination Test for Trypanosomiasis (CATT) and trypanolysis (TL) test positive but had

no parasites detectable by microscopy, suggesting that these individuals were able to control

blood parasitaemia at very low levels and were considered as asymptomatic carriers of para-

sites and were classified as latent infections [4,9,11].

Many factors could play a role in this variability of response to infection, and the respective

roles of the virulence of the parasite and host susceptibility in this clinical diversity remain

unclear [12]. It has been suggested that genetic polymorphism of the parasite could be associ-

ated with asymptomatic and very chronic infections [11]. Nevertheless, host genetic factors

involved in the control of immunity could regulate infection levels or mortality rates, as has

been shown for Trypanosoma congolense infections in experimental models [13,14] and also T.

brucei spp in humans [15–20].

Hence, the purpose of the present study was to study the role of single nucleotide polymor-

phisms (SNPs) in IL4, IL6, IL8, IL10, IFNG, APOL1, TNFA, HPR,HLA-G,HLA-A,HP, and

MIF genes on susceptibility/resistance to HAT by means of an association study between HAT

cases, seropositive microscopically aparasitaemic subjects with latent infections, and controls

in order to explore their possible role in human immunity to this complex disease.

Methods

Informed consent and ethics statement

The study was performed as part of medical survey conducted by the national control program

according to the national HAT diagnostic procedures and was approved by the Ministry of

Health in Guinea. All participants were informed about the objective of the study in their own

language and signed an informed consent form. For participants under 18 year of age, a writ-

ten informed consent was obtained from the parent. This study is part of a TrypanoGEN proj-

ect which aims to understand the genetic basis of human susceptibility to trypanosomiasis and

samples were archived in the TrypanoGEN Biobank at CIRDES [21] for which approval was

obtained from the Guinea National ethics committee (1-22/04/2013).

Study population

The study was carried out in three active HAT foci (Dubreka, Boffa, and Forecariah) in the

mangrove areas of coastal Guinea. Most of the population is from the Soussou ethnic group

and lives in small villages scattered along mangrove channels [1,3]. All subjects included in

this study were identified during medical monitoring surveys organized by the National HAT

Control Program (NCP) between November 2007 and December 2013, according to the

WHO and NCP policies described elsewhere [4]. Blood (5 ml) was collected in heparinized

tubes. For individuals who are positive to the CATT (Card Agglutination Test for Trypanoso-

miasis) serological mass screening test, a twofold plasma dilution series was tested to deter-

mine their CATT end titer. All individuals with titers of 1/4 or greater were submitted to

microscopic examination of lymph node aspirates whenever swollen lymph nodes were pres-

ent; 350 ml of buffy coat was then examined by using the mini-anion exchange column

(mAECT) test which has shown to have a threshold of detection of 10 trypanosomes ml-1 of

blood [3,22]. Samples that were CATT negative, CATT positive with lymph node and/or buffy
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coat negative for trypanosomes were all subject to the immune trypanolysis test (TL), which is

a serological test that is highly specific for T. b. gambiense [23]. 425 individuals were selected

according to the study inclusion criteria below.

Phenotype definitions

Samples were classified into three phenotypes: (1) Cases or active HAT patients are defined as

subjects presenting as positive on both serological tests (CATT and TL) and parasitological

tests (mAECT and/or examination of cervical lymph juice aspirates); (2) latent infections have

CATT plasma dilution end titer 1/4 or higher; TL positive and are parasitology negative and

maintain this phenotype for at least two years; (3) endemic controls who have serology (CATT

and TL) negative and living in the same village as a HAT patient and/or a seropositive subject.

All individuals live in the same area and had been exposed to the risk of infection since birth

[21].

Study design

This study was one of six studies of populations of HAT endemic areas in DRC, Cameroon,

Cote d’Ivoire, Guinea, Malawi and Uganda. The studies were designed to have 80% power to

detect odds ratios (OR) >2 for loci with disease allele frequencies of 0.15–0.65 with the 80

SNPs genotyped. The study design included a total of 425 samples: 232 HAT cases, 79 seropos-

itive and 114 uninfected or endemic controls. Power calculations were undertaken using the

genetics analysis package gap in r [24].

DNA extraction

DNA was extracted from buffy coat (BC) samples using the Qiagen DNA extraction kit

(QIAamp DNA Blood Midi Kit) following the instructions of the manufacturer. The DNA

extract was stored at -20˚C. After extraction each DNA sample was quantified on a spectro-

photometer (NanoDrop).

Single Nucleotide Polymorphisms (SNPs) selection

80 SNP were selected for genotyping using two strategies: 1) specific SNP in IL10, TNFA,

HLA-A,HLA-G, APOL1,MIF,HPR andHP had been previously reported to be associated with

HAT or 2) IL4, IL8, IL6,HLA-G and IFNGwere scanned for sets of linked marker SNP (r2 <

0.5) across each gene. The SNPs in this second group of genes were selected using a merged set

of SNP obtained from low fold coverage (8-10x) whole genome shotgun data generated from

230 residents living in regions (Democratic Republic of Congo, Guinea Conakry, Ivory Coast

and Uganda) where trypanosomiasis is endemic (TrypanoGEN consortium, European Nucle-

otide Archive Study Number EGAS00001002482) and 1000 Genomes Project data from Afri-

can populations, only published SNP with dbSNP identifiers were used in the design. Linkage

(r2) between loci was estimated using Plink and sets of SNP that covered the gene were identi-

fied. Some SNP loci were excluded during assay development or failed to genotype and were

not replaced.

Genotyping

Samples were submitted to Plateforme Genome Transcriptome de Bordeaux at INRA Site de

Pierroton. Multiplex design (two sets of 40 SNPs) was performed using Assay Design Suite

v2.0 (Agena Biosciences). SNP genotyping was achieved with the iPLEX Gold genotyping kit

(Agena Biosciences) for the MassArray iPLEX genotyping assay, following the manufacturer’s
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instructions. Products were detected on a MassArray mass spectrophotometer and data were

acquired in real time with MassArray RT software (Agena Biosciences). SNP clustering and

validation was carried out with Typer 4.0 software (Agena Biosciences). APOL1 rs71785313

SNP was genotyped again by LGC Genomics, Hoddesden, United Kingdom, using the PCR

based KASP assay [25].

Statistical analysis

Plink v1.9 [26] was used for statistical analysis, allele frequencies were analyzed by simple allele

counting and the R 3.3.1 software package was used for data visualization (R Foundation for

Statistical Computing, Vienna Austria). For quality control and filtering, SNPs loci with miss-

ing genotypes > 10% and individuals with missing loci > 10% were removed. In addition

SNPs with Hardy equilibrium (HWE) p< 0.001, minor allele frequency MAF < 0.05, SNPs in

linkage with adjacent SNPs (r2 > 0.5) and monomorphic loci were also pruned [27]. 28 SNPs

were remaining after filtering and LD pruning and were used to test association with the dis-

ease. Association analysis’s were done using pairwise comparison between cases-controls,

cases-latent infections and latent infections-controls. The Fisher exact test was used to test for

significant differences in allele frequencies between phenotypes. We also tested for association

with disease under additive model allowing for non-genetic risk factors “sex and age”. Odds

ratio for the minor allele A1, and p-value for association, were adjusted for age and sex. In all

analysis, results were adjusted by Bonferroni correction for multiple comparisons. The Bonfer-

roni correction establishes the threshold of significance at α/n. P-values smaller than 0.05/

28 = 0.0018 or an adjusted p-value <0.05 were considered significant.

Results

Genes and SNPs selected

In total 12 candidate genes that have known or plausible associations with HAT were identi-

fied from the literature. 80 SNPs were identified 17 inHLA-G, 2 inHLA-A, 2 inHPR, 10 in

IFNG, 16 in IL4, 12 in IL6, 6 in IL8, 1 in IL10, 8 inMIF, 3 in TNFA, 1 inHP and 2 in APOL1. 28

of these 80 SNPs remained after quality control and linkage pruning and were used for associa-

tion analysis (Table 1). These SNPs are in HWE, MAF > 5% and LD r2 < 0.5. SNPs with allele

Table 1. SNPs remaining after quality control and LD pruning.

CHR Genes SNPs selected SNPs pass filtered

1 IL10 1 0

4 IL8 6 4

5 IL4 16 3

6 HLAG 17 2

6 TNFA 3 2

6 HLAA 2 0

7 IL6 12 6

12 IFNG 10 5

16 HPR 2 0

16 HP 1 1

22 MIF 8 3

22 APOL1 2 2

Total 12 80 28

CHR: Chromosome number, SNP: single nucleotide polymorphism

https://doi.org/10.1371/journal.pntd.0005833.t001
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frequencies that deviated from HWE were removed. The allelic and minor allele carrier fre-

quencies are shown in Tables 2–4, along with the results of the association test.

Association study

The APOL1 rs73885319 polymorphism is one part of a two SNP haplotype, with derived alleles

designated “G1” composed of two tightly linked coding variants rs73885319 (S342G) and

rs60910145 (I384M) non-synonymous in the last exon of APOL1. The derived allele of

rs71785313 called APOL1G2 APOL1 is a 6 base pair deletion, removing amino acids N388 and

Y389. Wild type APOL1 is known as G0. APOL1 alleles G1 and G2 are independent [28]. The

distribution of APOL1G1 and APOL1G2 in the present study were significantly different in

latent infections compared to both cases and controls (Tables 3 and 4). The APOL1G2 allele

carriers had a higher risk of developing HAT after infection by T. b. gambiense than the

APOL1G0 individuals (p = 0.0011, OR = 2.70, CI95 = [1.49–4.91], BONF = 0.0301). Subjects

Table 2. Association analysis between HAT cases and controls.

CHR Genes SNP BP A1 A2 P BONF FDR_BH FRD_BY OR CI95 HWE FST

4 IL8 rs114259658 74605639 A T 0.7973 1 0.9408 1 1.08 0.59–2.00 0.4410 -0.00361

4 IL8 rs2227307 74606669 T G 0.2343 1 0.5468 1 0.81 0.57–1.15 0.1314 0.00104

4 IL8 rs2227545 74608727 C A 0.1212 1 0.4848 1 1.63 0.88–3.01 1 0.00288

4 IL8 rs58478511 74610033 A G 0.4888 1 0.8235 1 1.14 0.78–1.66 0.8098 -0.00218

5 IL4 rs2243261 132012806 T G 0.1736 1 0.4860 1 0.75 0.49–1.14 0.4260 0.00326

5 IL4 rs2243283 132016593 G C 0.5212 1 0.8235 1 0.87 0.56–1.34 0.2041 -0.00405

5 IL4 rs9282745 132014000 A T 0.9918 1 0.9918 1 1.00 0.57–1.74 0.0706 -0.00265

6 HLAG rs1610696 29798803 G C 0.9145 1 0.9849 1 0.98 0.67–1.44 0.0016 -0.00398

6 HLAG rs2517898 29799746 G C 0.6884 1 0.9178 1 0.93 0.64–1.34 0.1739 -0.00054

6 TNFA rs1800629 31543031 A G 0.8156 1 0.9408 1 1.06 0.66–1.71 0.2207 -0.00108

6 TNFA rs1800630 31542476 A C 0.2117 1 0.5388 1 1.47 0.80–2.67 1 -0.00044

7 IL6 rs1474347 22768124 C A 0.0941 1 0.4393 1 1.91 0.90–4.08 1 0.00671

7 IL6 rs1548216 22769773 C G 0.2988 1 0.6025 1 1.28 0.81–2.02 1 0.00392

7 IL6 rs1818879 22772727 A G 0.1698 1 0.4860 1 0.71 0.43–1.16 0.4504 0.00487

7 IL6 rs2066992 22768249 T G 0.5336 1 0.8235 1 0.82 0.45–1.52 1 -0.00152

7 IL6 rs2069837 22768027 G A 0.0871 1 0.4393 1 0.64 0.38–1.07 0.1147 0.00977

7 IL6 rs2069855 22772624 C T 0.3012 1 0.6025 1 1.41 0.74–2.70 1 -0.00041

12 IFNG rs2069705 68555011 A G 0.9559 1 0.9913 1 1.01 0.72–1.41 0.3431 -0.00206

12 IFNG rs2069722 68548953 A G 0.5588 1 0.8235 1 1.25 0.59–2.62 1 -0.00184

12 IFNG rs2069728 68547784 T C 0.8400 1 0.9408 1 1.04 0.71–1.51 0.3854 -0.00327

12 IFNG rs2430561 68552522 A T 0.1464 1 0.4860 1 1.56 0.86–2.86 0.5307 0.00438

12 IFNG rs78554979 68554636 C T 0.0449* 1 0.4393 1 0.55 0.31–0.99 0.2102 0.00940

16 HP rs8062041 72088964 T C 0.6853 1 0.9178 1 1.07 0.76–1.51 0.6999 -0.00300

22 APOL1 rs71785313 36661916 DEL INSERT 0.5324 1 0.8235 1 1.15 0.74–1.79 0.3534 -0.00147

22 APOL1 rs73885319 36661906 G A 0.7318 1 0.9314 1 0.92 0.59–1.45 1 -0.00325

22 MIF rs12483859 24234807 C T 0.0807 1 0.4393 1 1.38 0.96–1.98 0.1429 0.00610

22 MIF rs34383331 24238079 A T 0.0914 1 0.4393 1 0.67 0.42–1.07 1 0.00581

22 MIF rs36086171 24235455 G A 0.0239* 0.6697 0.4393 1 1.65 1.07–2.53 0.3772 0.02344

CHR: Chromosome number, SNP: single nucleotide polymorphism, BP: Physical position (base-pair in GRCh37), A1: Minor allele name, A2: Major allele

name, P: Exact p-value, BONF: Bonferroni corrected p-value, FDR: false discovery rate, OR: Estimated odds ratio (for A1), CI95: 95% confidence interval,

HWE: Hardy-Weinberg Equilibrium p-value

* P-value significant; DEL: deletion of 6 base pair; INSER: insertion of 6 base pair.

https://doi.org/10.1371/journal.pntd.0005833.t002
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carrying the APOL1G1 (p = 0.0005, OR = 0.45, CI95 = [0.29–0.70], BONF = 0.0129) had an

increased risk of developing a latent infection but reduced risk of progressing from latent

infection to active HAT than APOL1G0 (Table 3).

An association was observed at IL6 rs1818879 (Fig 1), indicating that subjects with latent

infections carrying the A allele had a lower risk of progressing to active HAT (p = 0.0001,

OR = 0.39, CI95 = [0.24–0.63], BONF = 0.0034) (Table 3).

The distribution of theMIF rs36086171 G allele differed between cases and controls

(BONF = 0.6697, p = 0.0239, OR = 1.65, CI95 = [1.07–2.53]), andMIF rs12483859 C allele

between latent infections and Controls (BONF = 0.2157, p = 0.0077, OR = 1.86, CI95 = [1.18–

2.95]) but these did not remain significant after Bonferroni correction (Tables 2 and 4).

Table 3. Association analysis between HAT cases and latent infection groups.

CHR Genes SNP BP A1 A2 P BONF FDR_BH FRD_BY OR CI95 HWE FST

4 IL8 rs114259658 74605639 A T 0.7133 1 0.8628 1 0.89 0.47–1.68 0.4410 -0.00384

4 IL8 rs2227307 74606669 T G 0.4650 1 0.7931 1 1.15 0.79–1.66 0.1314 -0.00118

4 IL8 rs2227545 74608727 C A 0.5518 1 0.7931 1 1.20 0.65–2.22 1 -0.00332

4 IL8 rs58478511 74610033 A G 0.4429 1 0.7931 1 0.86 0.59–1.26 0.8098 0.00058

5 IL4 rs2243261 132012806 T G 0.9303 1 0.9306 1 0.98 0.62–1.55 0.4260 -0.00450

5 IL4 rs2243283 132016593 G C 0.5761 1 0.7931 1 0.88 0.55–1.39 0.2041 -0.00504

5 IL4 rs9282745 132014000 A T 0.5372 1 0.7931 1 1.24 0.63–2.46 0.0706 -0.00376

6 HLAG rs1610696 29798803 G C 0.7436 1 0.8628 1 1.08 0.69–1.69 0.0016 -0.00462

6 HLAG rs2517898 29799746 G C 0.5946 1 0.7931 1 1.12 0.75–1.66 0.1739 -0.00272

6 TNFA rs1800629 31543031 A G 0.9306 1 0.9306 1 1.02 0.61–1.72 0.2207 -0.00388

6 TNFA rs1800630 31542476 A C 0.5948 1 0.7931 1 1.19 0.63–2.23 1 -0.00240

7 IL6 rs1474347 22768124 C A 0.7960 1 0.8628 1 1.10 0.54–2.21 1 -0.00380

7 IL6 rs1548216 22769773 C G 0.5169 1 0.7931 1 1.17 0.72–1.90 1 -0.00117

7 IL6 rs1818879 22772727 A G 0.0001* 0.0034** 0.004 0.0133 0.39 0.24–0.63 0.4504 0.08256

7 IL6 rs2066992 22768249 T G 0.1921 1 0.6455 1 0.66 0.36–1.23 1 0.00583

7 IL6 rs2069837 22768027 G A 0.8012 1 0.8628 1 1.08 0.60–1.93 0.1147 -0.00391

7 IL6 rs2069855 22772624 C T 0.3414 1 0.7931 1 1.41 0.70–2.85 1 -0.00194

12 IFNG rs2069705 68555011 A G 0.4609 1 0.7931 1 0.87 0.61–1.25 0.3431 -0.00382

12 IFNG rs2069722 68548953 A G 0.2072 1 0.6455 1 1.80 0.72–4.50 1 0.00331

12 IFNG rs2069728 68547784 T C 0.7288 1 0.8628 1 1.07 0.72–1.60 0.3854 -0.00384

12 IFNG rs2430561 68552522 A T 0.4592 1 0.7931 1 0.81 0.47–1.41 0.5307 -0.00261

12 IFNG rs78554979 68554636 C T 0.0762 1 0.4264 1 0.57 0.31–1.06 0.2102 0.00916

16 HP rs8062041 72088964 T C 0.3551 1 0.7931 1 1.19 0.82–1.73 0.6999 -0.00340

22 APOL1 rs71785313 36661916 DEL INSERT 0.0011* 0.0301** 0.0100 0.0394 2.70 1.49–4.91 0.3534 0.04098

22 APOL1 rs73885319 36661906 G A 0.0005* 0.0129** 0.0065 0.0254 0.45 0.29–0.70 1 0.05137

22 MIF rs12483859 24234807 C T 0.1643 1 0.6455 1 0.77 0.54–1.11 0.1429 0.00376

22 MIF rs34383331 24238079 A T 0.0673 1 0.4264 1 0.64 0.40–1.03 1 0.00985

22 MIF rs36086171 24235455 G A 0.2075 1 0.6455 1 1.32 0.86–2.02 0.3772 0.00459

CHR: Chromosome number, SNP: single nucleotide polymorphism, BP: Physical position (base-pair in GRCh37), A1: Minor allele name, A2: Major allele

name, P: Exact p-value, BONF: Bonferroni corrected p-value, FDR: false discovery rate, OR: Estimated odds ratio (for A1), CI95: 95% confidence interval,

HWE: Hardy-Weinberg Equilibrium p-value

* P-value significant

** Bonferroni correction significant

DEL: deletion of 6 base pair

INSER: insertion of 6 base pair.

https://doi.org/10.1371/journal.pntd.0005833.t003
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No statistically significant differences were observed in allele frequency for the polymor-

phisms of other genes (IL4, IL8,HLA-G, TNFA, HP, IFNG andMIF) between cases and con-

trols; cases and latent infection or latent infection and controls in all the analyses.

Discussion

Association analysis’s undertaken in this study allow us to investigate genetic associations of

candidate genes polymorphisms with HAT in a Guinean population.

The main findings of our study are that the A allele of IL6 rs1818879 and the G allele of

APOL1G1 appear to be associated with a higher risk of developing a latent infection but a

lower risk of progressing from latent infection with undetectable parasitaemia to active disease.

These alleles thus seem to provide some degree of protection for individuals with latent

Table 4. Association analysis between latent infection and controls groups.

CHR Genes SNP BP A1 A2 P BONF FDR_BH FRD_BY OR CI95 HWE FST

4 IL8 rs114259658 74605639 A T 0.6168 1 0.9090 1 1.22 0.57–2.62 0.4410 -0.00351

4 IL8 rs2227307 74606669 T G 0.0728 1 0.3402 1 0.67 0.43–1.04 0.1314 0.01008

4 IL8 rs2227545 74608727 C A 0.4602 1 0.8088 1 1.31 0.64–2.69 1 -0.00240

4 IL8 rs58478511 74610033 A G 0.1492 1 0.5455 1 1.39 0.89–2.17 0.8098 0.00690

5 IL4 rs2243261 132012806 T G 0.2078 1 0.5818 1 0.71 0.42–1.21 0.4260 -0.00060

5 IL4 rs2243283 132016593 G C 0.9907 1 0.9907 1 1.00 0.59–1.70 0.2041 -0.00552

5 IL4 rs9282745 132014000 A T 0.4863 1 0.8088 1 0.77 0.38–1.59 0.0706 -0.00246

6 HLAG rs1610696 29798803 G C 0.6677 1 0.9337 1 0.90 0.56–1.45 0.0016 -0.00503

6 HLAG rs2517898 29799746 G C 0.2517 1 0.6407 1 0.76 0.48–1.21 0.1739 0.00193

6 TNFA rs1800629 31543031 A G 0.8195 1 0.9337 1 1.07 0.61–1.87 0.2207 -0.00452

6 TNFA rs1800630 31542476 A C 0.8519 1 0.9337 1 1.07 0.53–2.17 1 -0.00547

7 IL6 rs1474347 22768124 C A 0.1617 1 0.5455 1 1.87 0.78–4.50 1 0.00398

7 IL6 rs1548216 22769773 C G 0.8231 1 0.9337 1 1.07 0.61–1.86 1 -0.00433

7 IL6 rs1818879 22772727 A G 0.0091* 0.2542 0.0636 0.2496 2.06 1.20–3.56 0.4504 0.02987

7 IL6 rs2066992 22768249 T G 0.3577 1 0.8088 1 1.39 0.69–2.78 1 -0.00258

7 IL6 rs2069837 22768027 G A 0.1754 1 0.5455 1 0.65 0.35–1.21 0.1147 0.00748

7 IL6 rs2069855 22772624 C T 0.8764 1 0.9337 1 1.07 0.46–2.51 1 -0.00504

12 IFNG rs2069705 68555011 A G 0.3858 1 0.8088 1 1.21 0.78–1.88 0.3431 -0.00064

12 IFNG rs2069722 68548953 A G 0.4910 1 0.8088 1 0.69 0.24–1.97 1 -0.00276

12 IFNG rs2069728 68547784 T C 0.7634 1 0.9337 1 0.93 0.58–1.49 0.3854 -0.00473

12 IFNG rs2430561 68552522 A T 0.0729 1 0.3402 1 1.89 0.94–3.80 0.5307 0.01195

12 IFNG rs78554979 68554636 C T 0.9004 1 0.9337 1 0.96 0.49–1.89 0.2102 -0.00468

16 HP rs8062041 72088964 T C 0.5508 1 0.8569 1 0.88 0.58–1.33 0.6999 -0.00241

22 APOL1 rs71785313 36661916 DEL INSERT 0.0070* 0.1973 0.0636 0.2496 0.39 0.20–0.78 0.3534 0.02888

22 APOL1 rs73885319 36661906 G A 0.0056* 0.1570 0.0636 0.2496 2.09 1.24–3.53 1 0.03883

22 MIF rs12483859 24234807 C T 0.0077* 0.2157 0.0636 0.2496 1.86 1.18–2.95 0.1429 0.03028

22 MIF rs34383331 24238079 A T 0.8246 1 0.9337 1 1.06 0.62–1.81 1 -0.00513

22 MIF rs36086171 24235455 G A 0.4467 1 0.8088 1 1.24 0.72–2.13 0.3772 -0.00240

CHR: Chromosome number, SNP: single nucleotide polymorphism, BP: Physical position (base-pair in GRCh37), A1: Minor allele name, A2: Major allele

name, P: Exact p-value, BONF: Bonferroni corrected p-value, FDR: false discovery rate, OR: Estimated odds ratio (for A1), CI95: 95% confidence interval,

HWE: Hardy-Weinberg Equilibrium p-value

* P-value significant

DEL: deletion of 6 base pair

INSER: insertion of 6 base pair.

https://doi.org/10.1371/journal.pntd.0005833.t004
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infections, providing the ability to maintain infection levels that are undetectable by micros-

copy. However, the APOL1G2 allele increased the risk of progressing from latent infection to

active HAT. The associations with the APOL1G1 and G2 polymorphisms confirm our previ-

ous observations of these SNPs with a more limited sample [20], they were genotyped again in

this study as part of the larger multi-country TrypanoGEN consortium study, on an extensive

sample from Guinea. Cooper et al. found an association between G2 and HAT and Controls in

T. b. rhodesiense in Uganda [20].

APOL1 is a component of the trypanosome lytic factor (TLF) of human serum that confers

resistance to T. b. brucei [29,30]. APOL1forms pores in the parasite endolysosomal membranes

and triggers lysosome swelling which leads to trypanolysis [31]. APOL1 expression is also

induced by T. b. gambiense infection enhancing its lytic activity [32]. African trypanosomes,

except T. b. gambiense and T. b. rhodesiense are lysed by APOL1. These two subspecies can

resist lysis by APOL1 because they express the serum resistance glycoprotein (TgsGP) and

serum resistance-associated protein (SRA), respectively [33–35]. T. b. rhodesiense SRA inhibits

APOL1 by direct binding but TgsGP acts by limiting uptake of APOL1. T. b. gambiense (group

1) also can resist TLF-1 killing because coding sequence mutations to the TbgHpHbR, reduce

expression of Hp/Hb receptor and limit TLF-1 uptake [36]. The mode of action of G1 is

unknown but the G2 mutation limits binding of SRA to APOL1 and should therefore make

APOL1 G2 lytic to T. b. rhodesiense but this mechanism could not effect T. b. gambiense, which

does not have the SRA gene [28,37]. In this study, we found that the 6 base pair deletion in

APOL1G2 is risk factor for developing an active T. b. gambiense infection from a latent

infection.

IL6 rs1818879 A allele carriers had a lower risk of developing the disease. rs1818879 appears

to fall within a CCCTC-Binding factor (CTCF) binding site and GTEx reports rs1818879 as an

eQTL for AC073072, a novel antisense RNA gene within IL6 on the opposite strand about

which little is known [38]. CTCF is a zinc finger protein that can be involved in activation or

repression of gene expression and the disruption of this binding site may account for the

eQTL associated with AC073072 [39]. Although the mechanism remains unclear, these data

suggest that rs1818879 may be a functional polymorphism and not just a marker for differ-

ences in response to infection.

It has been shown that IL6 could play a role on the modification of blood brain barrier per-

meability in vitro together with other pro-inflammatory cytokines such as IL1 and TNFA in

blood and/or in CNS [40]. IL6 plasma levels were found to be significantly higher in individu-

als with latent infection from Guinea as compared to controls or HAT patients [17]. Girard

and al. (2005) showed that IL6 synthesis was induced in bone marrow by T. b. gambiense in
vitro [41]. Therefore, Il6 appears as an important inflammatory cytokine mediating T. b. gam-
biense response and suggest that IL6 could play a role in the phenomenon of latent infections

without parasitological confirmation. The result obtained with IL6 rs1818879 in our study is

consistent with the data from a candidate gene association study in DRC, where rs2069849 in

IL6was shown to be associated with a decreased risk of developing the disease [16].

Fig 1. Schematic of single nucleotide polymorphisms of Interleukin-6 selected from 2,000bp up and downstream (5’ and 3’) of the transcript

region.

https://doi.org/10.1371/journal.pntd.0005833.g001
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Our data show that the frequency of the Gminor allele ofMIF rs36086171 was higher in

cases than in controls (uncorrected p = 0.0239, OR = 1.65, CI95 = [1.07–2.53]) andMIF
rs12483859 C allele in latent infections than in controls (uncorrected p = 0.0077, OR = 1.86,

CI95 = [1.18–2.95]). MIF is an important component of the host response implicated in the

antimicrobial response and promotes the secretion and activation of pro-inflammatory cyto-

kines, by immune cells [42,43]. Low expression ofMIF has been described as favoring infec-

tion and disease progression in leishmaniasis [44]. We did not find a significant difference

after correction (BONF = 0.0588), but it is known that this gene can contribute to disease

development in a mice experimental model [45].

In conclusion, this study provides further evidence that the clinical diversity of sleeping sick-

ness is partly due to the genetic diversity of the hosts. Our data demonstrate that the outcome of

the disease is affected by three polymorphisms (APOL1G1, G2 and IL6 rs1818879) in the Guin-

ean population. This study was performed in the framework of the TrypanoGEN consortium to

systematically investigate the role of host genetics in disease susceptibility and progression

across East and West African populations. Further studies need to be conducted to confirm

these results and to determine the mechanisms by which these alleles affect disease progression

and outcome in HAT and could lead to the discovery of human natural resistance mechanisms

and thus to the development of new tools for the control of this neglected tropical disease.
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