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Abstract

Although cholera is a major public health concern in Mozambique, its transmission patterns

remain unknown. We surveyed the genetic relatedness of 75 Vibrio cholerae isolates from

patients at Manhiça District Hospital between 2002–2012 and 3 isolates from river using

multilocus variable-number tandem-repeat analysis (MLVA) and whole genome sequencing

(WGS). MLVA revealed 22 genotypes in two clonal complexes and four unrelated geno-

types. WGS revealed i) the presence of recombination, ii) 67 isolates descended monophy-

letically from a single source connected to Wave 3 of the Seventh Pandemic, and iii) four

clinical isolates lacking the cholera toxin gene. This Wave 3 strain persisted for at least eight

years in either an environmental reservoir or circulating within the human population. Our

data raises important questions related to where these isolates persist and how identical iso-

lates can be collected years apart despite our understanding of high change rate of MLVA

loci and the V. cholerae molecular clock.

Author summary

Cholera is a deadly disease caused by the bacterium Vibrio cholerae. The ancestral home

of cholera is around the Bay of Bengal, but recently cholera has moved to Africa. In Africa,

cholera occurs in sporadic outbreaks. In order prevent cases of cholera, we want to under-

stand the transmission of cholera in Africa, does it stay in one place or does it move

around. To gain insight into these questions, we have examined the DNA of the bacteria.

The DNA provides a identity for each isolate and we can infer how the isolates are related
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to each other based on the number and type of DNA changes. In our study, we examined

the DNA of cholera isolates from southern Mozambique. We were surprised how similar

all the Mozambique isolates were even though that were collected up to eight years apart.

Based on previous work, we would have expected much more change in the DNA. Our

data raises several important questions that relate to where these cholera isolates persist,

possibly in local refuges, and how seemingly identical isolates can be collected years apart

despite our understanding of the high rate of change of the molecular clock.

Introduction

Cholera remains a public health concern in developing countries with an estimated burden of

1.2–4.3 million cases and 28,000–142,000 deaths per year, worldwide [1]. South Asia and sub-

Saharan Africa account with the majority of cases and deaths. Between 01 January and 03 June

2013, a total of 25,762 cholera cases and 490 deaths were reported from 18 African countries.

Mozambique accounted for 7% (1,861/25,762) of cases and 4% (19/490) of deaths, being the

third most affected country after the Democratic Republic of the Congo and Angola [2]. The

most recent cholera outbreak in Mozambique started in December 2014 in Nampula [3],

where there were 8,835 cases with case fatality rate of 0.7% (65 deaths) in 5 northern and cen-

tral provinces in five months [4,5]. The most recent cholera outbreak in the south was reported

in 2011 [6]. The peak of a cholera epidemic is often preceded by increasing prevalence of the

pathogenic strains in the environment [7] where V. cholerae are harbored in aquatic reservoirs

during extended periods between outbreaks [8].

Vibrio cholerae O1 is associated with most epidemic and pandemic outbreaks [9]. Whole

genome sequence (WGS) analysis of V. cholerae isolates from around the world [9–12] demon-

strated that the current (Seventh) Pandemic is monophyletic and originated from a single

source with a clonal expansion of the lineage, with a strong temporal signature [13]. The sev-

enth pandemic has been divided into 3 waves beginning in 1952, 1981 and 1988, respectively

[13]. Each wave appears to be a selective sweep, as was the second wave of V. cholerae that

swept across Haiti after the initial introduction [14]. In Africa, isolates from all three waves

have been identified [13] with wave 3 isolates forming two distinct clades in Kenya between

2005 to 2010 [15].

The epidemiology and transmission patterns of outbreaks of V. cholerae have been explored

using both multilocus variable number tandem repeat analysis (MLVA) and WGS [13,16]. In

rural Bangladesh, MLVA revealed that multiple genetic lineages of V. cholerae occur naturally

in the environment with geographic and seasonal genetic variation and identical genotypes

can be found in the environment and humans [12]. In Kenya, MLVA demonstrated that sev-

eral distinct genetic lineages emerged simultaneously during outbreaks in a single cholera sea-

son, linked to local environmental reservoirs [17]. WGS revealed all lineages were part of the

Seventh Pandemic expansion [15]. In central and western Africa, MLVA revealed distinct clus-

ters of isolates from different countries: Democratic Republic of the Congo, Zambia, Togo,

and Guinea [18]. A second study in Guinea demonstrated spread and differentiation of V. cho-
lerae during an outbreak [19].

In Mozambique, previous analysis of V. cholerae O1 showed these isolates had the typical

traits of the El Tor biotype overall except that they carried a tandem array of classical CTX pro-

phage [20] located on the small chromosome [21,22]. However, there are no data available on

the genetic relatedness of V. cholerae circulating in Manhiça in southern Mozambique. Here,

we characterized clinical and environmental V. cholerae isolates from Mozambique using
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MLVA and WGS to determine the genetic relatedness of strains isolated from patients with

diarrhea in Manhiça District Hospital.

Methodology

Site description

Manhiça District Hospital (MDH) is a 110 bed referral health facility for Manhiça District, a

rural area of Maputo Province in southern Mozambique. The characteristics of the area have

been described in detail elsewhere [23,24]. Briefly, the climate is subtropical with two distinct

seasons: a warm, rainy season between November and April, and a cool and dry season during

the rest of the year. Manhiça has 160,000 inhabitants, who are mostly subsistence farmers or

workers in two large sugar- and fruit-processing factories. The Manhiça Health Research Cen-

tre (Centro de Investigação em Saúde da Manhiça[CISM]) is adjacent to the MDH and has

been conducting continuous demographic surveillance for vital events and migrations since

1996 [23], currently covering 165,000 individuals.

Ethics statement

The strain collection of V. cholerae described in the study was isolated from cholera surveil-

lance and other studies conducted in the Manhiça community by CISM approved by the

National BioEthic Committee (CNBS). Any and all patient data were anonymized/de-identi-

fied. The IRB at University of Maryland School of Medicine approved the use of anonymized

strains.

Bacterial isolates

A total of 75 V. cholerae isolates were collected from MDH, between 2002 and 2012. The

strains were isolated from stool of patients admitted to the MDH with suspicion of cholera,

presenting with watery diarrhea. In addition, three isolates collected from the Incomati River

were included. V. cholerae isolates were identified by standard biochemical tests; and con-

firmed by API-20E biochemical test strips (bioMérieux SA, Marcy-l’Etoile, France). Serotypes

were determined using commercially available poly- and mono-clonal slide agglutination anti-

sera (Mast Group Ltd., Merseyside, UK) according to the manufacturer’s instructions. All the

isolates were stored at -80˚C in tryptone soya broth (TSB) with 15% glycerol, and retrieved at

the time for molecular characterization.

Preparation of bacterial DNA

A pure culture of V. cholerae was plated in Thiosulfate Citrate Bile Sucrose (TCBS) agar and

incubated overnight at 37˚C. DNA was extracted using the Qiagen QIAamp DNA Mini Kit

(Hilden, Germany). The DNA template was sent to the University of Maryland Baltimore, Bal-

timore, Maryland, USA for molecular typing by MLVA and WGS.

MLVA

DNA from each isolate was amplified by PCR using the conditions and primers previously

described for 5 loci containing variable length tandem repeats [11]. The amplified products

were separated and detected using a model 3730xl Automatic Sequencer (ABI) and their sizes

were determined using internal lane standards (Liz600; ABI, Foster City, CA) with the Gene

Mapper v4.0 program (ABI). Genotypes were determined according to the published formulas

to calculate the number of repeats from the length of each allele and identify the alleles at the 5

loci [11]. The 5 loci, in order, are VC0147, VC0436–7 (intergenic), VC1650, VCA0171, and
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VCA0283; thus, the genotype 9,4,6,19,11 indicates that the isolate has alleles of 9, 4, 6, 19, and

11 repeats at the 5 loci, respectively. Relatedness of the strains was assessed by eBURSTv3

(http://eburst.mlst.net), in which genetically related genotypes were defined as those possess-

ing at least 4 identical alleles of the 5 loci. An alternative analysis was performed using Network

2.x (http://www.fluxus-engineering.com/sharefaq.htm).

Whole genome sequencing

The DNA concentration was quantified by NanoDrop 2000 Spectrophotometer (Thermofisher

Scientific, Waltham, MA, USA) and only specimens with sufficient concentration (n = 71)

were submitted to WGS. DNA was prepared for Illumina sequencing using the KAPA High

Throughput Library Preparation Kit (KapaBiosystems, Wilmington, MA). DNA was frag-

mented with the Covaris E210. Libraries were prepared using a modified version of manufac-

turer’s with-bead protocol (KapaBiosystems, Wilmington, MA). The libraries were enriched

and barcoded by ten cycles of PCR amplification step with primers containing an index

sequence seven nucleotides in length. The libraries were sequenced on a 100 bp paired-end

run on an Illumina HiSeq2500 (Illumina, San Diego, CA).

The quality of the 101-base paired-end reads was confirmed using Fastqc (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/). Kmergenie (http://kmergenie.bx.psu.edu/)

was used for choice of the best peak and the assembly was performed using the SPAdes soft-

ware [25]. CSI Phylogeny 1.0a (http://cge.cbs.dtu.dk/services/CSIPhylogeny/) was used to gen-

erate a tree of genetic relatedness based on high quality nucleotide variants and then compared

to V. cholerae O1 El Tor reference strain N16961 (NCBI accession numbers AE003852 and

AE003853). Splitstree [26] was used to determine networks. Previous work in our lab demon-

strated that this pipeline produces identical results to SMALT [27].

A high resolution SNP based phylogeny for the 67 7th pandemic strains was placed in con-

text of a globally representative collection of 274 isolates (S1 Table) by mapping the reads to

the V. cholerae 01 El Tor reference N16961 using SMALT (http://www.sanger.ac.uk/resources/

software/smalt) as previously described [28]. Gubbins [29] was used to simultaneously remove

regions of high SNP density and putative recombination sites in the alignment and infer the

phylogenetic tree. The pre-seventh pandemic strain M66 (NCBI accession numbers CP001233

and CP001234) was used to root the phylogenetic tree.

To accurately place the four non-01 V. cholerae into a phylogenetic context we calculated a

core genome alignment of 1093 genes (1,055,747 bp) using Roary [30] from a set of diverse V.

cholerae genomes along with genomes of the closely related species Vibrio metoecus and Vibrio
parilis. The resulting alignment was used to reconstruct the phylogenetic relationship using

RAxML v. 7.8.6 [31] under the GTR model with 100 bootstrap replicates. The resulting phylo-

genetic trees were visualized using FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

Results

Among the 78 isolates (Table 1), 26 distinct genotypes were identified by MLVA using all five

VNTR loci. The numbers of distinct alleles at loci VC0147, VC0437, VC1650, VCA0171, and

VCA0283 were 10, 2, 4, 7 and 7, respectively.

Two clonal complexes of genetically related genotypes (each complex comprising genotypes

that differed by an allelic change at a single locus) and four singleton genotypes unrelated to

any other (differed by�2 loci) were identified (Fig 1). The first clonal complex (CC1) con-

sisted of twenty of the twenty-six genotypes and comprised 91% (71/78) of the isolates (includ-

ing all 3 isolates from river water). In CC1 the most common genotype, identified as the

“founder” genotype (defined by eBURST as the genotype that differed from the largest number
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Table 1. Vibrio cholerae isolates and their genetic characterization.

specimen ID sample collection date P1 P2 P3 P4 P5 Total reads # Contigs Total length N50 # predicted genes (> = 300 bp)

0005 stool 12-May-02 8 4 6 18 21 15822446 124 4042725 235749 3232

0010 river 14-May-02 8 4 6 18 21 15170986 153 4162168 235741 3345

0014 river 14-May-02 2 4 6 18 21 17042970 145 4041694 235689 3231

0015 stool 20-May-02 8 4 6 18 21 15170986 116 4040728 168110 3229

0016 stool 20-May-02 2 4 6 19 21 12570276 126 4041525 235753 3234

0017 stool 20-May-02 8 4 6 18 21 16953980 129 4039582 246625 3229

0018 stool 20-May-02 8 4 6 18 21 27277596 134 4039159 235697 3230

0019 stool 21-May-02 8 4 6 18 21 17097584 135 4037123 235733 3224

0034 stool 7-Jun-02 2 4 6 18 22 17456602 153 4045314 215343 3233

0035 stool 7-Jul-02 2 4 6 18 21 14346844 110 4043196 274420 3230

0074 stool 4-Mar-03 8 4 6 18 21 16015980 109 4042919 299283 3233

0079 stool 5-Mar-03 8 4 6 18 21 14829360 128 4048089 246625 3234

0008 river 14-May-05 8 4 6 17 21 15220440 118 4038347 235757 3229

0091 stool 15-Mar-03 8 4 6 18 21 16345390 117 4044727 235757 3233

091 stool NA 5 4 6 16 22 15007662 134 4170716 198190 3357

100 stool 21-Mar-03 6 4 6 18 21 15306054 117 4047306 235773 3235

101 stool 21-Mar-03 8 4 6 18 21 17234372 130 4043196 235733 3232

1019828.5 stool 4-Jun-10 8 4 6 18 22 17051454 113 4044240 246637 3236

1019829.2 stool 4-Jun-10 2 4 6 18 22 11946036 157 4041334 235721 3233

1020229.6 stool 1-Jun-10 3 4 6 18 22 15571312 107 4042920 299307 3230

1020231.9 stool 1-Jun-10 8 4 6 18 22 14358586 188 4038634 197527 3230

1020234.0 stool 1-Jun-10 2 4 6 18 22 16248046 115 4044859 246637 3235

105 stool 23-Mar-03 9 4 6 18 24 14272564 152 4199705 235741 3379

1163068.5 stool 02-Mar-12 10 4 3 14 14 14358586 205 4028212 244702 3213

120 stool 7-Apr-03 2 4 6 18 21 14611668 119 4044669 198208 3233

121 stool 9-Apr-03 8 4 6 18 21 13629302 123 4042373 240831 3232

122 stool 11-Apr-03 2 4 6 19 21 16249350 136 4041110 235737 3229

134 stool 20-Apr-03 9 4 6 18 10 15496714 111 4202583 274384 3386

146 stool 2-May-03 9 4 6 18 23 14094190 111 4201741 246452 3387

147 stool 2-May-03 5 4 6 18 24 18769590 139 4205115 166699 3389

151 stool 5-May-03 8 4 6 18 21 13435326 134 4046368 165090 3235

152 stool 5-May-03 8 4 6 18 21 11486728 114 4038231 246645 3226

153 stool 5-May-03 8 4 6 18 21 19344048 131 4166028 246625 3348

154 stool 6-May-03 8 4 6 18 21 13787496 126 4040931 246629 3232

178 stool 15-May-03 9 4 6 18 24 13855938 136 4197109 215352 3381

179 stool 16-May-03 9 4 6 18 23 16884124 143 4203535 235745 3385

188 stool 17-May-03 9 4 6 18 24 16306802 138 4205908 166695 3389

189 stool 17-May-03 6 4 6 18 24 15775962 229 4198382 176073 3378

191 stool 19-May-03 6 4 6 18 23 17116600 117 4201351 246476 3385

196 stool 21-May-03 5 4 6 18 24 16031708 126 4204296 246464 3384

296 stool NA 2 4 6 18 22 15853624 177 4040423 235697 3234

300205 stool 11-Jan-08 7 4 14 13 21 33740130 328 3951968 246629 3131

300043 stool 16-Jan-08 8 4 6 18 21 10140136 131 4046708 185889 3234

300055 stool 27-Jan-08 13 4 7 12 21 9175956 240 4159518 133584 3331

300208 stool 24-Jan-08 8 4 6 18 21 12186024 118 4047015 168139 3234

300209 stool 25-Jan-08 8 4 6 19 21 12428824 110 4044616 299303 3232

300215 stool 19-Feb-08 8 4 6 18 21 11271788 168 4073917 246641 3246

(Continued )
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of other genotypes at a single locus), comprised 41% (29/71) of the isolates. In this complex,

the founder genotype radiated into 9 other genotypes, and 5 of those differentiated further.

Two of the three river water isolates shared a common genotype with the clinical isolates, one

of which was of the founder genotype. Interestingly we found isolates with identical MLVA

genotypes up to 8 years apart. In general, isolates from the same year were genetically related,

all four genotypes found in 2002 were single locus variants, as were the two genotypes in 2008,

two in 2009, and three genotypes from 2010. In contrast to similarity within a year, in months

(May 2002, March 2003, April 2003, May 2003, June 2010) where multiple cases presented

with V. cholerae, we found that isolates belonged to more than one genotype.

The other V. cholerae isolates consisted of a second clonal complex CC2 and four singletons

(Fig 1). CC2 had two genotypes and comprised only 4% (3/78) of the analyzed isolates. The

four singleton genotypes contained one isolate each corresponding to 5% (4/78) of the isolates.

Three of them were isolated in 2008 and the fourth in 2012.

Table 1. (Continued)

specimen ID sample collection date P1 P2 P3 P4 P5 Total reads # Contigs Total length N50 # predicted genes (> = 300 bp)

300506 stool 27-Apr-08 12 12 3 17 21 9274148 173 4040231 339296 3217

302015 stool 16-Feb-09 9 4 6 18 23 10980664 118 4214484 246476 3393

302029 stool 5-Mar-09 9 4 6 18 21 11199308 174 4229711 274301 3394

326 stool NA 8 4 6 18 20 15654426 124 4165971 246637 3348

347 stool NA 8 4 6 18 21 15286606 146 4051922 246633 3227

374 stool NA 8 4 6 18 21 8013166 141 4043250 299283 3225

375 stool NA 8 4 6 19 21 17973118 173 4041898 215270 3229

382 stool NA 8 4 6 18 21 17226956 130 4046077 173229 3234

398 stool NA 8 4 6 16 21 17282880 443 4102857 114507 3259

399 stool NA 8 4 6 18 21 15570318 99 4038494 274422 3227

420 stool NA 8 4 6 18 21 18048184 161 4040168 225617 3234

505 stool NA 8 4 6 18 21 16442290 119 4047614 246645 3234

510 stool NA 8 4 6 18 21 16619422 117 4041499 216033 3229

511 stool NA 2 4 6 18 21 19004672 136 4043523 235737 3233

655630.3 stool NA 8 4 6 18 21 14338294 178 4070175 246637 3247

655664.3 stool NA 8 4 6 18 22 13650350 142 4175603 166703 3357

655665.0 stool NA 2 4 6 18 21 17379870 113 4044785 246633 3235

710180.8 stool NA 7 4 6 16 22 16589666 111 4201582 235757 3385

740115.4 stool NA 8 4 6 18 22 16126366 117 4043435 298463 3233

769845.7 stool NA 8 4 6 18 23 15919268 124 4204461 299303 3385

770067.4 stool NA 6 4 6 18 24 9609488 133 4201831 235749 3385

770180.8 stool NA 7 4 6 16 22 15532364 116 4198654 212820 3386

780298.0 stool NA 6 4 6 18 23 14033966 136 4203224 167915 3386

S/Nida stool NA 5 4 6 18 24 15541740 140 4205161 208032 3388

0092 stool 15-Mar-03 5 4 6 18 20

0006 stool NA 8 4 6 18 21

0020 stool NA 8 4 6 18 21

0093 stool NA 2 4 6 18 21

201 stool NA 8 4 6 18 21

271 stool NA 2 4 6 18 22

333 stool NA 2 4 6 18 21

Average 15375291 143 4094492 232090 3279

https://doi.org/10.1371/journal.pntd.0005671.t001
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We successful sequenced the whole genomes of 71 V. cholerae O1 isolates (Table 1). The

average number of high quality reads was 15,375,291 which upon assembly produced an aver-

age of 143 contigs (range: 99 to 443) or scaffolds with an average depth of 374. The assembled

genome was 4.09 Mb (3.95 to 4.23 Mb) in length and had an average N50 of 232,090 bp

(144,507 to 339,296 bp).

Of the 71 isolates, the genomes of sixty-seven differed by less than 100 SNVs. Consistent

with this, the core genome of all the wave 3 isolates shared 2802 genes. To look for evidence of

recombination in these sequences we examined 2543 single copy conserved genes. We

removed all of the invariant nucleotides, any SNVs in locally collinear blocks smaller than 200

bp, and examined the remaining variant sites in Clustal W (Fig 2). These data showed evidence

Fig 1. Genetic relatedness between V. cholerae genotypes by MLVA, Mozambique, 2002–2012. Each box with five numbers represents a genotype;

each connecting line, an allelic change at a single locus. The solid boxes are around genotypes found in both the river and in patients, dotted boxes are for

genotypes found only in patients and dashed boxes for genotypes found only in river isolates (R). The numbers outside the boxes indicate the year or years

isolates with that genotype were found. There are twenty genotypes in CC1, two genotypes in CC2 and four singleton genotypes unrelated to any other

genotypes using eBURST. An alternative analysis using Network revealed the following differences: i) a connection in eBURST, but not in Network, was

represented by a dotted line (single locus change), ii) a connection in Network, but not in eBURST, by a dashed line (single locus change), iii) in Network,

but not in eBURST, CC2 is connected to CC1, we have represented this by a dot and dashed line (representing changes at two loci), finally, iv) in Network,

but not in eBURST, all three singleton genotypes are connected to the founder genotype regardless of whether the singleton genotype differs at three or

four loci from the founder.

https://doi.org/10.1371/journal.pntd.0005671.g001
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of homoplasy by visual examination: for example there were multiple examples of dinucleotide

sequences at the same site in different isolate genomes being present in all four possible combi-

nations (e.g. AA, AG, GA, GG). This was despite the high level of pairwise nucleotide conser-

vation between isolate genomes, usually differing by only 18 to 62 nucleotides. Among the 148

SNVs, 360 pairs were determined to have both alleles in all possible combinations. The proba-

bility of this occurring by mutation alone is vanishingly small (the probability of the same

mutation on two different genomes to the 360th power). The most parsimonious explanation

for this observation is recombination within this population of V. cholerae O1s.

The genetic relatedness, including the recombinant loci, was estimated from WGS using a

phylogenetic network [26]. As shown in Fig 3, while all of the genomes were distinct, there was

some clustering by year of isolation, four of the five isolated in 2010 clustered together as did

the four from 2008 and the two from 2009. The largest number of isolates in our collection

were collected in 2003. It is evident from Fig 3 that they occupy positions throughout the net-

work. This was also true for the three river isolates. In the network, every sequence had some

nucleotide variants that distinguish it from every other sequence, thus in contrast to the

MLVA network, there are no central genotypes that might be construed as the founder.

Fig 4 shows the phylogenetic tree with genomic sequences from a global collection of 274

previously published sequences (S1 Table) including the 67 genomic sequences generated in

this study. These data show that the sequences of the Manhiça, Mozambique isolates cluster in

a monophyletic group distinct by 39 nucleotides from the backbone of the third wave of the

Seventh Pandemic phylogeny (S2 Table). All Seventh Pandemic isolates harbor virulence asso-

ciated genes, such as the CTX prophage, the genomic islands VSP-I and VSP-II, the toxin-cor-

egulated pilus, the toxic linked cryptic element, and the integrative conjugative element SXT

harboring multidrug resistance genes. The CTX phage harbours the ctxBcla allele within an

otherwise El Tor biotype CTX phage sequence and is typical of isolates referred to as “atypical”

El Tor biotypes [32].

The four sequences that differed by>24,000 nucleotides among the 3,237,973 basepairs

conserved in all our sequenced genomes did not cluster with sequences from the Seventh Pan-

demic (Fig 5) and are quite distantly related to each other, but all were more closely related to

the other V. cholerae sequences compared to other species. These isolates were taken from

patients admitted to hospital with suspected cholera indicating that these divergent lineages

Fig 2. Diagram displaying only variable nucleotides among the 67 genomic sequences from Wave 3

of the 7th pandemic from Manhiça and B33 (Genbank:ACHZ00000000), a Wave 2 isolate from Beira,

Mozambique in 2004. Only variable nucleotides 80 to 120 are shown. Each row contains sequence from a

single isolate. Two examples in which two loci with alleles occur in all four possible combinations are identified

by boxes around the four chromosomes. These examples are consistent with recombination events.

https://doi.org/10.1371/journal.pntd.0005671.g002
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are capable of causing clinical symptoms, as has been reported previously [13]. Unlike the Sev-

enth Pandemic strains, these four strains do not contain any of the aforementioned virulence

associated genes, although they contain a few genes, such as the RTX toxin gene cluster and

the hemolysin hlyA, from some of the virulence associated islands.

The network based on WGS included isolates of both CCs (CC1 and CC2), however while

the isolates of CC1 was distributed through the network, the isolates of CC2 clustered together

(Fig 3). In the same way, the four singletons isolates by MLVA did not cluster in the network

and were quite distantly related by WGS analysis.

Discussion

Cholera remains important public health problem in Mozambique. We characterized V. cho-
lerae isolates using MLVA and WGS to determine the genetic relatedness and transmission

dynamics of cholera outbreaks in the Manhiça District. Our analyses of WGS data revealed

that 94% of the isolates were a monophyletic group in the third wave of the Seventh Pandemic.

These isolates have formed a locally evolving population that has persisted for at least eight

Fig 3. Splitstree network of wave 3 genome sequences from Manhiça, Mozambique. Splitstree allows

for parallel changes whether they are derived by recurrent mutation or by recombination. The branch lengths

are proportional to the number of nucleotide changes. The figure reveals extensive parallel changes (the

parallelograms). The parallel lines of a parallelogram indicate potential recombination. Of note the isolates

from 2008, those of 2009 and those of 2010 are in separate regions of the diagram and each has potential

parallelograms in the diagrams. The lines extending to a single isolate represent the mutational variation. The

smaller font indicates the isolate names. The four digit red numbers are the years in which different isolates

were collected. The letter R identifies isolates found in the river. CC2 indicates those isolates found in MLVA

CC2. The four isolates from 2008, the two isolates from 2009 and four of the five isolates from 2010 cluster

with their contemporaries.

https://doi.org/10.1371/journal.pntd.0005671.g003
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Fig 4. Phylogeny of 7th pandemic isolates of V. cholerae. The branch lengths are proportional to the number of variable nucleotides. All of the

isolates from Manhiça cluster together and are most closely related to isolates from India, Nepal, Kenya, Haiti and Bangladesh. Other isolates from

Mozambique and Kenya are more distantly related.

https://doi.org/10.1371/journal.pntd.0005671.g004
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years, either in a local environmental reservoir or circulating within the human population,

and sporadically caused recurrent disease in southern Mozambique. It is yet to be shown if

these isolates are representative of those circulating outside of the study site across

Mozambique.

Previous studies have reported the role of environmental factors, such as seasonal fluctua-

tions, that influence the dynamics of V. cholerae in environmental reservoirs [33,34]. Of note,

all of our isolates were collected during the first half of the year, January through July, with a

peak in May. However, our study does not allow establishing a clear relationship between envi-

ronmental strains and those causing cholera outbreak. The presence of four isolates that are

not part of the Seventh Pandemic (differing by ~ 0.75% of the genome sequence) demonstrates

that a diverse set of V. cholerae not linked to the Seventh Pandemic are causing a background,

low level of sporadic disease in southern Mozambique, despite the absence of many of the

major virulence determinants. This has been seen elsewhere including in the Gulf coast of the

USA particularly in the 1980’s and 1990’s [32].

We detected the presence of recombination in our WGS data. Most analyses of WGS data

detect recombination as a large number of SNVs in short sequence of DNA. Our method of

detection, the four-gamete test applied to haploid genomes, removes the constraint of the

SNVs occurring in a small region by simply looking at dinucleotide pairs located at any

Fig 5. Phylogeny of the four isolates with singleton MLVA genotypes and >24,000 nucleotide

differences compared to the 7th pandemic isolates of V. cholerae. The branch lengths are proportional to

the number of variable nucleotides.

https://doi.org/10.1371/journal.pntd.0005671.g005
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distance from each other. Since mutations occur at random, a dinucleotide sequence, say GG,

can mutate at either of two positions for example: AG and GA. In order to further mutate to

form AA, one of the positions must mutate a second time. However, in this instance it also

possible to replace the original sequence in a single recombination event. We found 360 pairs

of nucleotide positions across all our genomes at which all four combinations of alleles in the

dinucleotides were found. The probability of this occurring by mutation is extremely small

(the rate of mutation at the same nucleotide to the 360th power). Our sample is unusual

because it was collected in small area and in a short time frame. The geographical and temporal

proximity of isolates is a prerequisite for recombination. V. cholerae meets other necessary pre-

requisites like having an intact mechanism for uptake of DNA and integration into the chro-

mosome [38]. The clearest examples of the effectiveness of recombination can be found in

serotype switching, a process known to be accelerated by chitin [39]. The limited amount of

variation in our sample is consistent with the recombinant events occurring within this popu-

lation of V. cholerae O1s.

Most isolates (91%) were distributed among the 20 genotypes of CC1 and 41% had the

founder genotype, supporting the hypothesis of a common ancestor which subsequently differ-

entiates into additional genotypes. In a study of 187 isolates conducted in Haiti, only 9 MLVA

genotypes clustered in a single clonal complex and 53% had the founder genotype [35].

We found more alleles (ten) at the first locus (VC0147) on large chromosome than at the

two loci on small chromosome (VCA0171 and VCA0283) with seven alleles for each one. Our

findings are in contrast to previous descriptions that show the three loci on the large chromo-

some varying at a slower rate than those on the small chromosome [11]. Extensive genetic vari-

ation on both chromosomes has been reported [36], but not more variation at the large

chromosome loci [35–37].

WGS and MLVA patterns were performed to discriminate V. cholerae isolates from various

geographic locations and distinct populations [17,40]. But, none of the 26 MLVA genotypes

that we found in this study has been reported in previous studies from Haiti, Thailand, Bangla-

desh, India, Vietnam and Mozambique [10,11,35,36,40,41]. However, the three loci on large

chromosome are likely to be considered the best for estimating across large distances [35].

Thus, when we considered the MLVA profiles in terms of the three loci (VC0147, VC0437,

and VC1650) on large chromosome, the isolates with profiles 8,4,6, (50%, 39/78) and 9,4,6,

(10%, 8/78) were related to the Haiti and Bangladesh strains, respectively [11,35]. Our WGS

analysis demonstrates that these Mozambican isolates formed a distinct lineage within a clade

that includes El Tor variants from Bangladesh, China, Haiti, Nepal, India, and Kenya that belong

to the current global radiation of the Seventh Pandemic. The Manhiça, Mozambique isolates dif-

fer from the wave 3 backbone by 39 nucleotides. Furthermore, previous reports demonstrated

Wave 2 strains in Mozambique during the same time period [21,42]. Taken together with our

analysis, it is clear that there were multiple, independent V. cholerae lineages from Wave 2 and

Wave 3 which were circulating within Mozambique during this period of time. In Manhiça,

although the relationships between isolates differed in detail between MLVA and WGS, both

analyses demonstrated the isolates were very closely genetically related, even if they are collected

several years apart.

Conclusion

Our findings further define the molecular epidemiology of V. cholerae in Mozambique. Our

study demonstrates that Wave 3 isolates of the Seventh Pandemic have become established in

Manhiça, Mozambique and have persisted in this region over the time of this study alongside

V. cholerae Wave 2 strains in other regions of the country. The subsequent radiation of
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genotypes has been enriched by the process of recombination as detected in the WGS data.

Our data raises several important questions that relate to where these V. cholerae isolates per-

sist and how seemingly identical isolates can be collected years apart despite our understand-

ing of the high rate of change of the MLVA loci and the V. cholerae molecular clock. Although

the environmental triggers for the emergence of cholera are unknown in Manhiça, it is impor-

tant to be vigilant to prevent an emergence from becoming an outbreak.
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