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Abstract
An estimated 600 million people are affected by the helminth disease schistosomiasis

caused by parasites of the genus Schistosoma. There is currently only one drug recom-

mended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult

worms but not against the juvenile stage. In an attempt to identify improved drugs for treat-

ing the disease, we have carried out high throughput screening of a number of small mole-

cule libraries with the aim of identifying lead compounds with balanced activity against all

life stages of Schistosoma. A total of almost 300,000 compounds were screened using a

high throughput assay based on motility of worm larvae and image analysis of assay plates.

Hits were screened against juvenile and adult worms to identify broadly active compounds

and against a mammalian cell line to assess cytotoxicity. A number of compounds were

identified as promising leads for further chemical optimization.

Author Summary

Schistosomiasis is a parasitic infection that affects an estimated 600 million people in
developing countries. Treatment is currently dependent on a single drug which is only
active against the adult form of the disease. Treatment of infected patients eliminates adult
worms but leaves any juveniles to survive and develop, thus continuing the infection. A
drug acting equally against adult and juvenile worms is likely to be more effective at elimi-
nating the disease. We have identified quality chemical leads with balanced activity against
all life stages of the parasite and with a good window over cytotoxicity, which could form
the basis of an exciting new drug discovery project.
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Introduction
Schistosomiasis is a potentially severe helminthic disease causing widespread morbidity and
affecting an estimated 600 million people [1]. Humans are infected percutaneously by the cer-
carial larval stage shed from aquatic snails and thereafter the worms remain in the human
blood stream migrating from the skin, through the lungs and maturing in the liver. The adult
worms then migrate to the mesenteric veins or the vesical plexus of the bladder, depending on
species, where they lay eggs, which cause inflammation and fibrosis in various organs.

Praziquantel (PZQ) is the only drug recommended for treatment of schistosomiasis and its
increasingly widespread use in mass chemotherapy campaigns means it is the mainstay of con-
trol of this infection [2]. PZQ has proved to be generally safe and effective using a single oral
dose [3, 4], however reliance on a single drug has led to concerns over potential development
of drug resistance. Although PZQ is active against adult worms of all the medically important
Schistosoma species [5], it is relatively ineffective against the juvenile stages both in vivo and in
vitro [6, 7] meaning that treatment does not eliminate all the worms in an infected patient and
repeat treatment is required. Consequently there is a need for new schistosomicides with activ-
ity against all life stages and this has led to renewed interest in research into drug discovery
using both phenotypic and target-based approaches. These include development and applica-
tion of whole organism screens for compound testing [8], target-based drug discovery [9] and
identification of putative molecular targets by analysis of the annotated schistosome sequences
[10].

We have developed a high-throughput screen (HTS) based on use of the larval, schistoso-
mula, stage for primary screening of large compound libraries [11] and here we describe its use
as part of an in vitro screening program prior to application of medicinal chemistry optimiza-
tion. Our ultimate aim is to identify compounds with better activity against the juvenile worms
than PZQ but with at least comparable activity against the adult worms. Whilst it was unlikely
that high-throughput screening hits would be as efficacious as an established drug candidate,
selection of hits with multi-stage efficacy is likely to give the best chance of developing a clinical
candidate with the desired profile. Therefore all hits were subsequently screened against juve-
nile (3 week old) schistosomes and adult worms as well as against mammalian cells to check
for cytotoxicity. We here report the screening of almost 300,000 small molecule compounds
provided from pharmaceutical companies, charitable organizations and commercial sources
and describe a number of promising new leads for further chemical optimization.

Methods

Ethics Statement and Animals
Experimentation was carried out using the NC3Rs and ARRIVE guidelines under the United
Kingdom Animal’s Scientific Procedures Act 1986 (under project licence 60/4456) with
approval from the London School of Hygiene and Tropical Medicine Ethics committee. Male
CD1 mice (aged 5–6 weeks) were bred on site using SPF conditions with access of food and
water ab libitum.

Parasite Maintenance and Preparation
Experiments were performed using the Puerto Rican strain of S.mansonimaintained in Biom-
phalaria glabrata and CD1 mice. The strain of snail was one bred by Prof Mike Doenhoff
(Nottingham University) for high susceptibility to S.mansoni and ease of breeding in large
numbers to high density. Careful attention was paid to controlling infections with rotifers
which otherwise would contaminate the HTS schistosomula preparations as well as affecting
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snail viability. This included recovery of egg masses on short length pieces of polypropylene
tubing placed into the breeding tanks and treatment of these with 3 x 10 seconds immersion in
70% ethanol with 3 minutes soaking in clean water in between alcohol treatments. Schistoso-
mula were mechanically prepared as previously described [12] with the modification of using a
45% and 70% Percoll gradient, and the cercarial heads recovered from the 70% layer. All centri-
fugation steps were done at 350x g. The schistosomula generated were then incubated over-
night in M169 supplemented with 100U/ml Penicillin, 300μg/ml Streptomycin, 0.25μg/ml
Fungizone (Amphotericin B) (Gibco, UK) and 5% Foetal Calf serum.

For production of S.mansoni juvenile or adult worms, mice were infected subcutaneously
under mild isoflurane (Merial Animal Health Ltd (UK)) anaesthesia with, respectively 1400
(for juveniles) or 450 cercariae (for adults). Worms were recovered from infected mice using
sterile techniques by portal perfusion 3 weeks (for juveniles) or 6 weeks (for adults) post-infec-
tion using warm perfusion medium (Dulbecco’s Modified Eagle’s Medium [DMEM], 2mM L-
glutamine, 100 Units/ml penicillin, 100μg/ml streptomycin, 20mMHepes, 10 Units/ml heparin
[Sigma, UK] [8]. Adult worms were washed free of red blood cells using the perfusion medium,
and finally placed in culture in complete medium (cDMEM: DMEM, 2mM L-glutamine, 100
Units/ml penicillin, 100μg/ml streptomycin, 10% foetal calf serum (FCS) at 37°C, in an atmo-
sphere of 5% CO2. Juvenile worms were sedimented successively following washing with cold
perfusion medium and then suspended in cold cDMEM until dispensed to avoid attachment to
the plastic tubes.

Schistosoma Screening Assays
The larval HTS was run as described previously [11]. Compound libraries were provided in
384 well plates as liquid either (i) small volumes in polypropylene 384 V-bottom storage plates
(Greinerbio-one) that were diluted and 500nL dispensed into black 384 imaging plates (View-
Plate 6007460; PerkinElmer) using the Biomek FxP (Beckman Coulter) or (ii) in an assay-
ready format from which a 40nL volume was transferred into wells of imaging plates. All test
plates included the same array of control wells: medium alone [4 wells], medium plus DMSO
carrier (negative control) [16 wells], 10μMOltipraz (OLT) positive control [8 wells] or 10μM
Praziquantel (PZQ) [4 wells]. Through the interactive reporting system the larval images for all
control wells and wells defined as hits by the algorithm were reviewed manually to confirm via-
bility/hit status. Periodically HTS wells suffered from yeast contamination that could not be
eliminated by modifications in snail rearing and more extensive washing of the schistosomula
preparations. Therefore, to prevent fungal contamination 0.25μg/ml (0.27μM) of amphotericin
B (AMP-B) was added to cultures both during the overnight culture prior to plating and during
the 3 day assay. This concentration of AMP-B is below the concentrations (1–10μM) reported
to have lethal activity against S.mansoni schistosomula [13, 14]. In our assays the mean ± SD
phenotype and motility scores for the DMSO control larvae before and after implementation
of use of AMP-B showed minimal differences. The phenotype scores were not significantly
different by Student t-test and motility scores showed marginally higher values for AMP-B
treated plates (P<0.004). The mean values for the PZQ control wells used in all screening plates
were slightly lower in the presence of AMP-B for phenotype but not for motility (phenotype:
-AMP-B: -0.21 ± 0.12 and +AMP-B: -0.38 ± 0.08 (P<0.001); motility: -AMP-B: -0.53 ± 0.10
and +AMP-B: -0.57 ± 0.10).

For the juvenile assay the concentration of worms was adjusted to 40/ml cDMEM and, prior
to dispensing, the suspension was cooled on ice to prevent adherence of the worms to the plas-
tic bottles. After swirling to resuspend worms,150μL of suspension was added to the wells of 96
well microtitre plates (Nunc, Thermo Fisher Scientific, UK). Wells were quickly checked and
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those with<5 worms were marked. The remainder were made up to 200μL and the deficient
wells topped up with a worm suspension to ensure that all wells had�5 worms. The adult
worm assay was as described in [8] except that 1ml cultures containing 3 worm pairs were gen-
erally used. Both the juvenile and adult worm assays were assessed for activity on days +1 and
+5. Drug effects were determined by assessing the viability of individual worms and calculating
the mean percentage inhibition, a hit being defined as�70% reduction in viability.

Cytotoxicity Assay
Activity against mammalian cells was determined using MRC-5 cells [15]. Cells were main-
tained in Minimum Essential Medium supplemented with glutamax (Gibco, UK), 1% non-
essential amino acids (Gibco, UK) and 10% Foetal bovine serum (Gibco, UK). They were har-
vested by treatment with 0.25% Trypsin-EDTA for 3 minutes and diluted to 1x105/ml. 100μl
aliquots of the cell suspension were then plated in 96 well plates (Nunc, Thermo Fisher Scien-
tific, UK). The plates were left to incubate for 24 hours at 37°C and 5% CO2 in a humidified
incubator. Cytotoxicity DR assays were set up 24 hours post incubation at 5% CO2 and 37°C,
with compounds prepared at 3-fold dilutions starting from 50μM. Dilutions were added to the
cells such that the final % DMSO/well was 0.5%. Each drug concentration was tested in dupli-
cate. On each 96 well plate there were negative control wells of media only, MRC-5 cells only
and MRC-5 cells with 0.5% DMSO. For positive control wells doxorubicin hydrochloride
(Sigma-Aldrich, UK) was added to the cells at 100μM concentration. The cultures were then
maintained for a further 72 hours at 37°C and 5% CO2. Drug cytotoxicity was determined
using the redox indicator Alamar blue (AbD Serotec, UK). 10μl of Alamar Blue was added to
each well and the plates incubated for 4 hours at 37°C and 5% CO2 atmosphere. The fluores-
cence intensity was measured using a Spectramax Gemini plate reader (Molecular Devices,
UK) using an excitation wavelength of 530 nm and an emission wavelength of 580 nm.

Screening Sequence
The screening sequence is shown in Fig 1. The primary HTS and subsequent juvenile and adult
screens were run as single point (SP) assays at 10–12.5μM depending on the concentrations in
the compound collections. Compounds were tested in duplicate. Where necessary, repeat test-
ing was carried out on re-supplied liquid samples. All compounds of interest were re-tested as
solid compounds or by repeat synthesis and activity confirmed.

Compounds with activity against all three parasite stages were tested in parallel dose
response (DR) assays against juvenile worms and MRC-5 cells. Promising compounds were
then tested in the adult DR. For the parasite DR (larvae, juveniles and adults) the concentra-
tions tested were two fold dilutions starting from 2x the primary screening concentrations (i.e.
20–25μM).

Data Analysis
IC50 values were calculated from the drug concentration–response curves using Microsoft
XLfit version 5.1.0.0 (2006–2008 ID Business Solutions Ltd). Results were expressed as the geo-
metric mean IC50.

Compound Collections
Compounds were obtained from four sources. The MMV collection was obtained in 96 well
plates as 2mM solutions in DMSO and was a diverse chemical library. The Pfizer collection was
obtained as 4mM solutions in DMSO and comprised a set of compounds that had previously
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shown activity against a variety of pathogens. The European Screening Port collection of struc-
turally diverse compounds was obtained in 384 well plates as 2mM solutions in DMSO from
European Screening Port GmbH, Schnackenburgallee 114, D-22525 Hamburg (European
Screening Port is now Fraunhofer Institute for Molecular Biology and Applied Ecology, http://
www.ime.fraunhofer.de/en.html). The published TCAMS collection of compounds with activity
against the malaria parasite Plasmodium falciparum was provided by GSK (www.ebi.ac.uk/
chemblntd, [16]) as 1mM solutions in DMSO. For the larger compound sets from Enamine and
MMV, we had the opportunity to select plates of compounds. In doing so we were able to bias
the selections we screened towards rule-of-5 like properties [17] and also to select plates con-
taining compounds such that the overall selection was quite diverse. Indeed, the final screened
collections contained no duplicate compounds.

The chemical diversity of the compound collections was further investigated by comparing
scatter plots (Fig 2). Although there is significant overlap in chemical property space, the scat-
ter plots also demonstrate some differences between them.

Fig 1. Screening sequence for HTS and follow up.

doi:10.1371/journal.pntd.0004659.g001

Novel Lead Compounds for Schistosomamansoni

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004659 April 29, 2016 5 / 12

http://www.ime.fraunhofer.de/en.html
http://www.ime.fraunhofer.de/en.html
http://www.ebi.ac.uk/chemblntd
http://www.ebi.ac.uk/chemblntd


Results

HTS
Overall 294,253 compounds were tested in the HTS. Table 1 shows the mean Z’ factors for the
plates in each of the different compound collections along with the mean phenotype and motil-
ity scores for the OLT and the PZQ control wells. The mean Z’ factors for both the phenotype
and motility scores were consistently above 0.5 and essentially similar both within and between
the different libraries, indicating that this is a robust assay. Similarly the mean phenotype
and motility scores for both OLT and PZQ were broadly consistent within and between the

Fig 2. Scatter plots of the screened compound collections with calculated lipophilicity, cLogP using DataWarrior [25] on the X axis vs molecular
weight on the Y axis.

doi:10.1371/journal.pntd.0004659.g002

Table 1.

Library MMV Pfizer Enamine GSK

No. Plates 695 22 151 41

Z’ Phenotype 0.55 ±0.06 0.56 ±0.08 0.53 ±0.07 0.51 ±0.07

Z’ Motility 0.60 ±0.07 0.62 ±0.09 0.59 ±0.07 0.57 ±0.07

PZQ Phenotype score* -0.37 ±0.09 -0.37 ±0.04 -0.35 ±0.09 -0.50 ±0.10

PZQ Motility score* -0.57 ±0.10 -0.63 ±0.07 -0.52 ±0.08 -0.67 ±0.12

OLT Phenotype score* -0.55 ±0.06 -0.56 ±0.08 -0.49 ±0.13 -0.64 ±0.06

OLT Motility score* -0.95 ±0.02 -0.94 ±0.02 -0.91 ±0.04 -0.93 ±0.03

*NB the mean negative control (Medium plus DMSO carrier) values for the assays are adjusted to zero as described [11]

doi:10.1371/journal.pntd.0004659.t001
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different collections and as expected based on previous screening [11]. As was reported previ-
ously [11], OLT phenotype and motility scores were consistently higher than those for PZQ
indicating a more severe effect of this compound on the worms.

The hit rates in the primary larval screen varied markedly for the different compound librar-
ies ranging from 0.58% to almost 30% (Table 2). Given the consistent performance of the HTS
throughout the screening campaign and the fact that some of the collections were screened in
parallel, it is likely that the differences reflect the nature of the compound collections rather
than any variation in the performance of the assay.

High numbers of cercariae were used for the infection of mouse donors meaning that the
juvenile assay could be run in medium throughput and provided an important triage step in
the screening sequence. It was observed that the smaller juvenile worms generally proved to be
more susceptible to compound inhibition than the larger worms.

Active Compounds Selected for Further Follow Up
Following the initial screening cascade and subsequent IC50 testing, seven compounds were
selected for further follow up on the basis of balanced activity against all parasite life stages, a
good cytotoxicity window and structural attractiveness. Additional hits with less compelling
profiles were also identified and are shown in S1 Table. The structures of the seven priority
compounds and two standards (PZQ and OLT) which we have used in our HTS assays are
shown in Fig 3 and the activity is described in Table 3. Activity of all compounds was con-
firmed with solid sample which was purchased commercially if available, or re-synthesised.
The activity of solid samples was in good agreement with the original liquid sample data. It was
encouraging that the screening process was able to identify multiple different chemotypes with
similar potency to the standard agent (PZQ) against juvenile worms.

All of the seven hit molecules comply with the Lipinski rules-of-five for oral absorption as
originally defined [17]. Some of the compounds failed the lipophilicity criteria (ALogP>5) but
Lipinski rules predict that this single failure is unlikely to significantly impair absorption.

We were interested to know the speed of action of the selected compounds, therefore activ-
ity was examined in juvenile and adult worm assays at both 1 day and day 5. The data in
Table 4 shows that most of the compounds of interest had more rapid and complete activity
against juvenile worms than PZQ which only achieved 58.4% motility reduction after 5 days.
Two compounds, 2389 and 1716 appeared to have a delayed action with no inhibition after 1
day, but complete inhibition after 5 days. The effects of compounds on adult worms were gen-
erally similar to PZQ.

Table 2. Hit rates for compound collections.

Library No compounds % (no.) larval hits % (no.) juvenile hits* % (no.) adult hits **

MMV 221,948 5.52(12264) 10.17 (1210) 5.12 (62)

Pfizer 7,688 29.89 (2362) 12.52 (126) 19.84 (25)

Enamine 51,392 0.58 (300) 4.33 (13) 38.46 (5)

GSK 13,225 29.09 (3848) 19.33 (58) 15.55 (9)

Larval, juvenile and adult hits were defined as >70% inhibition

* percentage of larval hits tested which were juvenile hits

**percentage of juvenile hits tested which were adult hits

N.B. Due to drug availability issues, pre-existing cytotoxicity data, compound structure or cost, not all hits from any stage were necessarily screened in

successive screens.

doi:10.1371/journal.pntd.0004659.t002
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Analysis of Publicly Available Data Related to the Seven Most Promising
Compounds
The choice of series to move forward for further chemical optimisation is a crucial one in the life
of any small molecule drug discovery project. Multiple factors are likely to affect ultimate success

Fig 3. Chemical structures of standard compounds and seven priority compounds selected for further follow up.

doi:10.1371/journal.pntd.0004659.g003

Table 3. Activity data for compounds of interest.

CompoundID (LHSTM-) ALogP^ Larval EC50 (μM) Juvenile EC50 (μM) Adult EC50 (μM) MRC5 CC50 (μM)

Praziquantel 2.5 1.9 4.7 0.3 >50

Oltipraz 2.2 0.5 0.8 0.85 >50

1355 3.9 6.7 5.8 (14.3*) 5.3* (11.2*) >50 (33.8)

1507 4.9 6.6 4.0 (9.8*) 1.6* (3.0*) 18.6

1945 4.0 6.7 5.7 (13.7*) 4.9* 40.1

1956 5.3 0.5 2.5 (3.7*) 3.2* (11.8*) 86.0

2045 5.3 1.4 2.1 (3.6*) 3.7* (11.0*) 20.0

2389 3.3 6.1 5.1 (5) 6.0* (7.1*) >50 (>50)

1716 5.1 0.3 11.0 (9.5) 2.8* (5.4*) >50 (>50)

Potency data are geometric means of at least two values except compounds indicated with * (n = 1). Numbers in italics were obtained from original liquid

sample data.
^AlogP calculated using BioVia’s ScienceCloud (https://www.sciencecloud.com/about/index.html)

doi:10.1371/journal.pntd.0004659.t003
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of the project including: physicochemical properties, presence of structural groups linked with
toxicity, synthetic tractability, freedom to operate from an IP perspective. One of the factors
affecting the decision which is sometimes overlooked is to understand what is known about exist-
ing pharmacology of the hit or compounds like it. To that end we have followed a similar process
to that described by Avery et al [18]. The compounds listed in Table 2 were subjected to an anal-
ysis using a freely available workflow based on KNIME (http://www.knime.org/downloads/
overview), ChEMBL (doi:10.1093/nar/gkr777) and DataWarrior (http://www.openmolecules.
org/datawarrior/download.html) [25]. called ‘Know Your Molecule’. The workflow is described
and can be downloaded from (http://www.mmv.org/research-development/computational-
chemistry).

A table of the findings from this is provided in S2 Table. This data indicates for example
that close analogues of LSHTM-1956 have been shown to have activity against S. mansoni per-
oxiredoxin Prx2 at a range of potencies 100–1μM [19, 20]. Although these analogues possess a
methyl at the 2-position of the indole rather than a phenyl, it is an interesting mechanistic link
to explore.

Close analogues of LSHTM-1716 have shown activity in a variety of whole cell assays, but
simplified analogues appear less promiscuous. Simpler analogues of LSHTM-2045 were
reported active against P. falciparum at 600–750nM and released by GSK as part of the
TCAMS. Encouragingly both were also recorded as inactive (7% and 9% inhibition at 10μM) in
a HepG2 cell line cytotoxicity. Finally, two close analogues of LSHTM-1586 are recorded as
showing activity below 1μM in 9 separate screens, perhaps supporting the finding in our hands
that the resynthesized compound was cytotoxic (S1 Table). Although no further work has been
done to confirm the reported activities, some of the data can be useful signposts to help priori-
tise the hits and to identify hypotheses to test in subsequent optimisation.

Discussion
Based on the need to develop new drugs for improved treatment of schistosomiasis, we carried
out a high throughput screening campaign with the aim of discovering compounds with bal-
anced potency against all life stages of Schistosoma mansoni. We identified a number of novel
compounds of interest and have prioritised seven of these for further follow up.

Table 4. Inhibition of wormmotility at day 1 and day 5.

Compound ID Juvenile (% motility
reduction)

Adult % motility reduction

DAY 1 DAY 5 DAY 1 DAY 5

PZQ 57 58 76 88

OLT 51 100 50 95

1355 75 75 75 100

1507 75 75 75* 88*

1945 75 75 75* 75*

1956 75 100 56 81

2045 50 100 37 88

2389 0* 100* 12.5 100

1716 0 84 64 98

All compounds were tested at 12.5μM. Data are geometric means of at least two values except compounds

indicated with * (n = 1).

doi:10.1371/journal.pntd.0004659.t004
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We were fortunate to be able to access high quality libraries from pharma companies and
other sources for this project. Surprisingly the hit rates for each compound collection were
markedly different, with the Pfizer and GSK sets having significantly higher hit rates than the
other libraries. There are two notable differences between compound collections. Firstly the
GSK and Pfizer subsets have higher mean lipophilicity and molecular weight compared to the
other collections. Secondly, the MMV and Enamine collections are diversity screening libraries,
whereas the Pfizer and GSK libraries both comprise compounds which have previously been
reported to have activity against one or more pathogens. Both the physicochemical property
differences and different selection biases might be expected to influence hit rate in a new phe-
notypic screen such as this.

Our ability to screen nearly 300,000 compounds in a short time was due to use of a high
throughput larval screen [11]. To efficiently progress the hits from this screen we developed
and implemented a screen using juvenile (21 day) worms as we were particularly keen to iden-
tify compounds with improved drug efficacy against this stage of the parasite life cycle. The
juvenile assay proved to be a very efficient medium throughput screen which was very efficient
at triaging compounds prior to testing in the adult worm assay. It is encouraging that we have
been able to identify a number of compounds with IC50<10 μM against all stages of the para-
site life cycle and with potency against juvenile worms comparable with praziquantel. Typi-
cally, medicinal chemistry optimisation of HTS hits can result in early leads that are>10-fold
more potent [21] and advanced leads that are 100-1000-fold more potent than the original hit.
A similar potency improvement was also achieved during the discovery process leading to pra-
ziquantel [22]. Therefore we are optimistic that medicinal chemistry optimisation of our hits
could lead to a candidate superior to praziquantel.

It is interesting to note that we identified two compounds (1507 and 1716) which like PZQ
are more potent against the adult stage than juveniles, whereas a number of other compounds
showed comparable activity against both stages as was also the case for oltipraz, a compound
which has proved to be effective in humans but whose development and use clinically was
halted due to phototoxicity [23, 24]. This may suggest that the targets of these compounds are
differentially expressed, or play greater or lesser roles in the different life stages of the parasite.

Investigation of compound activity at two different time points revealed that several of our
compounds appear to cause faster and more complete inhibition of juvenile worm motility
compared with PZQ. It will be interesting to explore if this translates to faster cures in an in
vivo efficacy model. The lower effect of PZQ on juvenile compared with adult motility may
also explain the relatively poor clinical efficacy of this compound against juvenile versus adult
worms.

All seven of our priority compounds comply with the Lipinski rules-of-five for oral absorp-
tion [17] making them attractive starting points for further medicinal chemistry optimisation.
This is particularly important as oral treatment is standard for schistosomiasis. Analysis of the
structures of our seven priority compounds reveals that 1355 and 2389 have related structures,
as do 1507 and 1945. This may indicate that these pairs of compounds could have similar
modes-of-action, although the mechanism of action of all our hits remain unknown at this
time.

To the best of our knowledge, there are no new compounds in late pre-clinical or clinical
development for schistosomiasis, therefore the molecules we have identified represent an excit-
ing starting point for drug discovery. We are currently working to optimise selected series from
our hit set with the initial goal of making analogues with pharmacokinetic properties that
would allow demonstration of in vivo activity and ultimately with the aim of identifying a clini-
cal candidate.
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Supporting Information
S1 Table. Table of additional actives obtained during the screening. These structures were
deprioritised relative to those in the body of the paper for the reasons given in the comment
column. The assays are those described in the paper. ND = No data obtained.
(XLSX)

S2 Table. This table lists each of the structures in the paper (and a couple described in S1
Table) and then a summary of findings obtained using the KNIME workflow ‘Know Your
Molecule’ to access and present ChemBl data as described in the paper. The structures
shown are those with similarity to the compound number listed in column 1 of the table.
(XLSX)
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