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Abstract
After sustained exposure toMycobacterium leprae, only a subset of exposed individuals

develops clinical leprosy. Moreover, leprosy patients show a wide spectrum of clinical mani-

festations that extend from the paucibacillary (PB) to the multibacillary (MB) form of the dis-

ease. This “polarization” of leprosy has long been a major focus of investigation for

immunologists because of the different immune response in these two forms. But while lep-

rosy per se has been shown to be under tight human genetic control, few epidemiological or

genetic studies have focused on leprosy subtypes.

Using PubMed, we collected available data in English on the epidemiology of leprosy

polarization and the possible role of human genetics in its pathophysiology until September

2015. At the genetic level, we assembled a list of 28 genes from the literature that are asso-

ciated with leprosy subtypes or implicated in the polarization process. Our bibliographical

search revealed that improved study designs are needed to identify genes associated with

leprosy polarization. Future investigations should not be restricted to a subanalysis of lep-

rosy per se studies but should instead contrast MB to PB individuals. We show the latter

approach to be the most powerful design for the identification of genetic polarization deter-

minants. Finally, we bring to light the important resource represented by the nine-banded

armadillo model, a unique animal model for leprosy.

Introduction
Leprosy is a chronic infectious disease caused byMycobacterium leprae, with over 200,000 new
cases detected each year, often leading to severe disabilities and social stigma. After sustained
exposure toM. leprae, only a subset of individuals develops clinical leprosy. From the early
observations of familial aggregation of leprosy cases to the most recent genome-wide associa-
tion studies identifying genetic polymorphisms associated with leprosy, there is strong evi-
dence that the development of the disease is under tight human genetic control [1,2]. The
interest in the genetics of leprosy is reflected by the continuous increase in the number of
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genetic publications (host and pathogen), while publications on immunology of leprosy have
decreased significantly after 1980 [3].

There is considerable clinical variability among leprosy patients, with a clinical spectrum
that extends from the polar “tuberculoid” to the polar “lepromatous” form of the disease [4,5].
The tuberculoid form is characterized by a small number of hypopigmented, well-bordered,
anesthetic skin lesions with a low bacillary load (therefore this form is commonly referred to as
“paucibacillary” [PB]), early peripheral nerve impairment, and a T-helper 1 (Th1)–mediated
immune response. In contrast, the lepromatous form is characterized by numerous infiltrated
skin lesions displaying high bacillary loads (therefore referred to as “multibacillary” [MB]),
impaired peripheral nerves, possible involvement of internal organs, and a Th2-mediated
immune response [6]. Leprosy has long been a major focus of investigation for immunologists
because it is an excellent example in natura of the clinical impact of a differential immune
response of B and T lymphocytes on the form of disease, but it has not been thoroughly consid-
ered by geneticists. Some genetic studies have focused specifically on either PB leprosy or MB
leprosy; however, very few have investigated the process that we call “polarization,” which is
the process that drives the differentiation to different subtypes and therefore impacts on all or
at least multiple subtypes of leprosy.

From a genetic perspective, polarization can thus be regarded as a neglected phenotype. To
address this shortcoming, we have conducted a review of epidemiological studies addressing
leprosy subtypes and polarization. We argue that the poor understanding of the genetic archi-
tecture of leprosy polarization is mainly caused by inappropriate study designs. We provide
suggestions for future research on PB and MB leprosy and propose that the use of the armadillo
model will be of pivotal importance for the study of these phenotypes.

Methodology

Review of the literature
On September 30th, 2015, we searched PubMed with the search terms “(leprosy ORMycobac-
terium leprae ORmultibacillary OR paucibacillary OR lepromatous OR tuberculoid NOT
tuberculosis) AND (genetic OR association OR risk factors)” and identified ~1,500 publica-
tions on leprosy (~1,000 on genetics and ~500 on epidemiology). Epidemiological data were
also gathered from the Weekly Epidemiological Records released by the World Health Organi-
zation (WHO).

Results and Discussion

Leprosy classification
As early as 600 B.C., the Sushruta-Samhita (the most ancient Indian medical book), distin-
guished kushta, a lepromatous form of the disease, from rakta, a neural form [7]. In 1881,
Danielssen and Boeck distinguished a nodular and an anesthetic leprosy [8], and in 1895, Han-
sen and Looft used the terms “anesthetic” and “maculo-anesthetic” [9]. In 1935, Wade noticed
that some patients could move from a tuberculoid state to a lepromatous one, and named “bor-
derline” the form of leprosy of these patients [10]. Nowadays, once the diagnosis of leprosy is
made, the identification of the clinical form is critical because it will determine the length of
multidrug therapy [11]. In addition, the clinical determination of leprosy subtype provides
major pathophysiological information, which was explored early on by immunologists but, as
already mentioned, was somewhat disregarded by the genetics community.

International Leprosy Conferences in Cairo (1938), La Havana (1948), and Madrid (1953)
paved the way for the subclassification of the disease into three classes, based on clinical (aspect
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of lesions), bacteriological (identification of bacilli), immunological (lepromin test), and histo-
logical (nature of the infiltrate, grouping of bacilli) criteria, known as the Madrid definition.
The three Madrid classes are: Tuberculoid (T), Borderline (or Dimorphic) (B), and Leproma-
tous (or Virchowian) (L). The Madrid classification scheme is still used in some countries like
Brazil [12]. A major development came with the leprosy classification by Ridley and Jopling in
1966, which aimed to better characterize the borderline group that could comprise patients
with different clinical, immunological, bacteriological, or histological findings. Ridley and
Jopling proposed five subtypes: Tuberculoid Tuberculoid (TT), Borderline Tuberculoid (BT),
Borderline Borderline (BB), Borderline Lepromatous (BL), and Lepromatous Lepromatous
(LL) [13]. The latter form may itself be refined in “subpolar” (LLs) and “polar” (LLp) on a clini-
copathologic basis [14].

To facilitate diagnosis and treatment of leprosy in the field, WHO proposed in 1982 a sim-
plified classification. It relied on clinical findings and the bacteriological index (BI), calculated
by counting 6 to 8 stained smears under the 100x oil immersion lens in a smear made by nick-
ing the skin with a sharp scalpel and scraping it. The results are expressed on a logarithmic
scale from 0 to 6+ [15]. The WHO-82 classification distinguishes PB leprosy, which includes
TT and BT patients with BI� 1, fromMB leprosy, which comprises BB, BL, and LL patients,
as well as those with a BI� 2 [11]. In 1988, WHO changed its bacteriological criteria and any
patient with a positive BI was now classified as MB (“WHO-88” definition) [16]. Finally, in
1996, WHO switched for an operational definition to optimize treatment allocation: patients
with less than five skin lesions are diagnosed as PB, while all others are diagnosed as MB
(“WHO-96” definition). A side effect is that this operationally driven classification has eclipsed
pathophysiological aspects differentiating the leprosy forms. A summary of all classifications is
given in Box 1.

To which extent the evolution of the WHO classification system impacted on the counts of
PB and MB forms is unclear. In a Vietnamese sample of 1,182 leprosy cases, 1,127, 1,074, and

Box 1. Different Classifications of Leprosy
Madrid (1953): T (Tuberculoid), B (Borderline) and L (Lepromatous), according to clin-
ical (skin and nerve lesions), bacteriological (bacteriological index [BI]—a measure of
the number of acid-fast bacilli in the dermis expressed in a logarithmic scale), immuno-
logical (lepromin reaction), and histological (infiltrate’s nature) criteria.

Ridley–Jopling (1966): TT (Tuberculoid Tuberculoid), BT (Borderline Tuberculoid),
BB (Borderline Borderline), BL (Borderline Lepromatous), and LL (Lepromatous Lepro-
matous), defined according to clinical, bacteriological, immunological, and histological
criteria.

WHO (1982): Paucibacillary (PB) or Multibacillary (MB) according to Ridley–Jopling
(or Madrid) classifications and the BI. PB = TT + BT (or T) and BI� 1; MB = BB + BL +
LL (or B + L) or BI� 2.

WHO (1988): PB = TT + BT and BI = 0; MB = BB + BL + LL or BI� 1.
WHO (1996): PB or MB according to the sole number of skin lesions (�/>5).
�����

Polarization: process that drives an infected individual towards the PB or the MB
form (in our manuscript, irrespective of the classification used to define PB and MB
cases).
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1,051 could be classified according to WHO-82 (mainly relying on Ridley and Jopling criteria),
WHO-96 (which only relies on the number of lesions), and the physicians, respectively (S1
Appendix). The physician classification was the one that in practice determined which multi-
drug regimen each patient received. The proportion of MB patients was 66% (695/1,051), 60%
(672/1,127), and 41% (435/1,074) with the final physicians’, WHO-82, and WH0-96 classifica-
tions, respectively. Fig 1 shows the Venn diagram of MB and PB patients classified according
to the three definitions. The concordance analysis of the three classifications was quantified by
means of the Kappa coefficient for the subset of 943 individuals classified for all three defini-
tions: it was higher between “WHO-82” and “physician” than between “WHO-82” and
“WHO-96” or between “WHO-96” and “physician” (0.88 [0.85–0.91], 0.62 [0.58–0.67], and
0.59 [0.54–0.64], respectively—a common interpretation of the Kappa coefficient is: poor [0–
0.4], medium [0.4–0.6], good [0.6–0.8], and excellent [0.8–1]).

By defining MB and PB forms, an implicit phenotype is the contrast between these two
forms. We define this implicit phenotype as leprosy polarization, i.e., the process that drives
the development of leprosy subtypes, which needs to be differentiated from factors that impact
on only one subtype. Here, we will refer to polarization whenever PB and MB forms are
opposed, irrespective of the criteria used to define PB and MB leprosy.

Epidemiology of Leprosy Subtypes
No epidemiological study specifically dealing with MB or PB leprosy has been published.
Therefore, we based our approach on more general epidemiological studies of leprosy per se
that included information on MB and PB forms. The vast majority of recent epidemiological
studies focused on the contacts of an index leprosy case to identify risk factors for the occur-
rence of secondary cases [17–21]. In this setting, subgroup analysis of clinical forms is not very
powerful, given the low number of such secondary cases: indeed, the detection rate of new
cases is often less than 1% after 4 years of follow-up, requiring 10,000 contacts to ultimately
study 100 secondary leprosy cases [18,19]. Since there is minimal variability within the genome
ofM. leprae, [22–24], pathogen factors are unlikely to contribute to clinical variability. There-
fore, we restricted our explorations to host-related risk factors: sex, age, geographical origin,
and bacille Calmette-Guérin (BCG) vaccination status.

Fig 1. Concordance of leprosy polarization phenotypes according to WHO-82, WHO-96, or physician
definitions in a Vietnamese sample. Venn diagram for the number of patients with PB leprosy (left) and MB
leprosy (right) according to three definitions: WHO-82, WHO-96, and physician in a Vietnamese sample. The
surfaces of overlap are approximately proportional to the number of individuals identically classified by one,
two, or three definitions. There was no individual classified PB by a physician and MB byWHO-82 +WHO-96
as well as no individual classified MB by a physician and PB byWHO-82 +WHO-96.

doi:10.1371/journal.pntd.0004345.g001
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Sex
The number of leprosy cases reported in adults is consistently higher among men, with a male
to female sex ratio ranging between 1.5 and 2 [25]. Few exceptions of a sex ratio<1 have been
described in some African countries such as Burkina Faso, Kenya, or Uganda [26]. Exposure,
reporting, or access to care biases cannot fully explain such a difference: during a massive out-
break on the island of Nauru in the Pacific (where leprosy affected a third of the population
during the 1920s and where these biases are expected to play a minor role), the sex ratio was
still 1.5 [27]. Concerning the sex ratio for MB or PB forms of the disease, a very large Brazilian
study that used census data from the Ministry of Health between 2006 and 2010 (40,544 PB
and 29,764 MB cases) showed a sex ratio larger than 2 for MB patients but slightly lower than 1
for PB cases (Madrid classification) [28]. This might explain why, according to the relative pro-
portion of MB and PB forms in a population, the overall sex ratio varies widely and why in
some African countries, where the PB form is predominant, women are overrepresented
among leprosy cases.

Age
Generally, the mean age of MB cases is higher than the one of PB cases, the common explana-
tion being one of a longer period of incubation for the MB form (reviewed in [29]). A study in
Andhra Pradesh (India) in 1962 showed that the proportion of MB cases—corresponding to L/
(L+T) with the Madrid classification—increased from less than 5% between 5 and 9 years of
age to over 25% for patients 25–64 years of age [30]. These proportions were similar to those
observed during the same period in another region from India (Tamil Nadu) [31] and in
Burma (both using the Madrid definition) (Fig 2) [28]. An independent study conducted in
Uttar Pradesh (India) between 2005 and 2010 found the proportion of MB cases to be 54% in
children against 77% in adults (p< 0.001) [32]. Finally, we used the data of the Brazilian study
mentioned above [28] to show that the proportion of MB leprosy continuously increased with
age, from less than 10% before 10 years of age to more than 50% for patients older than 60
years (Fig 2) [28]. The influence of age on the proportion of MB patients was greater in men
than in women, and multivariate analysis showed that the effects of these two factors (age and
sex) on leprosy polarization were independent (Fig 2). In a Vietnamese sample previously men-
tioned, we also observed that age was correlated with a higher proportion of MB patients, and
this correlation was stronger for males than for females (S1 Fig).

BCG
Two meta-analyses have shown that BCG vaccination significantly reduced the risk of devel-
oping clinical leprosy [33,34]. They included 26 and 28 studies, respectively, that used vari-
ous classifications of MB and PB leprosy (Madrid, Ridley–Jopling, WHO-82, WHO-88, and
WHO-96); 22 studies were common to both meta-analyses. The proportion of the observed
protection ranged from 26% to 61%, depending on the studies included. In the first meta-
analysis, the protective effect was greater for MB than for PB patients (78% versus 59%,
p = 0.04). In contrast, in the second study, in which an adjustment was made on the number
of immunizations with BCG and on the type of study (observational versus interventional),
the impact of BCG was not significantly different on the onset of one leprosy form or the
other. A few reports suggested that the LL form is insensitive to vaccination (as these patients
are not able to develop a granulomatous response) [35], while others suggested that BCG vac-
cination may lead exposed individuals to preferentially develop a PB rather than a MB lep-
rosy [36,37].
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Geography
The proportion of MB cases varies greatly across continents but also within each continent,
between neighboring countries: among the countries that reported more than 1,000 cases in
2012, the proportion of MB cases (WHO-96) varied between 45% (Bangladesh) and 92% (Phil-
ippines) [25]. It is unlikely that demographic data such as age and sex explain the observed var-
iability, given that population sex ratios are similar across countries, and the patient age
distribution is relatively homogeneous within a continent.

Endemicity
In 1966, Kenneth Newell, an epidemiologist self-defined as “naïve” about leprosy, published a
seminal paper entitled “An Epidemiologist's View of Leprosy.”He focused on a largely disre-
garded observation that he considered to be very informative: in countries of high endemicity,
the prevalence of lepromatous cases (similar to MB cases as defined by Madrid classification)
was relatively stable (between 5 and 10/1,000). This observation enabled him to disregard some
debated hypotheses about leprosy pathogenesis: (1) the lepromatous form is caused by a more
virulent strain ofM. leprae, (2) lepromatous cases are associated with a greater inoculum and/
or greater exposure, and (3) polarization is linked to an environmental factor common to all
human populations. Conversely, the data were consistent with the hypothesis that a fixed pro-
portion of the infected population presents one or several characteristics that make certain per-
sons more likely to develop a lepromatous form of leprosy. It is therefore reasonable to
consider host genetic factors as a plausible explanation of leprosy polarization [38].

Human Genetics of Leprosy Subtypes
There are many methodological tools in genetic epidemiology that can be used according to
the hypotheses to be tested and the nature of the data. Their main characteristics are

Fig 2. Proportion of multibacillary patients according to age and sex. Proportion of multibacillary patients
according to age and sex are given for two distinct geographic areas: (1) in Brazil, 40,544 PB and 29,764 MB cases
(Madrid classification) were declared over the 2006–2010 period (national data) [28]; (2) in Tamil Nadu (India), during
the 1962–1970 period, 3,963 PB and 1,258 MB cases were collected out of a total of 276,568 persons screened for
leprosy (Madrid classification) [31].

doi:10.1371/journal.pntd.0004345.g002
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summarized in S1 Table [39]. A number of approaches do not require any biological material
and rely only on the information and the knowledge of the familial relationships. These DNA-
independent studies are of particular interest in the context of neglected tropical diseases and
knowledge transfer to endemic countries: they are easier to implement and intrinsically tech-
nology-independent (i.e., their cost has remained low). The following section illustrates how
such DNA-independent methods have contributed to our current understanding of the genet-
ics of leprosy subtypes.

DNA-independent analyses: familial correlations, twin and segregation
studies
Numerous studies have established that among close contacts of index cases (e.g., individuals
living in the same house or sharing the same bed as the case), those biologically related to the
index case are significantly more at risk of developing leprosy per se [17,18,21]. Intriguingly,
no study has focused specifically on the subtype of leprosy developed by these secondary cases
according to their demographics (age, sex, etc.,) or those of the index case, further substantiat-
ing that these phenotypes are neglected. Conversely, twin studies considered subtypes in addi-
tion to leprosy per se [40,41]. Among them, a study of twin pairs in which at least one twin
suffered from the MB subtype of leprosy (Madrid classification) found a higher concordance
rate of the MB subtype in monozygotic (MZ) as compared to dizygotic (DZ) pairs (70% in MZ
versus 20% in DZ) [40]. On the opposite, for the PB form, concordance rates between MZ and
DZ twins were very close. As we mentioned earlier, there is a greater proportion of MB leprosy
among males [25], and this probably marginally increased the concordance rate in MZ twins
versus DZ ones (which may be of opposite sex). Finally, several familial segregation studies in
the Philippines, La Desirade Island, Thailand, and Brazil support a significant host genetic con-
tribution to both MB and PB forms of the disease, although the genetic models were not always
concordant across studies [41–44].

DNA-based analyses: linkage and association studies
Candidate-region or genome-wide linkage studies. Early linkage studies using DNA

were performed on small chromosomal segments around a particular gene of interest chosen
for its known function (“candidate-gene,” or more precisely, “candidate-region” hypothesis).
While the vast majority of these studies focused on leprosy per se, one analyzed the genetic
control of leprosy polarization as defined by Ridley and Jopling [45]. It included 118 sibs (i.e.,
brothers and/or sisters) from 20 Vietnamese families and covered 6 chromosomal regions of
interest: 1p36 around tumor necrosis factor receptor 2 (TNFR2), 5q31–q33 around a group of
cytokines, 6p21 around TNF, 12p13 around TNFR1, 12q13 around vitamin D receptor (VDR),
and 10p13. Polarization was coded as a “quantitative” trait, giving an increasing weight
throughout the Ridley–Jopling spectrum (TT<BT<BB<BL<LL). The study detected signifi-
cant linkage of the 6p21 region, including TNF, with leprosy polarization [45].

Studies from Jamieson and Miller in a Brazilian sample reported linkage of leprosy per se
with chromosomal regions 17q11–q21 [46], 6p21, 17q22, and 20p13 [47]. These studies subse-
quently defined two groups, T� and L�. The T� group included patients classified as TT, BT,
and BB according to the Ridley–Jopling scale, while the L� group comprised BL and LL
patients. Using this uncommon classification (BB usually comes along with BL and LL in the
MB group), significant linkage of the 17q11 and 20p13 chromosomal regions was detected for
the L� phenotype but not for the T� group. Finally, a linkage study fromMalawi found a signif-
icant linkage signal between polarization and genetic markers on the 21q22 [48] chromosomal
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region (WHO-88 definition). However, as for most regions identified by linkage, the functional
importance of specific genes located in this region awaits confirmation.

The first genome-wide (i.e., no restriction to a particular genomic region) linkage study of
leprosy was performed in India in 2001. The sample included 224 families comprising 245 sib
pairs affected by leprosy [49]. A significant linkage hit (p< 2�10−5) for leprosy was observed
with genetic markers located on chromosomal region 10p13. However, because of the very
high proportion of PB cases (98%; Madrid definition), it was not possible to decide whether the
mapped locus influenced leprosy per se or was specific for the PB form. A strong argument for
the impact of the 10p13 region on leprosy subtypes rather than leprosy per se is the significant
heterogeneity found in a Vietnamese sample between PB and MB individuals (WHO-88,
p = 0.03) [50]. A second study in India added some families to the sample of the first linkage
study (243 families in total, including 233 with only PB children) and identified a second link-
age signal on the 20p12 chromosomal region [51]. Overall, the results of the linkage studies in
Indian and Vietnamese leprosy patients suggest that the 10p13 and 20p12 regions are differen-
tially implicated according to the subtype considered.

Candidate-gene, candidate-region, and genome-wide association studies. Numerous
studies have tested the association between leprosy per se and genetic variants located in bio-
logically relevant candidate genes. These studies were mainly focused on genes from the major
histocompatibility complex (MHC) region, the Toll-like receptors (TLRs), and the cytokine
family [1,2]. Similarly to linkage studies, only a subset of the candidate-gene studies has consid-
ered the clinical form of the disease. Their results are summarized in Table 1.

The strategy of association studies with a candidate gene faces the classical problem of “mul-
tiple testing” (several genes tested and several variants within each gene), which can result in
inflated type I errors if not properly corrected. To avoid inflated type I errors in genetic associa-
tion studies, replication (i.e., confirmation in an independent sample from the same popula-
tion) and validation studies (confirmation in a sample from a different population) are critical.
The problem of inflated type I errors in candidate gene association studies is not specific to lep-
rosy but extends to the whole field of complex traits. The only validated studies for leprosy sub-
type (whether PB, MB, or polarization) are provided by single nucleotide polymorphisms
(SNPs) in genes for Toll-like receptor 2 (TLR2) in Ethiopia [52] and Malawi [53], TNF in India
[54] and Thailand [55], mannose-binding lectin 2 (MBL2) in Brazil [56] and Nepal [57], man-
nose receptor C type 1 (MRC1) in Brazil and Vietnam [58], and MHC class I chain-related
gene A (MICA) in China [59] and Brazil [60]. Finally, the association of interleukin 10 (IL-10)
with polarization has been replicated in two independent Brazilian samples [61,62].

Other associations have only been found once, and the implication of the tested genes in
leprosy pathogenesis must be considered with caution: IFNγ and HLA-G in Brazil [63,64];
TLR4 and leukotriene A4 hydrolase (LTA4H) in Ethiopia [65,66]; vitamin D receptor (VDR)
[67,68], killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 3
(KIR2DS3) [69], heat shock protein 1A (HSPA1A), and IL-23R in India [70,71]; lymphotoxin-
α (LTA) in Malawi [53]; complement fraction 4 (C4A) in Thailand [72]; IL-12B in Mexico [73];
IL-12RB2 in Japan [74]; natural resistance-associated macrophage protein 1 (NRAMP1) in
Mali [75]; laminin 2 (LAMA2) in Indonesia [76]; defensin-β1 (DEFB1) in Mexico [77]; and
optic atrophy 1 (OPA1) in China [78]. Interestingly, for VDR, one study identified a polymor-
phism associated with leprosy when comparing MB to PB [67], while a second study identified
a haplotype when comparing MB to controls and another haplotype when comparing PB to
controls [68]. Finally, a Brazilian study illustrated the impact of clinical classification. Here, the
association of genetic variants in the gene coding for IL-17F was significant for leprosy polari-
zation based on the WHO-88 classification (88 PB and 52 MB patients, odds-ratio [OR] 3.2,
p< 0.05) but not for the WHO-96 definition (53 PB and 87 MB individuals) [79]. As
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Table 1. Studies identifying 28 genes associated with clinical forms of leprosy or its polarization.

Comparison of MB against PB individuals (*)

Gene Country Phenotype Definition Number of
individuals(MB/PB/
Controls)

p Marker (allele, genetic model)

MBL2 [57] Nepal MB versus PB WHO-88 581/343/101 0.01 polymorphism G161A (recessive)

LTA4H [66] Ethiopia MB versus PB WHO-88 443/335/0 0.001 rs1978331 T/C and rs2660898 T/G

LACC1 [81] China MB versus PB WHO-88 305/397/1,225 <0.00001 rs3764147 and rs10507522 (additive)

LRRK2 [81] China MB versus PB WHO-88 305/397/1,225 0.0008 rs1491938 (additive)

NOD2 [81] China MB versus PB WHO-88 305/397/1,225 0.00004 rs9302752 (additive)

RIPK2 [81] China MB versus PB WHO-88 305/397/1,225 0.0008 rs42490 (additive)

TLR4 [65] Ethiopia MB versus PB WHO-88 298/138/197 0.05 polymorphism T1196C (C allele, dominant)

NRAMP1 [75] Mali MB versus PB WHO-88 181/92/201 0.003 30 UTR 4-base pair [bp] insertion/deletion TGTG (het
versus del/del)

MBL2 [56] Brazil MB versus PB Madrid 150/36/214 0.01

IL-10 [61] Brazil MB versus PB WHO-96 166/131/283 0.006 Haplotype -375A/-2849G/-2763C

VDR [67] India MB versus PB Madrid 124/107/165 0.001 TaqI T -> C

IL-10 [62] Brazil MB versus PB WHO-96 143/59/62 <0.01 Haplotype -375A/-2849G/-2763C

MICA [60] Brazil MB versus PB Madrid 153/45/201 0.01 MICA*010 and MICA*027

IL-12RB2
[104]

Japan MB versus PB Madrid 130/46/68 <0.01 A-1035G (G allele, allelic)A-1023G (G allele, allelic)-
650delG (G allele, allelic)A-464G (G allele, allelic)
Haplotype -1035A/-1023A/-650G/-464A

TLR2 [53] Malawi MB versus PB WHO-96 26/184/379 0.04 microsatellite 224pb (in intron 2) (undefined model)

IL-17F [79] India MB versus PB WHO-88 88/52/84 <0.05 T7488C (TT versus TC)

IL-10 [105] Brazil MB versus PB Madrid 65(LL)/43(TT)/240 <0.01 haplotype -1082G/-819C/-592C

LAMA2 [76] Indonesia MB versus PB WHO-88 27/26/58 <0.005 T7809C or V2587A (TC versus TT)

KIR2DS3 [69] Brazil LL versus TT Ridley-
Jopling

65(LL)/42(TT)/289 0.04

Comparison of one leprosy subtype (MB or PB) individuals against controls (*)

Gene Country Phenotype Definition Number of
individuals(MB/PB/
Controls)

p Marker (allele, genetic model)

IL-23R [77] India PB versus
Controls (CTL)

WHO-88 416/427/1,502 0.02 Copy Number Variant (CNV)—77 base amplicon
located at exon 11 of the gene

MRC1[58] Brazil MB versus CTL WHO-88 373/331/396 0.001 rs1926736 (G/A = G396S, G allele, recessive)
rs2437257 (C/G = F407L, C allele, recessive)haplotype
G396-F407

CCDC122
[83]

Vietnam MB versus CTL WHO-88 286/188 0.006 rs3088362 (C/A, A allele, additive)

HLA-DR-DQ
[83]

Vietnam MB versus CTL WHO-88 286/188 0.0003 rs602875 (A/G, A allele, additive)

LACC1 [83] Vietnam MB versus CTL WHO-88 286/188 0.0007 rs3764147 (A/G, G allele, additive)rs10507522 (A/G, A
allele, additive)

TLR2 [52] Ethiopia MB versus CTL WHO-88 298/138/187 0.02 microsatellite 288bp (dominant)

TNF [54] India MB versus CTL Madrid 121/107/160 0.01 G308A (A allele, allelic)

RIPK2 [84] India PB versus CTL WHO-96 137/74/230 0.02 haplotype GA for rs40457 and rs42490

LRRK2 [84] India PB versus CTL WHO-88 137/74/230 0.00001 rs1873613A/G (A allele, allelic)

VDR [68] India MB vs CTL WHO-96 135/87/182 0.001 rs7975232 (= ApaI, genotypic)TaqI-FokI-ApaI
(haplotype T-F-a and T-F-A)

VDR [68] India PB vs CTL WHO-96 135/87/182 0.01 TaqI-FokI-ApaI (haplotype T-f-a)

LTA [53] Malawi MB versus CTL WHO-96 26/184/379 0.003 50 UTR microsatellite (AC/GT)n at -3.5kilobase (101-bp
allele)

HLA-G [64] Brazil MB versus CTL WHO-88 76/70/128 0.02 polymorphism + A3187G (A allele, dominant)

(Continued)
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mentioned above, linkage of the 10p13 chromosomal region with the PB form of leprosy in
India [49] has been confirmed in Vietnam [50]. To characterize the molecular identity of the
genes responsible for the signal in the region, a fine-mapping association study of this candi-
date region was conducted using 1,522 markers and spanned over nine megabases (Mb),
excludingMRC1 [80]. The primary sample included 294 nuclear families from Southern Viet-
nam with 303 sibs affected by leprosy, of which 63% were classified as MB (WHO-96 defini-
tion). The replication sample from the same area consisted of 192 trios (2 parents and 1 child
with leprosy), with 55% MB children. Three SNPs located in the genes coding for nebulette
(NEBL, actin-binding Z-disk protein) and cubilin (CUBN, intrinsic factor-cobalamin receptor),
located 3 Mb apart, were specifically and independently associated with the MB form [80].

The first genome-wide association study (GWAS) for leprosy was published in 2009 [81]. It
included 706 cases and 1,225 controls from China; 4,367 additional controls were added in a
subsequent study published in 2011 [82]. 500,000 SNPs spanned over the entire genome were
analyzed in this sample. The most promising signals were tested in a replication sample includ-
ing 3,254 cases and 5,955 controls, mainly from Eastern China but also from Chinese ethnic
minorities. In total, significant association of leprosy was detected with 18 polymorphisms
assigned to eight genes:HLA-DR-DQ, receptor-interacting protein kinase 2 (RIPK2), tumor
necrosis factor superfamily member 15 (TNFSF15), coiled-coil domain containing 122
(CCDC122), LACcase containing domain 1 (LACC1), nucleotide-binding oligomerization
domain containing 2 (NOD2), Rab32 protein (RAB32), and IL-23R [81,82]. Heterogeneity in
strength of association between the MB and PB groups (WHO-88) was observed for four poly-
morphisms assigned to four genes (LACC1, LRRK2, NOD2, and RIPK2). Validation studies of
the observed associations were conducted in Vietnamese and Indian samples. In a familial
sample from Vietnam including 286 MB and 188 PB leprosy patients (WHO-88), signals
located inHLA-DR-DQ, RIPK2, CCDC122, LACC1, and NOD2 were validated (p< 0.05), and
the effect was stronger in MB patients for HLA-DR-DQ, CCDC122, and LACC1 [83]. In the
Indian case-control study using a smaller population (137 MB and 74 PB cases—WHO-88),
signals in LRRK2 and RIPK2 genes were validated, and the observed effect was consistently
more significant for PB patients [84]. A second study using 48,000 markers located in 2,092
genes was performed in an Indian population in 2010. The primary sample included only 258

Table 1. (Continued)

MICA [59] China MB versus CTL Undefined 50/19/112 <0.05 MICA-A5 (allelic)

IFNγ [63] Brazil PB versus CTL Madrid 59/10/98 0.01 CA repeat in intron 1 (<122bp = "short," 122–126bp =
"long") at risk = "long"

DEFB1 [77] Mexico MB versus CTL Madrid 46/18/151 0.02 G668C (C allele, dominant)

TNF [55] Thailand MB versus CTL WHO-96 24/13/140 0.04 G308A (A allele, undefined model)

OPA1 [78] China LL versus CTL Ridley-
Jopling

109(LL)/175(TT)/583 0.002 rs414237 (A allele, genotypic)rs9838374 (C allele,
genotypic)

C4A [72] Thailand LL versus CTL Ridley-
Jopling

71(LL)/27(TT)/201 <0.01 F1 allele ("functionally inactive")

HSPA1A [70] India TT versus CTL Ridley-
Jopling

0/49(TT)/38 0.03 allele at risk HSP70-1A (allelic)

* The table is divided into two panels: upper panel groups are studies that analyzed the polarization phenotype and lower panel groups are those that

compared MB or PB patients to controls. Studies are sorted according to their decreased sample size. Bold lines correspond to genes that were identified

by GWAS, and underlining corresponds to studies whose main outcome was to identify genes specific to leprosy polarization or a polar form of leprosy.

Hence, all black lines correspond to studies designed to study leprosy per se and a subsequent subgroup analysis for MB, PB, or other polarization

phenotypes.

doi:10.1371/journal.pntd.0004345.t001
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cases and 300 controls from North India. Markers in the TLR1 andHLA-DRB1/DQA1 genes
were significantly associated with leprosy per se. The test for heterogeneity between MB and
PB groups (WHO-88) was not significant for the association with markers of these two genes
[85]. Nonetheless, in both GWAS, leprosy per se was the main phenotype, and only SNPs that
were significant with this phenotype were subsequently tested for heterogeneity between MB
and PB groups. This is not an optimal design (see next section) and may well have missed
SNPs with significant impact on polarization.

Study Design: Benefits of Optimal Hypothesis Testing
The number of genes for which a variant has been associated in one of leprosy’s subtypes or its
polarization (39 associations in 28 genes) (Table 1) is shorter than for leprosy per se (82 associ-
ations in 50 genes). Fig 3 summarizes the distribution of the associations according to leprosy
phenotypes. Several scenarios may explain the difference. First, since most studies were con-
ducted in samples used for leprosy per se studies, by design patient numbers for subtype analy-
sis were smaller than for leprosy per se, resulting in lower power to detect genetic variants
impacting on leprosy subtype. This is consistent with the fact that most reported associations
concerned the MB form, which is more common in endemic countries except India. Second,
an inadequate definition of MB and PB forms can also lead to a loss of power, as illustrated by
the study of IL-17F [79]. Third, most studies analyzing leprosy polarization did not account for
demographic risk factors: yet, the study of leprosy per se has revealed that the inclusion of
these covariates was essential (e.g., the association of leprosy per se with PARK2 or LTA was
three to five times stronger in young patients [86,87]).

Schematically, most studies first look for association by comparing leprosy cases to controls,
then derive a p-value for a given genetic marker and a given genetic model (pper se). Only in a
second step are additional tests for significance of association by comparing MB to all controls

Fig 3. Distribution of 91 published associations between a genetic variant and leprosy per se, any leprosy subtype (i.e.,
MB or PB), or polarization. The + and–symbols refer to the presence or the absence of association of a given gene with one of
the leprosy subtypes in the study. The red quadrant refers to studies for which the primary outcome was the association with
leprosy polarization or the PB subtypes; the blue quadrant refers to studies that could not conclude an association with leprosy per
se but did conclude an association with one of its subtypes; the green quadrant refers to studies that identified an association for
both leprosy per se and one of its subtypes; and the grey quadrant refers to studies for which an association with only leprosy per
se was reported.

doi:10.1371/journal.pntd.0004345.g003
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(pMB) and PB to all controls (pPB) conducted. If pMB < pper se < pPB, one might conclude that
this SNP is associated with leprosy and has a major effect on MB patients (if pMB < pper se <
threshold) or that this SNP is associated with MB leprosy only (if pMB < threshold< pper se).
Such a general strategy has several major shortcomings, including the well-known fact that
p-values contain little meaningful information: odds ratios should be compared instead. Sec-
ond, correction for multiple testing should be performed when testing for leprosy subtypes
after testing for leprosy per se. Third, heterogeneity tests (used to compare PB versus MB) are
generally not very powerful.

The optimal strategy to identify variants that specifically differentiate MB from PB patients
requires (1) refining the phenotype, (2) balancing the number of patients in each class, and (3)
testing the polarization phenotype as a whole. In Fig 4, we give an example in which this opti-
mal strategy can reveal a significantly associated SNP that the classical strategy (testing leprosy
per se first and second its subtypes) could not highlight because of a lack of power.

Clearly, it is vital to use specific experimental designs according to the hypotheses to be tested
and not to limit future investigations to the simple subanalysis of leprosy per se studies. In partic-
ular, comparing MB (or PB) individuals with controls does not allow determining if tagged genes
are implicated in the infection, the occurrence of the particular form of leprosy, or even leprosy
per se. By contrast, testing MB versus PB individuals is a powerful strategy to identify “specific”
polarization genetic determinants. Another part of the study design is the choice of the genetic
variants to be tested: it can either be DNA (SNP or any structural variant, such as copy number
variant), RNA, or epigenetics (methylation or glycosylation status, for example). Finally, the size
of the genotyping effort (candidate gene, candidate region, GWAS) is critical, since the multiple
testing will be much less an issue when testing few strong variants in a candidate gene as opposed
to several millions of SNPs in a GWAS. In the face of limited resources and relatively small sam-
ple sizes, a focus on strong candidates can provide a very substantial increase in power. In the
next section, we argue that several powerful strategies able to generate appealing candidate genes
have been surprisingly overlooked in the case of leprosy and its subphenotypes.

Generation of Candidate Genes

The human track
BecauseM. leprae cannot be cultivated in vitro, human studies have emerged as the only source
for genetic studies. Candidate genes, are mainly chosen from a list of genes involved in the
human immune system: MHC, TLR, and cytokine family genes have been the most popular
choices [1,2]. By contrast, “candidate pathways” have never been tested. Definitions of path-
ways can be derived from the screening of in silico databases such as the Kyoto Encyclopedia of
Genes and Genomes (KEGG), Gene Ontology (GO), or Search Tool for the Retrieval of Inter-
acting Genes (STRING). Pathway-based approaches allow extending the search for genetic
markers (most typically SNPs) significantly associated with a phenotype from a single gene
(~2–10 SNPs) to the pathway level (~100–1,000 SNPs, depending on the size of the pathway).
Similarly, pathway-based approaches can be used in the context of GWAS. Such strategies have
been used successfully in cancer research [88,89], but have not been reported yet for leprosy.

Large GWAS remain a promising approach for the study of leprosy [90]. However, GWAS
rarely have sufficient power to identify genetic variants that are rare at the population level.
Such rare variants may potentially have strong biological effects and contribute strongly to the
onset of the disease in a given individual. Such variants, although by themselves of minor
importance at the population level, can be critical to highlight pathways, as illustrated by the
implication of the IFNγ–IL-12/23 pathway in tuberculosis through the detection of private
mutations causing susceptibility to mycobacterial diseases in a limited number of individuals.
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The knowledge of such “Mendelian” or “monogenic” causes of leprosy is currently lacking.
Yet, the identification of such cases should be of high priority because of the dearth of relevant
in vitro and in vivo experimental models for leprosy.

The armadillo track
The nine-banded armadillo is a natural host ofM. leprae that can be used for the study of the
in vivo propagation of the bacilli [91–93]. Armadillos are cat-sized mammals found only in the
Americas that can live for up to 12 years and have a cool body temperature (32–35°C). The
majority of nine-banded armadillos inoculated intravenously withM. leprae develop a

Fig 4. Statistical impact of the hypothesis used to test for an association between a genetic variant and leprosy polarization. In the common
case-control study design, a standard test of association between a genetic variant and the phenotype under study is to compare allelic frequencies (f)
between the group of cases and the group of controls. Here, we consider a sample including an even number of controls and leprosy cases, equally
distributed between PB and MB. In addition, we fixed the frequency of the allele of interest to 0.5 among the controls (fC = 0.5). In each panel, fPB and fMB

(x and y axis) are the allele frequencies among PB and MB individuals, respectively. The first strategy directly compares MB to PB cases (Panel A). The
second strategy first tests PB versus controls (Panel B) and MB versus controls (Panel C) before performing a heterogeneity test MB versus PB, possibly
after testing leprosy per se versus controls (panel D). The red SNP is a variant for which fMB 6¼ fPB and for which the association is significant with the first
strategy but not with the second (the red SNP is in the gray area where the null hypothesis H0 cannot be rejected). This second strategy is indeed
hampered by correcting for multiple testing (testing MB versus PB after testing PB versus controls and MB versus controls) as well as the usual low power
of heterogeneity tests.

doi:10.1371/journal.pntd.0004345.g004
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disseminated form of the disease that is similar to multibacillary leprosy in man and, in partic-
ular, exhibits severe nerve lesions [94]. A study that included 392 wild armadillos affected by
the disease in the United States showed that more than 80% were MB according to Ridley–
Jopling (72% LL and 11% BL), regardless of their geographic origin (either from Louisiana, an
enzootic region, or from Florida, a nonzoonotic area). Still, 17% were classified as PB. Hence,
while armadillo is usually considered as a model for multibacillary leprosy, it can also be used
to study polarization. The armadillo genome has been sequenced and annotated [95,96].
Although to date only one armadillo has been fully sequenced, additional sequencing will
enable comparison of genetic variants between mammals that develop leprosy (only armadillo
and human) and those that do not. Any variants unique to armadillo and humans might offer
valuable insight into susceptibility, while genes tagged for comparisons of MB and PB armadil-
los might provide useful insight into leprosy polarization.

Armadillos also have a unique characteristic that makes them particularly interesting for
genetic studies, which is polyembryony (always giving birth to monozygotic quadruplets). This
peculiarity can help distinguish between environmental and genetic factors that favor the pheno-
type. Adams et al. observed that within each set of sibling armadillos experimentally infected with
M. leprae and bred in the same environment, the results of bacteria harvests were similar: this is a
strong argument in favor of a major role of host genetics in the ability to fight the bacteria [91].

The pleiotropic track
In the absence of functional studies specific to leprosy, some genes have been explored in other
diseases that share a common genetic background with leprosy. Inflammatory bowel disease
(IBD) is a striking example. Genetic studies have revealed common signaling pathways
between leprosy and Crohn’s disease (CD) [97,83,2], fostering an ongoing debate about a possi-
ble contribution of mycobacteria to CD [98–101]. The analogy can be pursued further by com-
paring the two main forms of IBD, CD and ulcerative colitis (UC), with the two clinical forms
of leprosy. Indeed, PB leprosy and CD preferably involve Th1 signaling, while MB leprosy and
UC involve a Th2 response [102]. GWAS on IBD have identified 163 loci associated with IBD:
110 were common to both diseases, 30 specific for CD, and 23 for UC [103]. Among the genes
specific for CD, RIPK2, LACC1, and NOD2 have been shown to be associated in leprosy studies
but not specifically with the PB form (NOD2 and RIPK2 with leprosy per se and LACC1 with
MB leprosy). To systematically test our hypothesis that CD and PB leprosy on the one hand
and UC and MB leprosy on the other hand share some specific susceptibility genes, it will be
necessary to replicate CD- and UC-specific genes in PB and MB subsets, respectively. If correct,
this approach will allow scientists working on leprosy to use advances in the genetics of IBD to
derive an architecture for the genetic determinants of leprosy.

Conclusion
Here, we summarized the accumulated evidence for susceptibility genes acting at the polariza-
tion level that do not influence the onset of leprosy disease. We highlighted that precise pheno-
type characterization is crucial for the identification of genes driving polarization. Since there
is no conventional animal model for leprosy while armadillo is not widely available, the
“reverse genetics” approach through genetic epidemiology remains an attractive strategy to
decipher the physiopathology of this neglected tropical disease, of which polarization is a
major aspect. Importantly, such progress can only come from a close collaboration between
physicians, biologists, epidemiologists, and geneticists. Leprosy, so long a cause of social isola-
tion and stigmatization of those who suffer the disease, will only be eradicated by a joint effort
of all components of the scientific community.
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Key Learning Points

• Age and sex are two independent risk factors for leprosy polarization.

• Males who develop leprosy at an older age display a higher proportion of the multiba-
cillary form as compared to younger affected individuals.

• The most powerful method to identify genes or markers associated with leprosy polari-
zation is to directly compare multibacillary with paucibacillary patients (a design used
by a minority of leprosy genetic studies).

• The nine-band armadillo model may prove very helpful in the search for genetic deter-
minants of leprosy and, particularly, its polarization.
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