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Abstract

Background

Cynomolgus macaques (Macaca fascicularis) represent a feasible model for research on
Chagas disease since natural T. cruzi infection in these primates leads to clinical outcomes
similar to those observed in humans. However, it is still unknown whether these clinical sim-
ilarities are accompanied by equivalent immunological characteristics in the two species.
We have performed a detailed immunophenotypic analysis of circulating leukocytes
together with systems biology approaches from 15 cynomolgus macaques naturally
infected with T. cruzi (CH) presenting the chronic phase of Chagas disease to identify bio-
markers that might be useful for clinical investigations.

Methods and Findings

Our data established that CH displayed increased expression of CD32* and CD56™ in
monocytes and enhanced frequency of NK Granzyme A* cells as compared to non-infected
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Conclusions

Altogether, these findings demonstrated that the similarities in phenotypic features of circu-
lating leukocytes observed in cynomolgus macaques and humans infected with T. cruzi fur-
ther supports the use of these monkeys in preclinical toxicology and pharmacology studies
applied to development and testing of new drugs for Chagas disease.

Author Summary

T. cruzi is the parasite responsible for Chagas disease, a neglected tropical illness, present
in endemic and also in non-endemic countries. T. cruzi parasites are spread mainly by a
vector’s bite but can also be transmitted by blood transfusion, organ transplant, laboratory
accidents, congenitally and by ingestion of contaminated food. Non-human primates that
are also predisposed to become infected, live in places where vectors and T. cruzi exist.
Similar clinical sequelae are observed in these animals when compared to humans who are
infected with T. cruzi. A better understanding of the pathogenesis of T. cruzi-infected non-
human primates may bring new advances to understanding human infection. Here, we
explored the immunological features of cynomolgus macaques naturally infected by T.
cruzi, aiming to contribute to the validation of this species as an appropriate experimental
model. Infected animals displayed a similar immunological profile to that observed in
humans, with high activity of cytotoxic cells and expansion of macrophages and T-cell
subsets. Furthermore, by using bioinformatics tools, we demonstrated that CD14"CD56"
and CD3"HLA-DR cells are major determinants to segregate CH from NI group, fol-
lowed by innate and adaptive cell subpopulations. Altogether, our data suggest that non-
human primates are an appropriate model to study Chagas disease.

Introduction

The haemoflagellate Trypanosoma cruzi causes Chagas disease, one of the most important
neglected tropical diseases of humankind [1]. There are currently an estimated 6 million to 7
million people infected worldwide, predominantly in Latin America, where infection with T.
cruzi is endemic, and more than 25 million people are at risk of becoming infected [2]. Never-
theless, non-endemic areas are also at risk of an increasing health curve burden of Chagas dis-
ease, mainly due to the high level of emigration from endemic to developed countries [3].

T. cruzi infection usually progresses from an acute infection to a chronic disease character-
ized by low, but persistent parasitism, accompanied by a complex host-parasite relationship
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and imbricate activation and modulation of immunological events [4]. Besides the relevance of
the immune system to the development and maintenance of different clinical forms of Chagas
disease [4], immunological events seem to be associated with the therapeutic efficacy of benzni-
dazole [5,6], which is the drug of choice for treating Chagas disease. Despite the rapid advances
in Chagas disease research from basic research, further investigation is required to decipher
several parasite-host interaction mechanisms in order to support the rational proposal of novel
diagnostic strategies, supportive clinical monitoring tools, the discovery of new drugs, and the
establishment of combined multi-drug therapeutic protocols.

In the field of drug development, the validation of experimental models is essential for
enabling valid pre-clinical trials. Although murine and canine experimental models have been
used for research on Chagas disease, in regard both to clinical disease manifestation and pre-
clinical drug testing [7,8,9], particular physiological features of these mammalian hosts suggest
that other models more closely related to humans are required for pre-clinical trials to ensure
validity of translation of results to the human condition.

Several non-human primates are predisposed to get naturally infected by T. cruzi and
develop similar clinical outcomes to those observed in human Chagas disease [10,11]. There
have been reports of natural infection of T. cruzi in cynomolgus macaques (Macaca fascicu-
laris), and the development of cardiomyopathy consistent with Chagas disease supporting the
notion that these Old World non-human primates can manifest similar clinical disorder as
observed in human Chagas disease [11,12]. Cynomolgus macaques are an important non-
human primate in biomedical research and are widely used in drug development, drug testing,
and toxicology. In addition to their small body size, the similarities to humans in physiological
features and susceptibility to infectious diseases make cynomolgus macaques as experimental
models for Chagas disease pre-clinical investigations and drug trials. To date, despite several
studies that have been conducted with non-human primates infected with T. cruzi [11,12], the
detailed immunological events triggered by the T. cruzi infection in any non-human primate
remain to be elucidated. The investigation reported here has applied a systems biology
approach to bring insights that improve our comprehension of the immunological aspects of
T. cruzi infection in the cynomolgus macaque model. Cytomics represents an innovative tool
of systems biology that aim to determine the molecular phenotype at the single cell level and
further represent its neighborhood connections in cellular systems [13,14]. Conventional and
multi-color fluorescence-based flow cytometry at the single-cell level, associated with bioinfor-
matics software, has become an important tool in cytomics systems biology, and we have used
it for analyses that link the dynamics of cell phenotype and function at high content and high
throughput.

In this study we have performed a detailed single-cell phenotypic analysis of peripheral
blood leucocytes and applied conventional and systems biology approaches to evaluate the
immunological features of cynomolgus macaques naturally infected with T. cruzi, aiming to
identify putative biomarkers that have similarities to those of humans infected with T. cruzi.
Our findings provide further data to validate cynomolgus macaques as a model for pre-clinical
studies of Chagas disease.

Material and Methods
Study Population

The experiments were carried out with 26 cynomolgus macaques consisting of 21 females and
five males. All subjects were submitted to serological screening tests to detect anti-T. cruzi anti-
bodies by enzyme-linked immunoassay (ELISA; Bio-Manguinhos; Oswaldo Cruz Foundation,
Rio de Janeiro, Brazil) and immuno-chromatographic assay (Chagas STATPAK; Chembio
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Diagnostic Systems, Medford, NY). Based on the serological status, the primates were segre-
gated into two groups, referred to as: T. cruzi naturally infected primates (CH), presenting pos-
itive serology in both tests, comprising 12 females and three males (median age = 12 years, age
ranging from 2-20 years; median weight = 3.5kg, ranging from 1.9-7.9 kg); and non-infected
controls (NI), including nine females and two males (median age = 13 years, age ranging from
1-20 years; median weight = 4.9kg, ranging from 1.9-7.6 kg), presenting negative serology in
both tests. All T. cruzi-naturally infected cynomolgus enrolled in the present investigation pre-
sented the indeterminate chronic phase of Chagas disease, defined by the absence of patent
parasitemia characteristic of chronic Chagas disease and by meticulous organ inspections car-
ried out during necropsy to access the macroscopic aspects of esophagus, colon and heart. The
gastrointestinal tract did not present any macroscopic sign of megaesophagus or megacolon,
suggestive of digestive clinical form of Chagas disease. Moreover, the myocardium of all ani-
mals presented a macroscopically normal aspect, without signs of wall aneurysms. Moreover,
the volume and the weight of all hearts were within normal limits. Together, these features ful-
filled the criterion described by Dias et al. [15].

Ethics Statement

The cynomolgus macaques (Macaca fascicularis) included in this cross sectional study were
housed in metal and concrete indoor/outdoor enclosures at the Southwest National Primate
Research Center (SNPRC), San Antonio, TX, USA. The macaques were provided water and
food ad libitum, the food consisting of commercial monkey chow, vegetables and fruits. The
animals were maintained in accordance with the Guide for the Care and Use of Laboratory
Animals under protocols approved by the Institutional Animal Care and Use Committee
(#1050MF). This study was conducted in accordance with the U.S Animal Welfare Act, and
the Public Health Service Policy on Humane Care and Use of Laboratory Animals.

Blood Samples

General anesthesia was achieved by immobilizing the animals with an intramuscular injection
of ketamine hydrochloride (10mg/kg) and valium (5mg). Besides that, the animals were kept
up on isofluorane (1.5%) inhalation. Following anesthesia, 5mL sample of peripheral blood
was collected from the femoral vein of each animal using ethylenediamine tetraacetic acid
(EDTA) as the anticoagulant. After blood collection, the immunophenotypic features of
peripheral blood leucocytes were analyzed by flow cytometry.

Monoclonal Antibodies Used for Immunophenotyping

Mouse anti-human monoclonal antibodies (mAbs) specific for cell surface markers, showing
cross-reactivity to non-human primates, were used in this study. Multiparametric flow cytome-
try immunophenotyping approaches were carried out by simultaneous use of fluorescein iso-
thiocyanate-FITC, phycoerythrin-PE, PerCP-Cy5.5, APC or Alexa fluor 700 conjugated mAbs.
The panels were assembled with anti-CD4 (L200), anti-CD14 (322A-1), anti-CD16 (3G8),
anti-CD32 (FLL.826), anti-CD64 (10.1), anti-Granzyme A (CB9), anti-Granzyme B (GB11)
and anti-Perforin (DG9) antibodies labeled with FITC; anti-CD4 (L200), anti-CD14 (M$P9),
anti-CD54 (LB-2), anti-CD56 (B159) and anti-CD69 (FN50) antibodies labeled with PE; anti-
CD4 (L200), anti-CD8 (SK1) and anti-HLA-DR (L243) antibodies conjugated with
PerCP-Cy5.5; anti-CD8 (3B5), anti-CD16 (3G8) and anti-CD20 (2H7) antibodies conjugated
with APC and anti-CD3 (SP34-2) antibodies conjugated with Alexa fluor 700. Fluorescent
labeled mouse isotypic reagents were included as internal controls in all flow cytometric
batches.
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Immunostaining for Cell Surface Markers

Whole blood cell samples were used for immunophenotypic analysis as recommended by the
monoclonal antibody manufacturer, Becton- Dickinson (Mountain View, CA, USA), modified
as follows: 100pL of whole peripheral blood was incubated with 5pL of undiluted fluorescent
labeled mAb in 12x75mm tubes in the dark, for 30 min at room temperature. Following incu-
bation, lysis of erythrocytes was performed by the addition of 2mL of FACS Lysing Solution
(Becton Dickinson Biosciences Pharmingen, San Diego, CA, USA) vortexing, followed by incu-
bation in the dark for 10 min at room temperature. The leukocyte suspension was then washed
twice with phosphate-buffered saline (PBS) containing 0.01% sodium azide. Stained cells were
tixed with 200pL of FACS-FIX Solution (10g/L paraformaldehyde, 10.2g/L sodium cacodylate,
6.65 g/L sodium-chloride, 0.01% sodium azide) and stored at 4°C, up to 24h, until flow cytome-
try processing.

Intracellular Cytotoxicity Markers Staining of CD16™ and CD8™ Cells

Intracellular analyses of Granzyme A, Granzyme B and Perforin in CD16" and CD8" cells
were performed by staining 100uL of whole blood with 5pL of anti-CD16 or anti-CD8 mAbs,
in the dark for 30 min at room temperature. Following incubation, erythrocytes were lysed and
leukocytes were fixed with FACS-FIX Solution, and the remaining cell suspension was permea-
bilized with 2mL of FACS perm-buffer (FACS buffer supplemented with 0.5% saponin,
Sigma), in the dark for 10 min at room temperature. Following, cells were washed with 2mL
and resuspended into 100puL FACS perm-buffer. The fixed/permeabilized, membrane-stained
leukocyte suspension was then incubated with 5uL of anti-Granzyme A, anti-Granzyme B or
anti-Perforin in the dark, for 30 min at room temperature. After intracytoplasmic staining, the
cells were washed once with FACS perm-buffer, followed by one wash with FACS buffer and
then fixed in 200pL of FACS-FIX Solution and stored at 4°C, up to 24h, until flow cytometry
processing.

Flow Cytometry Acquisition and Analyses

A total of 30,000 events per sample were acquired in a CyAn ADP flow cytometry analyzer
(Beckman Coulter, Inc., Brea, CA, USA). Data acquisition and analyses were performed using
the Summit software 4.3.01 (Beckman Coulter, Inc., Brea, CA, USA). Distinct gate strategies, as
previously described by Vitelli-Avelar et al. [16], were applied for data analysis using the
Flow]Jo software (version 9.4.1, TreeStar Inc. Ashland, OR, USA).

Data Analysis

Conventional statistics. Comparative analysis between groups was performed by non-
parametric Mann Whitney test, using GraphPad Prism software (version 5.03, San Diego, Cali-
fornia, USA). Additional analysis was performed by Spearman’s correlation test. Significance
was set at p<<0.05.

Biomarker networks assembling. Biomarker networks were assembled to assess the asso-
ciation between cell subpopulations (monocytes, NK cells, T cells and B cells) and their subsets
for each clinical group. Significant correlations representing the interaction between biomark-
ers tested were compiled using the open source software Cytoscape (version 3.1.1), as previ-
ously reported [17]. The biomarker networks were constructed using circle layouts with each
biomarker represented by specific globular nodes (NI = white nodes; CH = black nodes). Con-
necting edges represent correlation scores categorized as positive strong (r > 0.68; thick black
line), positive moderate (0.36 < r < 0.68; thin black line), negative strong (r < -0.68; thick gray
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dotted line), negative moderate (-0.68 < r < -0.36; thin gray dashed line) as proposed by Taylor
[18].

Heatmaps and decision tree analysis. The heatmaps were produced using the heatmap.2
function in the R (Project for Statistical Computing Version 3.0.1) and gplots package. All anal-
yses were performed using customized functions available from Bioconductor packages. After
dataset analysis, a decision tree was generated for each heat map. The decision trees, the most
widely used machine learning algorithms, were used to select the minimal set of phenotypic
features that efficiently segregated groups. The decision tree was built using the WEKA soft-
ware (Waikato Environment for Knowledge Analysis, version 3.6.11, University of Waikato,
New Zealand). This method analyzes all the phenotypic attributes in the training set and selects
the most relevant attribute that maximizes the information gain as the root node. Following,
the method continues searching for additional attributes for group segregation. In order to esti-
mate the classification accuracy of the decision tree models on new data with unknown class
labels, a 10-fold cross validation methodology available in the WEKA software was applied.

Results

Increased Expression of CD32* and CD56™ Activation Markers on
Monocytes of T. cruzi-Infected Monkeys

The analyses of monocyte subsets and activation status are shown in Fig 1 A. Data analyses
revealed that the frequency of CD14"CD16" macrophage-like cells and CD14" HLA-DR™"
pro-inflammatory monocytes subsets did not differ between groups. However, despite the
unaltered expression of CD64, monocytes from T. cruzi-infected monkeys showed increased
expression of activation-related surface markers, such as CD32 and CD56 (Fig 1A).

Enhanced Frequency of NK Granzyme A* Cells Are Observedin T.
cruzi-Infected Monkeys

The frequency of NK-cell subsets, along with the intracytoplasmic expression of cytotoxicity-
linked molecules and activation-related surface markers are shown in Fig 1B. Despite no differ-
ence in the frequency of circulating NK-cell subsets, a higher percentage of NK Granzyme A”*
cells was observed in T. cruzi-infected monkeys as compared to non-infected monkeys. No dif-
ferences in the percentage of Granzyme B" and Perforin®, or in CD69" or CD54" NK cells,
were observed between groups (Fig 1B).

Higher Expression of Adhesion/Activation Molecules by T-Lymphocytes,
Particularly CD54 and HLA-DR within the CD8" T-Cell Subset, Are the
Hallmarks of T. cruzi-Infected Monkeys

The analyses of T-cell subsets, adhesion molecule expression and activation status are shown in
Fig 2A. Although no differences were observed in the frequency of circulating T-lymphocytes
and CD4" or CD8" T-cell subsets, higher percentages of CD3"CD54" cells and CD8"CD54" T-
cells were found in infected monkeys than in non-infected monkeys (Fig 2A). The analysis of
activation-related markers revealed an increased percentage of HLA-DR™ T-cells, selectively
within the CD8" T-cell subset, in infected monkeys, with no difference in the percentage of
early activated CD69" T-cells. No significant differences were found in adhesion molecule
expression or activation status of the circulating CD4" T-cell subset (Fig 2A).
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Fig 1. Innate immunity features from cynomolgus macaques naturally infected with T. cruzi (CH) and non-infected controls (NI). (A) Flow cytometry
immunophenotyping platforms were assembled to quantify the percentage of macrophage-like (CD14*CD16") and pro-inflammatory
(CD14*CD16*HLA-DR*™") events within gated monocytes. Activation status was estimated by the analysis of CD56 and FcyR (CD32, CD64) expression by
circulating monocytes, and data are reported as the Mean Fluorescence Intensity (MFI). (B) Analyses of NK-cells were performed to quantify NK
subpopulations (CD3'CD16*CD56°, CD3'CD16*CD56" and CD3'CD16"CD56™), the cytotoxicity profile (Granzyme A, Granzyme B and Perforin) and
activation markers (CD69 and CD54). The results are expressed as mean percentage with standard error. Significant differences at p<0.05 are identified by
asterisks (*).

doi:10.1371/journal.pntd.0004302.9001

Increased Expression of Granzyme A and Perforin Intracytoplasmic
Markers Underscore the Enhanced Cytotoxicity-Linked Pattern of
Circulating CD8+ T-Lymphocytes from Infected Primates

Additional analyses of cytotoxicity-linked intracytoplasmic marker expression by CD8" T-lym-
phocytes are shown in Fig 2B. The results revealed an increased frequency of Granzyme A* as
well as Perforin® CD8" T-cells in infected monkeys than in non-infected monkeys. No differ-
ence was observed in the expression of Granzyme B by CD8" T-lymphocytes (Fig 2B).

Increased Frequency of B-Cells with Up-Regulated Expression of Fc-
YRIl'Is Found in T. cruzi-Infected Primates
The percentage of peripheral blood B-cells along with their activation/regulatory status are

shown in Fig 2C. The statistical analysis demonstrated that despite the increased percentage of
circulating B-cells observed in infected primates, no significant difference in their early

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004302 January 25, 2016 7/16



@ PLOS | Teshicat biseases

Immunological Profile in Trypanosoma cruzi-Infected Non-human Primates

"
A T-cells | B| cD8 Tcels | C| B-cells
Subsets Adhesion Status Activation Markers Cytotoxicity Markers Total
100, 4 16 6 20 40
12 123 é (2]
3 3 8 g "
3 * 8 % 8 *
2 a a 8 a ®
8 2 o | T 5 o 3
t g P s < -
A
8 50 8 2+ 8 8+ & 3 -T— o 104 8 204
- @] () i) € T [a)
] H b I > 8}
< a I a o P 5
B o o a] o °
& 5 2 9 =
-
= R ° 2
0 o 0 o S0 0
Activation Status
50 4 6 6 100 5.0
° » 2 ©
® = ] )
2 3 S 2
< * < © »
» [a] Bf [a] e =
= o o o 3
© < O I < O
S % g B | T P 5
+ D o a 1T I
3 254 Q 2 g 34 7 34 © 50 A 25
) o [$) 3 E Q
2 - 3 z < 5
o Ja} < & ©
X O [a) = [a}
k] Pt o (O] &)
s} - — —
°\° © [s} o s}
°© S ES ES
0 0 0 0 0 0.0
100 6 30 10+ 80+ . 100 Regulatory Fc-yRII
*
* *
8 oy = —
L 3 2 ] £
o ® o a % s T
3 o [a] o S =
O 5o = 34 O 15 = 54 O 404 & 50+
+ <t + o <
Q [Te] » a D [a]
a [a] 8 D £ O
o ® b I [5] c
3 9 8 % o S
N (@) « - 7]
- o Q 5] @
o s ° o o
0 = o0- <0 S 0 S o S o0
o o\o w
NI CH NI CH NI CH NI CH NI CH NI CH

Fig 2. Adaptive immunity features from cynomolgus macaques naturally infected with T. cruzi (CH) and non-infected controls (NI). (A) The
frequencies of CD3* lymphocytes and T-cell subsets (CD4* and CD8*), the expression of adhesion molecule (CD54) and activation status (CD69 and
HLADR) were performed by multicolor flow cytometry. (B) The expression of cytotoxicity markers (Granzyme A, Granzyme B and Perforin) of CD8* T-cells
was investigated by intracellular staining flow cytometry. (C) Analysis of B-cells, the activation status (CD69), and the expression of the regulatory FcyR
(CD32) were evaluated by three-color flow cytometry. The results are expressed as mean percentage with standard error. Significant differences at p<0.05

are identified by (¥).
doi10.1371/journal.pntd.0004302.9002

activation status (CD69) was found in T. cruzi-infected as compared to non-infected monkeys.
Interestingly, up-regulated expression of the regulatory cell surface molecule CD32 by B-cells
was characteristic of infected monkeys as compared to non-infected controls (Fig 2C).

Complex and Imbricate Biomarker Network Underscores the shift
Towards Cross-Talk among Adaptive Immunity Cells in Infected
Primates

Exploratory analysis of biomarker networks demonstrated that non-infected controls displayed
a balanced cross-talk between innate and adaptive immunity cells, represented by evenly dis-
tributed attributes, including positive and negative axis correlations. On the other hand, T.
cruzi infected monkeys showed a clear shift toward a bimodal network profile with preferential
circuit involving the adaptive immunity compartment, represented by moderate and strong
positive correlation axes (Fig 3).
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Fig 3. Biomarker networks of immune system from cynomolgus macaques naturally infected with T. cruzi (CH) and non-infected controls (NI).
Circular layouts were built to underscore the relevant associations between cell subsets, the expression of adhesion molecules, cytotoxicity markers, and the
activation/regulatory status, using a clustered distribution of nodes for innate (left side) and adaptive (right side) immunity cells. The overall statistical analysis
of the network node neighborhood connections points out to a uniform pattern in non-infected controls and a clear shift towards a bimodal profile in T. cruzi-
infected hosts, with prominent involvement of adaptive immunity events.

doi:10.1371/journal.pntd.0004302.003

System Biology Analysis of Innate Immunity Compartment Elected
Monocytes and NK-Cell Phenotypes as the Most Promising Biomarkers
with Putative Clinical Application

To verify the profile of innate immunity associated with T. cruzi infection in primates, we con-
structed a matrix in a heat map representation (Fig 4A). Moreover, we carried out a decision
tree classification in other to identify the innate immunity biomarkers most able to discrimi-
nate infected from control monkeys (Fig 4B). The heat map analysis of innate immunity clearly
demonstrated the ability of CD14"CD56" biomarker to cluster most infected monkeys apart
from the uninfected controls (Fig 4A). This finding was further confirmed in the decision tree
classification analysis that indicated this biomarker as the most relevant element, followed by
NK Granzyme A™ cells and NK CD16"CD56" cells which together represent the most promis-
ing set of innate immunity biomarkers with putative clinical application. The performance of
these selected biomarkers was further investigated by scatter plot distribution and ROC curve
analysis (Fig 4C). Our data demonstrated that CD14"CD56"/NK Granzyme A*/NK CD16"
CD56" cells together display a moderate global accuracy, ranging from 0.72 to 0.88 (Fig 4C).
The decision tree displayed a mean accuracy of 0.54 by 10-fold cross validation, being more
efficient in classifying monkeys as being infected (10 out of 15).

Systems Biology Analysis of Adaptive Immunity Compartment Indicated
T-Cell Activation Status and the Granzyme A Expression by CD8"
T-Cells as the Most Promising Biomarkers for Clinical Applications

To verify the profile of adaptive immunity associated with T. cruzi infection in primates, we

constructed a matrix in a heat map representation (Fig 5A). Additionally, we assembled a deci-
sion tree classification in order to identify the most promising adaptive immunity biomarkers

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004302 January 25, 2016 9/16
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Fig 4. Systems biology strategy for analyzing innate immunity flow-cytometry data by heatmap and decision-tree analysis. (A) Bioinformatics tool
applied for single-cell data mining using heatmap computational method to preprocess flow cytometry data and to identify the innate immunity cell attributes.
(B) Decision tree analysis identifies “root” (CD14"CD56™) and “secondary” (NK Granzyme A* and NK CD16*CD56") cell attributes with higher accuracy to
distinguish between non-human primates naturally infected with T. cruzi and non-infected controls. (C) Scatter distribution plots show the potential of selected
biomarkers to discriminate infected from non-infected individuals. White rectangles indicate true positive (Chagas disease) and true negative (non-infected
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subjects) classifications. Gray rectangles indicate subjects that require the analysis of additional characteristics for accurate classification by the algorithm
sequence proposed by the decision tree. (C) ROC curve analysis illustrating the cut-off points, the global accuracy (area under the curve—AUC) and
performance indexes (sensitivity—Se, specificity—Sp and likelihood ratio—LR) for each selected biomarker.

doi:10.1371/journal.pntd.0004302.9004

able to distinguish infected monkeys from control monkeys (Fig 5B). The heat map analysis
suggested that the HLA-DR activation marker, expressed by T-cells, especially by the CD8" T-
cell subset, is a reliable biomarker to identify infected monkeys (Fig 5A). This finding was fur-
ther confirmed by the decision tree classification analysis that indicated that these biomarkers
along with CD8"Granzyme A" cells represent a good set of adaptive immunity biomarkers to
support clinical investigations of T. cruzi infection of non-human primates. The performance
of these selected biomarkers was further investigated by scatter plot distribution and ROC
curve analysis (Fig 5C). Data analysis demonstrated that, together, CD3"HLA-DR"/CD8""
HLA-DR"/ CD8"Granzyme A" T-cells displayed a moderate global accuracy, ranging from
0.82 to 1.0 (Fig 5C), adjusted to 0.73 by 10-fold cross validation, for identifying infected sub-
jects (12 out of 15) with low false-positive identification in the control group (4 out of 11).

Discussion

In the present study, we have performed the phenotypic features of circulating leukocytes,
focusing on the frequency of subsets and their activation status in cynomolgus macaques natu-
rally infected with T. cruzi. The main findings revealed a similar pattern of immunological sta-
tus likewise that observed in human indeterminate Chagas disease. The relevance of these
results is to support the use of cynomolgus macaques in preclinical toxicology and pharmacol-
ogy studies applied to development and testing of new drugs for Chagas disease.

It is well known that the immunological response plays a major role in the pathogenesis of
Chagas disease [4]. To establish effective treatments, drug trials must be conducted in experi-
mental models, prior to be administered to humans. Thus, it is important to validate an animal
model that present similar immunological and clinical manifestations as those observed in
humans. Indeed, non-human primates have demonstrated to be of great potential for such pro-
posal, since they show similarities with human Chagas disease [10,11].

Macaques are important models for a remarkable diversity of human infectious diseases.
Using these models, many studies have contributed novel insights into physiological and path-
ogenic mechanisms and also have revealed the involvement of distinct immunological events
that can be used as comparative parameters in research on human diseases [10,12,19,20,21]. In
fact, the study of experimentally induced or naturally occurring infectious diseases in non-
human primates has enabled the establishment of valuable strategies for the development of
improved vaccines, diagnostic tools, and therapeutic schemes for human illnesses [20]. In the
present investigation, based on the occurrence of natural infections of T. cruzi in cynomolgus
macaques, and the fact that the infected monkeys develop similar clinical sequelae [21], as well
as equivalent histopathological patterns [12], to those of infected humans we have tested the
hypothesis that these similarities are supported by equivalent immunological events in the two
species. In addition to describing the immune mechanisms triggered by T. cruzi infection in
these non-human primates, this study has presented a comprehensive overview of cells
involved in innate and adaptive immunity using novel systems biology approaches to describe
the cross-talk between immunological elements and to select candidate biomarkers relevant for
clinical studies.

The immunophenotypic analysis of circulating leukocytes from cynomolgus macaques nat-
urally infected with T. cruzi (CH) demonstrated that CH displayed increased expression of
CD32" and CD56" in monocytes as compared to non-infected controls (NI). There is a general
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Fig 5. Systems biology strategy for analyzing adaptive immunity flow-cytometry data by heatmap and decision-tree analysis. (A) Bioinformatics tool
applied for single-cell data mining using heatmap computational method to preprocess flow cytometry data and to identify the adaptive immunity cell
attributes. (B) Decision tree analysis identifies “root” (CD3"HLA-DR™) and “secondary” (CD8*HLA-DR* and CD8" Granzyme A*) cell attributes with higher
accuracy to distinguish between non-human primates naturally infected with T. cruzi and non-infected controls. (C) Scatter distribution plots show the
potential of selected biomarkers to discriminate infected from non-infected individuals. White rectangles indicate true positive (Chagas disease) and true

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004302 January 25, 2016 12/16



@' PLOS NEGLECTED
NZJ : TROPICAL DISEASES Immunological Profile in Trypanosoma cruzi-Infected Non-human Primates

negative (non-infected subjects) classifications. Gray rectangles indicate subjects that require the analysis of additional characteristics for accurate
classification by the algorithm sequence proposed by the decision tree. (C) ROC curve analysis illustrating the cut-off points, the global accuracy (area under
the curve—AUC) and performance indexes (sensitivity—Se, specificity—Sp and likelihood ratio—LR) for each selected biomarker.

doi:10.1371/journal.pntd.0004302.9005

consensus that the innate immune response represents an important mechanism to control
parasite replication during early and chronic Chagas disease [22]. The CD14"CD56" monocyte
subset has been related to human inflammatory chronic diseases [23] and is found on periph-
eral blood cells of healthy monkeys [24], but little is known about its role in humans and non-
human primates infected with T. cruzi. These cells are capable of becoming more frequently
positive for TNF-a. cytokine, express higher levels of reactive oxygen species and FcyR (CD16"
and CD32"), are more efficient antigen presenting cells, and are a good generator of cytotoxic
response [23,25]. These data suggest that CD14*CD56" monocytes could represent an impor-
tant cell population in determining Chagas disease progression, and further investigations of
CD14"CD56" monocytes are needed to better define their role in the immune response in T.
cruzi-infected primates.

Our data also established that CH displayed higher frequency of cytotoxicity markers, repre-
sented by NK Granzyme A" cells, by comparison to NI In fact, it has been demonstrated by
several studies that macrophages are efficiently activated by NK derived IFN-vy, which invokes
nitric oxide production and controls parasite replication during T. cruzi infection [4,26]. Fur-
thermore, the cytotoxic activity of NK cells could also contribute to control of parasitemia,
through lysis of infected host cells or killing free parasites by contact-dependent exocytosis of
lytic granules, independently from perforin [27]. These data are consistent with the hypothesis
that higher NK cell cytotoxic activity could be important in helping to suppress the parasitemia
to very low levels, resulting in avoidance of developing a strong acquired immune response
involved with disease severity [16].

Although it is widely accepted that the adaptive immune response plays a critical role in
ability to control Chagas disease progression in humans, in non-human primates its mecha-
nisms remain unclear. Our findings showed that CH developed a similar pattern of T-lympho-
cytes as observed in human T. cruzi infection. In fact, higher expression of CD54 and HLA-DR
by T-cells, especially within the CD8" subset, along with outstanding expression of Granzyme
A and Perforin was observed in CH, underscoring the enhanced cytotoxicity-linked pattern of
CD8" T-lymphocytes. In patients in the chronic phase of Chagas disease, a robust expansion of
T-cell response to parasites has been clearly demonstrated [4]. Dutra et al. [28] showed a high
frequency of activated T-cells in peripheral blood of indeterminate and cardiac patients, and
further studies evaluated inflammatory infiltrate from heart tissue of cardiac patients, verifying
a higher level of adhesion molecule expression by endothelial cells, as well as an increased fre-
quency of Granzyme A" CD8" T-cells [29]. Previous to the findings reported here, we and
other investigators have reported that non-human primates infected with T. cruzi develop
chronic cardiomyopathy similar to that of humans. There are also reports of amastigote nests
and parasite DNA with similar inflammatory infiltrates in heart tissue from T. cruzi-infected
non-human primates [12,30,31,32], further supporting the premise that these animals are
excellent experimental models for research on Chagas disease.

The analysis of the B-cell compartment revealed an expansion of these cells concomitant
with up-regulated expression of Fc-yRII in CH. Previous studies have demonstrated that B-
cells play an important role in systemic protection against T cruzi through participation in the
synthesis of anti-T. cruzi antibodies and in the maintenance of CD8" memory T-cells, as well
as in the determination of the T-cell cytokine functional pattern [33,34]. In regard to the role
of CD32" B-cells in human Chagas disease, it has been demonstrated that patients with
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asymptomatic clinical forms present lower levels of these modulatory CD32 surface marker
with concomitant higher antibody levels, whereas cardiac patients presented baseline expres-
sion of CD32 by B-cells with lower antibody titers. A putative up-regulation of CD32 observed
in B-cells from cynomolgus macaques could influence the degree of myocardiopathy found in
these animals.

Several methods have been developed to draw networks of phenotypic aspects of the
immune system in order to illustrate pathways and to describe clustering of cellular cross-talk-
ing relevant to understanding the dynamics of the immune system. Data mining of innate and
adaptive immunity using the biomarker network approach revealed that whereas a balanced
cross-talk between innate and adaptive immunity cells was observed in non-infected controls,
CH primates demonstrated a clear shift toward a bimodal network profile with a preferential
circuit involving the adaptive immunity compartment, supporting the existence of strong
interaction between T. cruzi infection and the adaptive immunity cells, as observed in humans.
The movement toward clustered nodes in the adaptive immunity compartment observed in
CH is consistent with the chronic stage of T. cruzi infection in these animals. It is possible that
the analysis of animals during early stages of infection would reveal a predominant involve-
ment of innate immunity cells as is observed in humans with the early indeterminate form of
Chagas disease [35].

Aiming to further identify cell phenotypes of innate and adaptive immunity compartments
as promising biomarkers with putative clinical application, we have applied computational bio-
informatics tools to explore the immunological findings observed in CH and control animals.
Results from this approach suggest that the CD14"CD56"/NK Granzyme A*/NK CD16*CD56
cells represented a good set of attributes from innate immunity to distinguish CH from NI. As
for adaptive immunity, the CD3"HLA-DR*/CD8"HLA-DR*/CD8"Granzyme A" T-cells were
identified as the major subsets to discriminate CH from NI. The performance of these selected
biomarkers was further validated by scatter plot distribution and ROC curve analysis. ROC
curves were calculated to evaluate the capacity of these biomarkers to discriminate CH primates
from the NI group. Moreover, they confirmed the superior performance of CD14"CD56"/NK
Granzyme A"/NK CD16"CD56 cells and CD3"HLA-DR"/CD8 "HLA-DR"/ CD8" Granzyme
A" T-cells to distinguish CH animals from control animals. The data analysis demonstrated
that these phenotypic attributes displayed a moderate global accuracy in identifying infected
subjects, even after cross validation. In this context, CD14"CD56" and CD3*HLA-DR" were
elected as the root attributes, as is consistent with the findings in human Chagas disease that
highlight the robust role of macrophages and active T-cells as relevant biomarkers in the
immune response triggered by T. cruzi infection [26]. Moreover, the secondary attribute
branches, composed by NK-cells and CD8" T-cells, are also in agreement with the recognized
function of these cytotoxic cells in distinct processes during Chagas disease.

Importantly, our data demonstrated that the phenotypic features of circulating leukocytes
from naturally infected non-human primates resembled the pattern in human Chagas disease.
The current study may present some limitations concerning particularities of T. cruzi infection
by genotype TcI that may differ from those triggered by infections with other genetic groups.
Moreover, further analysis of putative immunological similarities related to cardiac Chagas dis-
ease may also be accomplished in future investigations. Nonetheless, the findings presented in
the current investigation clearly demonstrated that, likewise humans, non-human primates
with indeterminate T. cruzi infection develop an immunological profile involving both, innate
and adaptive immune response that support the use of this experimental model for testing of
new drugs for Chagas disease. Since cynomolgus macaques have an immunological response to
T. cruzi very similar to that of humans, they also represent a useful experimental model for test-
ing vaccines for Chagas disease.
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