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Abstract
Lymphatic filariasis (LF) is a socio-economically devastating mosquito-borne Neglected

Tropical Disease caused by parasitic filarial nematodes. The interaction between the para-

site and host, both mosquito and human, during infection, development and persistence is

dynamic and delicately balanced. Manipulation of this interface to the detriment of the para-

site is a promising potential avenue to develop disease therapies but is prevented by our

very limited understanding of the host-parasite relationship. Exosomes are bioactive small

vesicles (30–120 nm) secreted by a wide range of cell types and involved in a wide range of

physiological processes. Here, we report the identification and partial characterization of

exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial par-

asite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media

and electron microscopy and nanoparticle tracking analysis were used to confirm that vesi-

cles produced by juvenile B. malayi are exosome-like based on size and morphology. We

show that loss of parasite viability correlates with a time-dependent decay in vesicle size

specificity and rate of release. The protein cargo of these vesicles is shown to include com-

mon exosomal protein markers and putative effector proteins. These Brugia-derived vesi-

cles contain small RNA species that include microRNAs with host homology, suggesting a

potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macro-

phage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively

stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this

is the first report of exosome-like vesicle release by a human parasitic nematode and our

data suggest a novel mechanism by which human parasitic nematodes may actively direct

the host responses to infection. Further interrogation of the makeup and function of these

bioactive vesicles could seed new therapeutic strategies and unearth stage-specific diag-

nostic biomarkers.
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Author Summary

Lymphatic filariasis is caused by parasitic nematodes that invade and occupy the host lym-
phatic system. The extent of lymphatic filariasis is staggering, with over 120 million people
infected in 73 endemic countries and an estimated 40 million people suffering from a
range of disfiguring and debilitating clinical manifestations of this disease. The mecha-
nisms by which these medically important parasites navigate the host immune response to
establish infection are not yet fully understood. In this study, we identify exosome-like ves-
icles (ELVs) that are abundantly released from infective stage L3 Brugia malayi, an etiolog-
ical agent of human lymphatic filariasis. We show that these vesicles have a narrow size
distribution and morphology consistent with classical exosomes, and that they contain
common exosomal protein markers, putative effector proteins, as well as small regulatory
RNAs. We show that ELVs are enriched with microRNAs that are perfectly conserved
between parasite and host, suggesting a potentially novel mechanism by which filarial
worms can actively manipulate host gene expression. We demonstrate that parasite ELVs
are internalized by macrophages and elicit a classically activated phenotype in these host
cells. The discovery of exosome-like vesicle release by human nematode parasites newly
enlightens the roadmap to understanding the pathology of LF and related helminthiases.
These vesicles also present promising new targets for intervention and diagnostics.

Introduction
The parasitic filarial nematodesWuchereria bancrofti, Brugia malayi and B. timori are etiologi-
cal agents of Lymphatic filariasis (LF), a chronic and debilitating disease infecting over 120 mil-
lion people in 73 endemic countries [1]. Adult parasites reside in the lymphatic vasculature of
infected individuals and release larvae called microfilariae, which are taken up by vector mos-
quitoes during the blood meal. Parasites rapidly develop within the mosquito, molting twice to
the infective L3 stage [2, 3] before transmission to the definitive host during a subsequent
blood meal. Following penetration of the vertebrate host via the puncture wound left by the
mosquito, L3 stage parasites migrate to the lymphatics and undergo further growth and devel-
opment, molting to the L4 stage and again to adulthood. The longevity of patent infection is
remarkable; adults live for at least 8–10 years by general consensus. The ability of larval stages
to successfully invade the host, and for adult worms to maintain infection for such an extended
period of time, suggest filarial worms have developed strategies to both facilitate the establish-
ment of infection and evade or manipulate the host immune response. Although the immuno-
modulatory capabilities of infecting larval and adult stage filarial worms have been well
documented and reviewed [4–8], the parasite effector molecules responsible for manipulating
host biology and their mechanisms of release have been difficult to define. Actively secreted
proteins have historically been considered the principal candidates and several secreted pro-
teins have been identified with demonstrable bioactivity at the host-parasite interface [9–12].
Adding to these, the characterization of parasitic nematode secretomes has revealed a complex
array of potential proteinaceous effectors [13–16]. Other types of effector, including molecules
expressed on the parasite surface may have a role [17] and the emergence of small noncoding
RNAs as cell-to-cell agents of genetic regulation [18–22] hint at exciting alternative
mechanisms.

Exosomes are a subtype of extracellular vesicle categorized by size (30–120 nm diameter)
and defined by a particular biogenic pathway [23]; exosomes are formed by inward budding of
vesicles in the late endosomal pathway to create multivesicular endosomes that fuse with the
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plasma membrane to effect release [24, 25]. Originally thought to be a means of cellular waste
disposal, exosomes are now considered highly bioactive extracellular vesicles that facilitate cell-
to-cell communication and are the focus of renewed investigation. The cargo of exosomes is
complex and variable, containing bioactive proteins, functional mRNA, miRNA and other
small non-coding RNA species [18, 26], likely reflecting both source and target environments.
Fusion of the exosome to a target cell delivers this heterogeneous bioactive cargo and selectively
alters the biology of the target tissue [19, 21, 26, 27]; the isolation of exosomes from circulatory
systems and an array of biofluids suggests effector sites can be far from the point of release. Par-
asites are known to release exosome-like vesicles [27–30] and it is compelling to hypothesize
that bioactive molecules secreted by parasitic nematodes, packaged in exosomes, function as
cell-to-cell effectors in the host-parasite interaction. Indeed recently, extracellular vesicles
secreted by the gastrointestinal nematode Heligmosomoides polygyrus, containing proteins and
small RNA species, have been shown to alter gene expression in host cells and suppress innate
immune responses in mice [26].

Here we show that larval and adult stage B. malayi secrete prodigious quantities of extracel-
lular vesicles in vitro whose size and morphology are consistent with exosomes. These exo-
some-like extracellular vesicles (ELVs) contain small RNA species, including specific miRNA
and are enriched in miRNA that are identical to host miRNAs with known immunomodula-
tory roles [31–34]. The protein cargo of the vesicles is relatively scant but includes bioactive
proteins, proteins with putative RNA binding properties and proteins commonly associated
with exosomes [35]. The parasite ELVs are internalized by host macrophages and elicit a classi-
cally activated phenotype in these cells. The demonstration that filarial nematodes secrete exo-
somal RNA and proteins that potentially function at the host-parasite interface is significant.
Defining this parasite effector toolkit exposes an array of new molecules that may be exploited
in novel LF control strategies.

Results and Discussion

Infective-stage B. malayi release exosome-like vesicles
In order to ascertain whether exosomes are released by B. malayi, extracellular vesicles were
isolated from parasites incubated in culture media using a filtration and ultracentrifugation
protocol. We focused our initial discovery efforts on larval and adult stage parasites. L3, adult
male, and adult female B. malayi were incubated in vitro for 24 hour periods under standard
culture conditions, and purified vesicle preparations were evaluated with electron microscopy
(EM). Infectious stage L3 parasites in culture release abundant 50–120 nm microvesicles con-
sistent with the classical “deflated ball”morphology of mammalian and non-mammalian exo-
somes reported in the literature [36] (Fig 1A & 1B). We refer to these as exosome-like vesicles
(ELVs) throughout this manuscript, in recognition that they cannot be unequivocally desig-
nated as exosomes, rather than another class of extracellular vesicles, because their biogenesis
has not been determined. Preparations from adult stage B. malayi were more heterogenous
and dilute, not allowing for the definitive categorization of putative exosome-like vesicles
(Fig 1C). This, despite the fact a much higher mass of total parasite tissue was used for adult
preparations as compared to larval preparations. These data suggest ELV release to be a pre-
dominantly larval phenomenon in B. malayi, a working hypothesis supported by analysis of
RNA associated with the vesicles. We therefore chose to focus our subsequent experiments on
L3 stage parasites. A compelling overall hypothesis for the function of B. malayi ELVs is that
they mediate the secretion and trafficking to host cells of effector molecules that facilitate para-
sitism and the observation that ELV secretion occurs primarily in those parasite stages that
infect the host and establish parasitemia is consistent with this narrative.
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Time course profile of exosome-like vesicle release from infectious
stage B. malayi
To more accurately resolve the dynamics of ELV release in L3 B. malayi, we used a nanoparticle
tracking analysis (NTA) system to measure vesicle output in a 72 hr in vitro time course.
Media was collected from 300 worms after three successive 24 hr incubation periods, vesicles
were purified by ultracentrifugation as before and individual vesicle preparations were ana-
lyzed via NanoSight LM10 as shown in Fig 2 (sample recording: S1 Video). Day 1 (0–24 hr in
culture) preparations reveal a prolific ELV release rate (> 9,000 ELVs/parasite/min) with a
very narrow size distribution centered at*90 nm. Day 2 (24–48 hr in culture) preparations
show an essentially equivalent rate of release, but a stark broadening of the size distribution.
Day 3 (48–72 hr in culture) preparations are associated with significantly lower levels of release
(<4,000 ELVs/parasite/min) and an even wider multimodal size distribution. These data

Fig 1. Electronmicroscopy confirms secretion of exosome-like vesicles in intra-host stages ofB. malayi. TEM images of L3 (A and B) and adult
female (C) ELV preparations are shown. L3 vesicles take on a distinct morphology often reported in the literature. Adult isolations are more heterogenous
and may require further optimization to achieve uniform vesicle preparation. White arrows show canonical L3 ELVs (B) and putative adult ELVs (C). This
provides evidence for the release of exosome-like vesicles in the human-infective L3 stage of the parasite and much of the rest of the work we report is
focused on vesicles derived from this larval stage.

doi:10.1371/journal.pntd.0004069.g001
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suggest an overall time-dependent decay in vesicle rate of release and size specificity, which
correlates to decreased L3 viability in vitro. The release of considerable quantities of precisely-
sized ELVs in viable worms (Days 1–2) is followed by the release of smaller quantities of a
broader size range of particles that potentially include larger membrane vesicles and apoptotic
blebs (Days 2–3). This suggests an active and regulated mechanism of ELV release in healthy
and viable L3 stage parasites, as opposed to a passive mode of noisy cellular deterioration.

The protein cargo of Brugia exosome-like vesicles
The protein content of B. malayi ELVs was determined using nanoscale liquid chromatography
coupled to tandem mass spectrometry (nano LC/MS/MS). A total of 32 proteins each contain-
ing at least two unique peptides were identified using MASCOT (Table 1). Specific proteins
identified within the pellet included characteristic markers of exosomes including Hsp70, elon-
gation factor-1α, elongation factor-2, actin, and Rab-1. In addition, over 80% of the proteins
identified are orthologous to proteins identified in mammalian exosome proteomes, strongly
suggesting that these vesicles are exosome-like in nature and supporting our ELV designation
here. Interestingly, this set of vesicle-specific proteins is entirely distinct from the proteins pre-
viously identified in pre- and post-molt L3 secretions [37].

Fig 2. Particle tracking analysis reveals prolific larvalBrugia exosome-like vesicle release rate. Profile of ELVs isolated from culture media incubated
with 300 L3 parasites for successive 24 hr incubations. The size distribution of L3-derived ELVs from Day 1 (left), Day 2 (center) and Day 3 (right) incubations
are shown (mean ± SD). Calculated vesicle release rates are provided in tabular format. ELV rate of release and size specificity decay in a time-dependent
manner in vitro. * re-scaled based on dilution for comparison to 0–24 hour (1:20) dilution.

doi:10.1371/journal.pntd.0004069.g002
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UniProt-GOA and quickGO were used to sort proteins into functional groups based on
assigned gene ontology (GO) terms [38, 39], as shown in Fig 3. Based on GO annotations, 20%
of the proteins identified are involved in binding of bioactive molecules including nucleic acids
and other proteins, 16% function in the transport of various ions and proteins and 14% are
ribosomal proteins. In addition, a large fraction of proteins identified (21%) appear to be
involved in various metabolic processes including hydrolase and transferase activities while the
remaining 29% comprises proteins with translational, cytoskeletal and other functions.

Table 1. Annotation ofBrugia ELV proteome.

Brugia Protein ID UniProt ID Annotation

BM-ACT-5 A8P5A0_BRUMA Actin

Bm-HSP-1 A8P6Q6_BRUMA HSP70

Bm5195 A8PJ17_BRUMA Elongation factor 1-alpha

BM-EEF-2 A8PJV1_BRUMA Elongation factor 2

Bm4733 A8PHP7_BRUMA Beta-tubulin

BM-MEC-12 A8PN52_BRUMA Alpha-tubulin like

BM-DPY-23 A8PZJ6_BRUMA Adaptin

Bm13837 A8QAR6_BRUMA ATP synthase subunit alpha

Bm-ATP-2 A8Q895_BRUMA ATP synthase subunit beta

Bm5931 A8P4C6_BRUMA Alpha-1,4 glucan phosphorylase

BM-CPL-1 A8NCV6_BRUMA Cathepsin L-like cysteine protease

BM-EAT-6 A8Q4C9_BRUMA Na+K+ATPase

Bm-SCA-1 A8QET1_BRUMA Calcium-transporting ATPase

BM-RAB-1 A8Q8U0_BRUMA Ras-related protein

Bm4628 A8NSV0_BRUMA Ubiquitin

Bm5528 A8NHQ1_BRUMA 1,4-alpha-glucan branching enzyme

BM-DLST-1 A8PU77_BRUMA 2-oxoglutarate dehydrogenase

Bm3206 A8NHD8_BRUMA Histone H2B

Bm3425 A8NHD2_BRUMA Histone H3

Bm4113 A8Q1K1_BRUMA Histone H4

Ribosomal Proteins

BM-RPS-16 A8P1D4_BRUMA 40S ribosomal protein S16

Bm2853 A8Q0J1_BRUMA 40S ribosomal protein S2

Bm2320 A8NXR7_BRUMA 40S ribosomal protein S3

BM-SECS-1 A8PJH5_BRUMA 40S ribosomal protein S5

BM-RPS-9 A8P2X1_BRUMA 40S ribosomal protein S9

Bm13774 A8PTY7_BRUMA 60S ribosomal protein L10

Bm13718 A8NKQ0_BRUMA 60S ribosomal protein L11

BM-RPL-3 A8P136_BRUMA 60S ribosomal protein L3

BM-RPL-9 A8QHP9_BRUMA 60S ribosomal protein L9

Bm3930 A8ND23_BRUMA Ribosomal protein

BM-RPL-1 A8NG31_BRUMA Ribosomal protein

Homology-based annotation of B. malayi ELV proteins reveals hallmarks of mammalian exosomes,

including HSP70 and translation elongation factors. Ribosomal proteins, histones, ras-related proteins,

cathepsins, ATP synthase subunits, and other homologs of identified Brugia ELV proteins have also been

reported in exosomes derived from various cell types.

doi:10.1371/journal.pntd.0004069.t001
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Included in the list of Brugia ELV proteins are potential effector molecules. Bm-CPL-1 is a
cathepsin L-like cysteine protease robustly expressed across the B. malayi life cycle [40]. Upre-
gulation of Bm-cpl-1 expression coincides with transition between life cycle stages and an
important role in the modulation of parasite molting has been confirmed [41–43]. This is the
first demonstration that B. malayi secretes CPL-1 although other cathepsin-like cysteine prote-
ases have been identified in the B. malayi secretome [14, 37] and a cathepsin L-like molecule is
secreted by intra-mammalian stage Haemonchus contortus [44]. The exogenous function of
exosomal Bm-CPL-1 is not clear but evidence points to some manipulation of the host-parasite
interface. In a previous study, we suppressed Bm-cpl-1 expression using in vivo RNAi during
the mosquito life stages [42]. Loss-of-function reduced prevalence of infection in mosquitoes
by nearly 40%, suggesting Bm-CPL-1 is important for establishing or maintaining parasitemia.
In flatworms, an immunomodulatory role for secreted cathepsin L-like proteases is better
established [45]; in Fasciola infection cathepsin L contributes to the permissive polarized
Th2> Th1 host response.

Fig 3. Protein content of B. malayi exosome-like vesicles.GO functional annotation of 32 proteins identified in ELVs isolated from B. malayi L3 stage
parasites.

doi:10.1371/journal.pntd.0004069.g003

Brugia malayi Secretes Exosome-Like Vesicles

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004069 September 24, 2015 7 / 23



The proteomic profiles of parasitic helminth exosomes are broad in range; for example, over
350 proteins were identified in the putative exosomes secreted byHeligmosomoides polygyrus
[26] whilst 45 and 79 proteins were identified in exosome-like vesicles from Echinostoma
caproni and Fasciola hepatica, respectively [46]. The B. malayi L3 stage profile identified here
is relatively scant but consistent with this broad distribution. It may be that this is a stage-
specific observation and ELV secreted by other B. malayi life stages display a more complex
and abundant protein cargo tailored to distinct functional demands. Reflecting the small RNA
component of these ELVs (see later sections), it may also be that larval stage Brugia ELVs are
primarily vehicles for protected RNA secretion. Replication of the experiments conducted here
might add depth to the MS data set and identify further ELV-associated proteins.

B. malayi ELVs contain small RNA including miRNAs
with potential host targets
We probed larval and adult microvesicle preparations for the presence of small RNA species.
Exosomes have been found to contain both non-coding RNAs (ncRNAs) and messenger RNAs
(mRNAs) in a diverse range of species and cell types. Of particular interest to us was the poten-
tial presence of small non-coding RNAs, including microRNAs (miRNAs), that could poten-
tially mediate parasite-parasite communication or modulate host gene expression. Small RNA
species were preferentially isolated from putative ELV-containing pellets and examined with
an Agilent Bioanalyzer. The microvesicle fractions of L3 B. malayi (24 hr incubations of 300
worms) revealed an abundance of small RNA species in the 25–200 nt range (Fig 4). Much less
RNA was detected from incubations of adult male and female B. malayi (24 hr incubations of
30 adult worms), despite the much higher mass of tissue in adult stage culture media. This lack

Fig 4. Isolation of Small RNAs from larval and adultB. malayi ELV fractions. Bioanalyzer data are shown for RNAs isolated from L3, adult male, and
adult female Brugia preparations. L3 ELVs contain significant amounts of small RNAs in the 25–200 nt range (25 and 200 nt reference peaks labeled), while
adult male and female vesicle preparations yield fewer RNAs. Vesicle fractions were prepared from 300 L3 and 30 adults in 24 hr culture incubations. Despite
the much higher total tissue amounts used in adult culture, we detect much higher levels of small RNAs in L3-derived ELVs.

doi:10.1371/journal.pntd.0004069.g004
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of correlation between total parasite tissue material and RNA yield, coupled to the differential
quality of larval and adult microvesicle preparations as evaluated by EM, further indicates that
ELV release is primarily a characteristic of larval-stage parasites and perhaps more biologically
relevant to early parasite infection.

To more fully investigate the nucleic acid contents of these newly discovered vesicles, we
carried out RNA-Seq with both L3 ELV and tissue-derived small RNAs. Reads generated by
Illumina sequencing were processed and used to seed an miRNA discovery and abundance
estimation pipeline using miRDeep2 [47] (read statistics and raw miRNA abundances can be
found in S1 Table). To compare ELV and cellular RNA abundance, miRNA expression was
normalized to the total miRNA read count within each sample. miRNA discovery and profiling
was augmented with data from previously discovered miRNAs in closely related nematode spe-
cies to help overcome gaps in the B. malayi draft genome assembly (see Methods). Fig 5A com-
pares normalized miRNA expression between ELV and tissue for the 20 most abundant

Fig 5. Discovery and profiling of miRNAs in B. malayi exosome-like vesicles. (A) Comparative abundance of miRNAs in L3 ELV and tissue-derived
samples. miRNA discovery and abundance estimation was carried out using the mirDeep2 pipeline. The 20 miRNAs with highest expression in each sample
were retained for comparison and abundance was normalized with respect to total miRNA-mapping reads within each sample. Normalized read count is
plotted on a log scale for ELV and tissue miRNAs to provide a relative ordering of fractional abundance. Bma-let-7 only appears in the highly expressed
subset, and a number of miRNAs with perfect mature sequence identity to host homologs are highlighted (outer blue circle). (B) Sequence conservation
betweenB. malayi ELV-origin miRNAs and the host (H. sapiens ) miRNA complement. Reduced heat map showing one-to-one homology between a
given B. malayimiRNA and its nearest matching human counterpart in terms of percent identity. Bma-let-7, bma-miR-1, bma-miR-9, bma-miR-92, and bma-
miR-100b (white asterisks) share 100% identity with a host miRNA, while bma-miR-34 shows high identity with a host miRNA (21/23 nucleotides). This B.
malayimiRNA subset (shown in blue) contains potential modulators of host gene expression. (C) Sequence conservation betweenB. malayi ELV-origin
miRNA seed sites and host ( H. sapiens ) miRNA seed sites. miRNAs sharing perfectly conserved seed sites, defined here as nucleotides 2–8 of the
mature miRNA, are marked (blue circles).

doi:10.1371/journal.pntd.0004069.g005

Brugia malayi Secretes Exosome-Like Vesicles

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004069 September 24, 2015 9 / 23



miRNAs in each sample. Although there is considerable conservation in relative miRNAs
abundances, there are some notable observations and exceptions.

Bma-let-7 is significantly enriched in L3 ELVs as compared to L3 tissue, where it does not
appear among the 20 most abundant miRNAs. Bma-let-7, along with four other B. malayi
mature miRNAs found in ELVs (bma-miR-1, bma-miR-9, bma-miR-92, and bma-miR-100b),
share perfect sequence identity with host (Homo sapiens) mature miRNAs, as shown in Fig 5B.
Additionally, bma-miR-34 shares near perfect sequence identity with its H. sapiens homolog.
11 B. malayimiRNAs also share common seed sites with H. sapiensmiRNAs (Fig 5C). Brugia
ELV miRNA sequences were more broadly clustered by putative seed site and aligned to miR-
NAs from the soil-transmitted parasitic nematode Ascaris suum, the free living model nema-
tode Caenorhabditis elegans, and mammalian host species H. sapiens andMus musculus (Fig 6
and S1 Fig). In all cases, Brugia ELV miRNAs that share common seed sites with host miRNAs
have one-to-one A. suum orthologs. In some cases, parasite miRNAs are better conserved in
mammalian hosts than in C. elegans (e.g., bma-miR-9, bma-miR-993, and bma-miR-100b/c).

We examined the complement of the most abundant Brugia ELV-associated miRNAs with
respect to very recent investigations of miRNAs released by other parasitic nematode species
and found circulating in host biofluids [26, 48–50]. Common markers include let-7, lin-4,
miR-34, miR-71, miR-92, and miR-100c (Fig 7A and 7B). While all members of this subset
share seed site sequence identity with mammalian host miRNAs, lin-4, miR-34, miR-71, and
miR-100c are sufficiently diverged from host miRNAs over their full length mature miRNA
sequence and can potentially serve as biomarkers of filarial infection. Additionally, we com-
pared the complements of the 20 most abundant Brugia ELV andH. polygyrus exosomal [26]
miRNAs, identifying six miRNAs shared between these vesicles and a large number of miRNAs
unique to each species (Fig 7C).

Fig 6. Brugia malayi ELVmiRNA sequence homology to nematode andmammalian host miRNAs.
miRNAs from B. malayi, A. suum, C. elegans, H. sapiens, andM. musculuswere grouped by seed site
sequence identity (nucleotides 2–8) for multiple sequence alignments. Alignments are shown for bma-let-7,
bma-miR-9 and bma-miR-993. bma-let-7 is shown as an example of a Brugia ELV miRNA that exhibits both
seed site and full length sequence conservation extending to other parasitic and free-living nematodes, as
well as to mammalian host species. bma-miR-9 and bma-miR-993 are presented as examples where
conserved parasite miRNAs have clear host homologs, yet lack one-to-oneC. elegans orthologs. The
complete set of alignments can be found in S1 Fig.

doi:10.1371/journal.pntd.0004069.g006
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Enrichment of bma-let-7 and the high fractional presence of other parasite miRNAs sharing
perfect or high homology to host miRNAs, leads us to speculate about a potential ELV-
mediated mechanism by which parasite RNAs can be used to efficiently direct aspects of gene
expression in host cells. Targets of endogenous let-7 family miRNAs in vertebrates include
oncogenes, as well as genes involved in proliferation, apoptosis, and innate immunity [51–53].
Let-7 is intricately involved in macrophage polarization and responses to pathogen challenge
[31, 33, 54], and the altering of host let-7 expression therefore represents a potentially advanta-
geous point of intervention for an invading parasite. Live pathogens down-regulate the expres-
sion of let-7 family miRNAs, and let-7 miRNAs act on toll-like receptors (e.g. TLR4) that
directly mediate macrophage responses [54–56]. Clearly, there is an important association
between macrophage response to pathogens and let-7 expression. Our observation that
B. malayi secrete let-7 and other potential modulators of host gene expression identifies a
mechanism by which this host immune response might be manipulated. Supporting this
hypothesis, let-7 and other miRNAs with host conservation have been identified in immuno-
modulatory H. polygyrus adult stage exosomes [26]. To fully dissect this hypothesis, a broad
investigation of the interaction of ELV miRNAs and host immune cells in vivo is needed.

Brugia ELVs are internalized by host macrophages
Macrophages are critical mediators of the early immune response to invasive Brugia parasites
[8]. To test the hypothesis that secreted Brugia ELVs interact with host macrophages, we used
fluorescent lipophilic dyes to visualize the interaction between J774A.1 murine macrophages
and ELVs. This cell line was chosen because it is commercially available, can be cultured readily
and because it recapitulates the biology of primary macrophages and dendritic cells [57]. ELVs
were labeled with PKH67, a green fluorescent dye, and incubated with J774A.1 labeled with
PKH26, a red fluorescent dye. Confocal microscopy revealed efficient internalization of the

Fig 7. Comparison of the B. malayi ELVmiRNA complement to miRNAs secreted by other parasitic nematodes species. (A & B) Comparison of the
20 most abundant B. malayi ELVmiRNAs with the complements of miRNAs found circulating in the serum and plasma of definitive and model mammal hosts
burdened with filarial infection (Litomosoides sigmodontis [26], Dirofilaria immitis [48], Loa loa [49],Onchocerca volvulus [48, 50], andOnchocerca ochengi
[49]). The D. immitismiRNAs in (A) are restricted to the 20 most abundant miRNAs, and theO. volvulusmiRNAs in (B) represent the combination of two non-
overlapping sets arising from separate reports. (C) Comparison of the 20 most abundant miRNAs identified in B. malayi ELVs andH. polygyrus exosomes.
These analyses reveal sets of commonmarkers and a number of miRNAs unique to each species.

doi:10.1371/journal.pntd.0004069.g007
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ELVs by this macrophage cell line (Fig 8). Internalization was observed diffusely throughout
the cell cytoplasm with focus around membrane-rich puncta associated with the surface of the
macrophages (Fig 8B). This pattern of internalization is consistent with other studies describ-
ing a phagocytic route of vesicle internalization [58, 59]. Macrophages were counterstained
with DAPI to determine the efficiency of cell labeling and ELV uptake. PKH26-labeling of
J774A.1 was very efficient and all cells were visualized although intensity of labeling was vari-
able (Fig 8D). Approximately 40–50% of macrophages internalized labeled ELVs to some
degree (Fig 8E) with approximately 10% of macrophages internalizing ELVs at markedly
higher levels (Fig 8E). There was no correlation between strong PKH 26-labelling of macro-
phages and vesicle uptake indicating internalization is not a factor of receptiveness to labeling.

Fig 8. Brugia exosome-like vesicles (ELVs) are internalized by J774A.1 macrophages. (A and D) J774A.1 macrophages were labeled with PKH26 (red)
and counterstained with DAPI (blue) to visualize nuclei. (B and E) B. malayi L3 stage ELVs were purified from a 24 hr parasite culture and labeled with PKH67
(green). 3 × 105 J774A.1 were co-incubated with approximately 3 × 107 labeled ELVs for 6 hrs at 37°C and washed repeatedly to remove unbound ELVs.
Vesicles internalized by macrophages appear diffusely throughout cytoplasm and focused in discrete puncta associated with the cell membrane. (C and F)
Merged images showing internalization of parasite ELVs. All images were acquired using a using a Leica TCS SP5 X Confocal/multiphoton microscope
system with 20X (A-C) or 60X (D-F) objectives. Scale bars: 10 μm (A-C) and 25 μm (D-F).

doi:10.1371/journal.pntd.0004069.g008
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Brugia ELVs elicit a classically activated phenotype in host
macrophages
Macrophage activation is dichotomous; classically activated macrophages (CAMF) are elicited
by LPS or IFN-γ and have a generally pro-inflammatory phenotype whereas alternatively acti-
vated macrophages (AAMF), driven by IL-4 and IL-13, appear immunosuppressive or anti-
inflammatory. Helminth infection is typically associated with the AAMF pathway although
both CAMF and AAMF are involved in the immune response to, and immunopathology
caused by, Brugia infection. Experiments demonstrate different Brugia preparations can gener-
ate both CAMF and AAMF activation phenotypes; dead and moribund worms and worm
lysates produce CAMF [60] but live worms and complete excretory/secretory (ES) prepara-
tions drive AAMF [61–63]. To test the hypothesis that ELVs activate host macrophages,
J774A.1 were treated with purified ELV preparations and their cytokine/chemokine responses
monitored. J774A.1 were treated for 48 hrs with approximately 4 × 108 L3 stage vesicles, puri-
fied from in vitro culture medium by ultracentrifugation. The macrophage response was
assayed using the Milliplex MAPMouse Cytokine/Chemokine kit (EDMMillipore) interfaced
with a Bio-Plex System (Bio-Rad) utilizing Luminex xMAP technology, a platform capable of
simultaneously identifying and quantifying 32 cytokines/chemokines. Vesicle treatment effec-
tively activated J774A.1 macrophages with significant increases in G-CSF, MCP-1, IL-6 and
MIP-2 levels compared to control macrophages treated with naïve RPMI 1640 culture media,
(p� 0.001)(Fig 9A). Smaller increases in LIX, RANTES and TNF-α were also noted. Healthy,
viable L3 stage parasites produced an almost identical response (Fig 9A), the only difference
being a modest but significant enhancement of G-CSF stimulation by the viable parasites
(p< 0.001), suggesting that the dominant parasite immunogen(s) are found in the vesicle pel-
let. Finally, parasite culture media from which the ELVs had been removed by centrifugation
did not produce this response, nor did live schistosomes (S. mansoni cercaria) or their secreted
vesicles (S2 Fig) suggesting the Brugia-associated activation is specific to this parasite and not a
general response to helminths or their secreted vesicles.

The activation profile observed would be considered more indicative of a CAMF response
than AAMF; to confirm the response was CAMF-like, we compared it to the response elicited
by LPS (200 ng/mL). The only significant differences were that ELV treatment stimulated
G-CSF and IL-6 less effectively (p< 0.001) and stimulated MCP-1 more effectively (p< 0.001)
than LPS (Fig 9B). The overall conservation of response, however, indicates these ELVs gener-
ate a CAMF phenotype. SinceWolbachia, the endosymbiont present in filarial nematodes,
lack LPS biosynthetic capacity it seemed unlikely our CAMF-like response was driven by LPS-
like contamination but to rule this out, endotoxin levels in our vesicle preparation were deter-
mined commercially (Lonza, Walkersville, MD). LPS-like activity was present (0.003 ng/mL)
but at a concentration several orders of magnitude lower than the minimum dose required to
stimulate J774A.1 macrophages [64]. As expected, treatment of macrophages with this low LPS
dose was insufficient for activation (Fig 9C) indicating that the CAMF response we observe is
not due to an LPS-like component in our preparation.

Since the stimulation of an AAMF phenotype by live Brugia and ES preparations thereof in
vivo and in vitro has been well established [61–63] it might be expected that Brugia ELV prepa-
rations also stimulate a AAMF phenotype, especially since complete Brugia ES preparations
are likely to include ELVs similar to those examined here, albeit at reduced concentrations. We
observed a response consistent with a CAMF phenotype, however, although without the acute
elevation in IL-β and TNF-α production others have seen in response to LPS [60]. One inter-
pretation is that the CAMF> AAMF phenotype may be a somewhat artificial function of the
homogenous J774A.1 monoculture used here as other studies describing a AAMF phenotype
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often use PBMC or other heterogeneous primary cell types. It would be instructive to monitor
the responses of such mixed cell populations to the ELV preparation. Additionally, although
the murine model is regarded as valuable for illuminating both how parasites establish them-
selves and the early host immune response, J774A.1 may not be optimal for studying this par-
ticular Brugia-host interaction and optimization with other murine or human cells may be
required. Another interpretation, however, is that the purified ELVs examined here should be
considered a distinct and specific fraction of the highly complex immunogenic facade pre-
sented by filarial parasites and may elicit a genuine CAMF phenotype when examined in isola-
tion. Supporting this interpretation, exosomes isolated from other biological systems effectively
generate a CAMF phenotype [59, 65, 66]. A key mediator of this pro-inflammatory response is
Hsp70 [65], which was identified in our ELV proteomic profile. In summary, irrespective of
the polarity of macrophage activation phenotype, our results unequivocally identify secreted
ELVs as distinct parasite-derived structures capable of activating the host immune system.

A picture is emerging that parasitic helminths secrete functional exosome-like vesicles. The
protein and small RNA cargo of these vesicles have putative effector functions at the host-
parasite interface and potentially serve to create conditions favorable to the establishment or
maintenance of infection. The identification of these cell-to-cell effector structures is exciting
and prompts further investigation of their functional relevance. In particular, it will be impor-
tant to describe the roles of individual miRNAs and proteins contained within the ELVs, to
identify the host molecular targets being manipulated in vivo, and reveal any conserved or
stage-specific effectors secreted across the parasite life cycle. Another intriguing question is
whether or not there is any specificity or selectivity in host cells or tissues targeted and if so,
what molecular mechanisms underscore this specificity. Addressing such questions will illumi-
nate the fundamental interactions that occur between parasite and host, and may open previ-
ously unexploited opportunities for parasite control and diagnostics.

Materials and Methods

Mosquito maintenance
Aedes aegypti (Black eyed Liverpool strain, LVP), previously selected for susceptibility to infec-
tion with Brugia malayi [67], were maintained in controlled conditions (27°C ± 1°C and 75% ±
5% relative humidity) with a 16:8 photoperiod. Adult mosquitoes were fed a diet of 10%
sucrose. Approximately 4,000 and 2,600 mosquitos were used for proteomics and RNA
sequencing, respectively.

Fig 9. Brugia exosome-like vesicles (ELVs) elicit a classically activated phenotype in J774A.1
macrophages. (A) J774A.1 (5 × 105) were treated with approximately 4 × 108 purified L3 stage ELVs, live L3
stage parasites (10 worms) or naïve culture media (control) and supernatents collected after 48 hr. The
presence of 32 cytokines/chemokines was simultaneously assayed using the Milliplex MAPMouse Cytokine/
Chemokine kit (EDMMillipore) interfaced with a Bio-Plex System (Bio-Rad) utilizing Luminex xMAP
technology (Luminex). The quantification of identified cytokines is presented. The cytokine profile generated
by ELV treatment is consistent with a classically activated phenotype. (B) Cytokine response to ELV
treatment is compared to LPS (200 ng/mL). The close correlation of responses indicates ELV treatment
generates a classically activated phenotype. (C) J774A.1 (5 × 105) were treated with high dose LPS (200 ng/
mL), low dose LPS (0.003 ng/mL), ELV or naïve culture media (control) for 24 hr, supernatant collected and
assayed for G-CSF using a Mouse G-CSF Quantikine ELISA kit (R&D Systems). The absence of response to
low dose LPS suggests the classically activated response is not due to LPS-like contamination.

doi:10.1371/journal.pntd.0004069.g009
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Establishing Brugia malayi infection
For proteomics and transcriptomics, B. malayimicrofilaria (mf) infected cat blood was
obtained from the University of Georgia NIH/NIAID Filariasis Research Reagent Resource
Center (FR3). Blood containing the parasites was diluted with defibrinated sheep’s blood
(Hemostat Laboratories, CA, USA) to achieve a concentration of 80–100 mf per 20μL. To
establish infection, 3- to 5-day-old Ae. Aegypti (LVP) were allowed to feed for one hour on a
glass membrane feeder. Mosquitoes were sucrose-starved for 24 hrs prior to blood feeding and
those that did not take a blood meal were removed. Infected mosquitoes were maintained in
the above described conditions for 13–15 days post infection (dpi) to allow development of
parasites.

Brugia malayimaintenance and collection of vesicle-containing media
In exploratory studies, larval (300 L3) and adult (30 male or 30 female) B. malayi were pro-
cured from the FR3. On arrival, parasites were cultured in 50 mL RPMI 1640 (Sigma-Aldrich,
St. Louis, MO) at 37°C (5% CO2). Cell culture media was collected and replaced at 24 hr inter-
vals for up to 72 hrs to collect secreted ELVs. For downstream sequencing and proteomics, B.
malayi (13–15 dpi) were locally collected using methods described by FR3. Briefly, infected
mosquitoes were immobilized by cooling to 4°C for 15 minutes. Immobilized mosquitoes were
crushed in a mortar containing 5 ml of chilled Hanks’ balanced salt solution (HBSS, pH 7.0)
containing pen-strep (0.4 units penicillin/ml, 0.4 mcg streptomycin/ml). Mosquitoes were then
rinsed onto a 150 mesh sieve contained in a deep well plastic petri dish and washed 3–4 times
using fresh chilled HBSS + pen-strep. Sieves were then placed into petri dishes containing
warm (40°C) HBSS + pen-strep to allow infective larvae to migrate out. Sieves were transferred
to new deep well petri dishes containing fresh warm HBSS every 30 minutes. Collected para-
sites were washed twice with warm HBSS + pen-strep, placed into 25 mL RPMI 1640 contain-
ing pen-strep (0.4 units penicillin/ml, 0.4 mcg streptomycin/ml) and held at 37°C, 5% CO2 for
24 hrs to collect secreted ELVs.

Exosome-like vesicle purification
Differential centrifugation was used to isolate ELVs from 25 or 50 mL aliquots of Brugia cul-
ture media. Aliquots were collected from 24 hr incubations of larval or adult worms in culture
media. Lower speed centrifugation and filtration steps were used to remove contaminating
cells (300 × g, 10 mins) and cellular debris (10,000 × g, 15 mins). The resulting supernatants
underwent filtration through 0.22 μm filters and ultracentrifugation at 105,000 × g for 90 mins
to pellet ELVs. Pellets were then washed with cold phosphate-buffered saline (PBS) and a final
spin was carried out at 105,000 × g for 90 mins. Supernatants were discarded and pellets were
resuspended in small volumes (30–250 uL) of PBS for imaging, sequencing, and proteomics,
and RPMI for immunological assays. Samples were kept on ice and centrifugation steps were
carried out at 4°C. Resuspended ELVs were stored at −80°C.

Electron microscopy and nanoparticle tracking analysis
Small aliquots of ELV suspension (3 μl) were applied to carbon coated 200 mesh copper grids
and negatively stained with 2% uranyl acetate. Images were taken using a JEOL 2100 scanning
and transmission electron microscope (Japan Electron Optics Laboratories, Akishima, Japan) at
the Microscopy and NanoImaging Facility (Iowa State University). Nanoparticle tracking anal-
ysis was carried out with the NanoSight LM10 (NanoSight Ltd., Amesbury, UK) to ascertain
the size and frequency distribution of individual vesicle preparations, assayed in triplicate. The

Brugia malayi Secretes Exosome-Like Vesicles

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004069 September 24, 2015 16 / 23



Brownian motion of particles in solution is related back to particle sizes and numbers, allowing
better statistical resolution of vesicle size and concentration [68].

LC-MS/MS and proteomic analysis
Protein was isolated from purified exosome-like vesicles for proteomic analysis (System Biosci-
ences). Briefly, samples were modified with 10% SDS to a final concentration of 2% SDS,
heated at 100°C for 15 minutes and clarified by centrifugation. Protein concentration was
determined using a Qubit fluorometry assay (Invitrogen). 15 μg of material was processed by
SDS-PAGE using a 10% Bis-Tris homogeneous gel and the MES buffer system. In-gel digestion
with trypsin was done at 37°C for 4 hrs using a ProGest robot (DigiLab, Marlborough, MA).
The digested sample was analyzed by nano LC-MS/MS analysis using a Waters NanoAcquity
HPLC system interfaced to a ThermoFisher Q Exactive. Data were searched against a copy of
the B. malayi UniProt database (taxon ID: 6278) using a locally running copy of MASCOT
(Matrix Science Ltd., London, UK). The search was restricted using the following parameters;
maximum missed cleavages = 2, fixed modifications = carbamidomethyl (C), variable
modifications = Oxidation (M), Acetyl (N-term), Pyro-Glu (N-term Q) and Deamidation (N,
Q), a peptide mass tolerance of 10 ppm, and a fragment mass tolerance of 0.02 Da. Mascot
DAT files were parsed into the Scaffold software for validation, filtering and to create a nonre-
dundant list per sample. Data were filtered using a minimum protein value of 90%, a minimum
peptide value of 50% (Prophet scores) and requiring at least two unique peptides per protein.

RNA isolation and sequencing
For detection of RNA species in ELV preparations, small RNAs were preferentially isolated
from vesicle-containing pellets using the miRCURY RNA Isolation Kit (Exiqon, Vedbaek,
Denmark) and RNA samples were examined with an Agilent 2100 Bioanalyzer using the RNA
6000 Nano Kit. For small RNA sequencing (RNA-Seq), total RNA was isolated from ELVs
released by*5,000 L3s over a 24 hr incubation period using the Total RNA and Protein Isola-
tion Kit (Invitrogen, Carlsbad, CA). In parallel, total RNA was isolated from whole worm tissue
using a TRIzol (Invitrogen) protocol, where a 6 hr precipitation step was carried out at -80°C
to improve small RNA recovery. RNA NGS libraries were constructed using modified Illumina
adapter methods using SBI’s XRNA Sample Preparation Kit (System Biosciences, Mountain
View, CA) and indexed with separate bar codes for multiplex sequencing on an Illumina
MiSeq v3 instrument using a 2 × 75 bp paired end run setting.

miRNA discovery and abundance estimation
Raw reads were trimmed to remove adapter sequences, filtered by quality score, and de-multi-
plexed using the FASTX-Toolkit [69] (sequencing data are deposited with the NCBI SRA
under project number PRJNA285132). The miRDeep2 pipeline was used to map short RNA
reads (>15 nt) to the B. malayi genome for miRNA discovery, and to estimate and normalize
miRNA abundances with respect to total miRNA read count. Nematode precursor and mature
miRNA sequences deposited into miRBase [70] were used in the pipeline, including known B.
pahangi, Caenorhabditis elegans, Ascaris suum, Haemonchus contortus, and Strongyloides ratti
miRNAs. Non-mapped reads were ranked by abundance, filtered for homology against known
miRNAs in the phylum Nematoda using BLASTn [71], and incorporated for final quantifica-
tion of abundance with the miRDeep quantifier script, allowing for capture of miRNAs that
did not map to the B. malayi assembly due to sequencing gaps. The ggplot2 package [72] of the
statistical programming language R was used to organize and visualize comparisons between
vesicular and tissue RNA samples.
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Cell culture
J774A.1 murine macrophages (ATCC, Manassas, VA) were maintained in complete tissue cul-
ture medium (Dulbecco’s modified Eagle’s medium, 25 mMHEPES, pH 7.4 supplemented with
2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin, 0.05 μM 2-mercaptoethanol,
and 10% heat-inactivated fetal bovine serum) at 37°C and 5% CO2. 24 hrs prior to assays, 400
μL cells were plated in standard 24-well plates at a density of 5 × 105 cells/well.

Vesicle labeling and uptake
Exosome-like vesicles were purified from a 24 hr culture of 300 Brugia malayi L3 parasites as
described above and labeled with the green fluorescent dye, PKH67 (Sigma-Aldrich, St Louis,
MO,USA), according to the manufacturer’s instructions. ELVs were incubated with PKH67 for
5 min at room temperature and the reaction terminated by addition of 1% BSA in PBS. RPMI
1640 media was added, mixed and centrifuged at 105,000 × g for 1 hr to separate ELV-bound
PKH67 from excess PKH67. Labeled ELV were washed again then resuspended in an appropri-
ate volume of complete tissue culture medium (Dulbecco’s modified Eagles medium, 25 mM
HEPES, pH 7.4 supplemented with 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL strep-
tomycin, 0.05 μM 2-mercaptoethanol and 10% heat-inactivated fetal bovine serum).

J774A.1 were labeled with red fluorescent lipophilic dye, PKH26 (Sigma-Aldrich, St Louis,
MO), according to the manufacturer’s instructions. Macrophages were incubated with PKH26
for 5 min at room temperature and the reaction terminated by addition of 1% BSA. To remove
excess unbound dye, samples were centrifuged at 400 × g for 10 minutes at room temperature
and the supernatant discarded. Centrifugation was repeated three more times using 10 ml of
complete media to ensure full removal of unbound dye and the cells were re-suspended in
1 mL of complete medium. Approximately 3 × 105 labeled cells were plated onto sterile cover-
slips and incubated overnight at 37°C/5% CO2. Labeled ELV suspension (approximately
3 × 107 per coverslip) was added to labeled J774A.1 and incubated for 6 hrs. Cells were washed
5 times with ice-cold PBS to remove excess labeled ELVs, the cells fixed in 4% paraformalde-
hyde (Sigma-Aldrich), washed and counterstained with DAPI before mounting and storage at
4°C. Preparations were visualized using a Leica TCS SP5 X Confocal/multiphoton microscope
system (Leica Microsystems Inc., Buffalo Grove, IL).

Detection of macrophage modulation by Luminex assay
Triplicate wells of adhered J774A.1 were treated with approximately 4 × 108 purified L3 stage
ELVs. The ELVs were purified by ultracentrifugation as previously described, resuspended in
RPMI 1640 medium (Gibco/Life Technologies, Carlsbad, CA) and quantified by nanoparticle
tracking analysis. Other treatments were similar volumes of vesicle depleted L3 culture
medium (supernatant created following pelleting of ELV fraction from spent parasite culture
medium), live B. malayi L3 parasites (10 worms/well), lipopolysaccharide (LPS; final concen-
tration 200 ng/mL)(Sigma-Aldrich, St. Louis, MO), naïve RPMI 1640 culture medium and var-
ious combinations of these conditions. Supernatants from these cell cultures (400 μL/well)
were collected 24 or 48 hrs post-treatment and centrifuged briefly (2,000 × g for 10 min) to
remove non-adhered cells and cell debris before being analyzed for the presence of cytokines/
chemokines. The Milliplex MAPMouse Cytokine/Chemokine kit (EDMMillipore, Billerica,
MA) interfaced with a Bio-Plex System (Bio-Rad, Hercules, CA) utilizing Luminex xMAP tech-
nology (Luminex, Austin, TX) allowed the simultaneous identification and quantification of
the following analytes in the cell culture supernatant: Eotaxin, G-CSF, GM-CSF, IFNγ, IL-1α,
M-CSF, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12(p40), IL-13, IL-15, IL-17, IP-10,
MIP-2, KC, LIF, LIX, MCP-1, MIP-1α, MIP-1β, MIG, RANTES, TNFα, IL-12(p70), VEGF,
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IL-9. Briefly, experimental samples, background, standards and controls were added to a
96-well plate and combined with equal volumes of pre-mixed, antibody coated magnetic beads;
the plate was sealed and incubated overnight at 4°C. Following washing, 25 μL of detection
antibody was added and the plate incubated for one hour at room temperature with shaking.
Streptavidin-Phycoerythrin (25 μL) was added to each well and the plate incubated for a fur-
ther hour at room temperature before washing. Finally, 150 μL assay buffer was added to all
wells and fluorescence immediately recorded. Median fluorescent intensity data were analyzed
as recommended using a five-parameter logistic curve-fitting method for calculating cytokine/
chemokine concentration.

G-CSF ELISA
Triplicate wells of adhered J774A.1 cells, prepared as described above, were treated with LPS
(final concentration 200 ng/mL or 0.003 ng/mL), approximately 4 × 108 purified L3 stage ELVs
as described above, or RPMI 1640 as negative control. Cell culture supernatants were collected
24 hrs after treatment, cleared via centrifugation as described previously and assayed for
G-CSF using a Mouse G-CSF Quantikine ELISA kit (R&D Systems, Minneapolis, MN). Stan-
dard curves were generated using Prism 6 software (GraphPad Software, San Diego, CA) and
sample G-CSF concentrations determined by regression analysis.

Statistical analysis
For analysis of Luminex data, Tukey’s test was used to compare overall treatments while multi-
ple t-tests, incorporating the Holm-Sidak method to correct for multiple comparisons, were
used to compare individual chemokines/cytokines following treatments. t-tests were used to
compare treatment groups following ELISA analysis. All statistical analyses were performed
using Prism 6 for Mac (Graphpad).

Supporting Information
S1 Video. Brugia malayi L3 ELVs recorded via NanoSight.
(MP4)

S1 Table. Small RNA-Seq miRNA abundances and read statistics.
(XLSX)

S1 Fig. Brugia malayi ELV miRNA sequence homology to nematode and mammalian host
miRNAs.miRNAs are grouped by putative seed site and aligned.
(TIFF)

S2 Fig. Macrophage activation is a specific function of Brugia ELVs. (A) J774A.1 macro-
phages (5 × 105) were treated with approximately 4 × 108 purified L3 stage ELVs, an equivalent
volume of culture media supernatant from which ELVs had been depleted by centrifugation
(SN Treated) or naïve culture media (control). The presence of 32 cytokines/chemokines was
simultaneously assayed using the Milliplex MAPMouse Cytokine/Chemokine kit (EDMMilli-
pore) interfaced with a Bio-Plex System (Bio-Rad) utilizing Luminex xMAP technology (Lumi-
nex). The quantification of identified cytokines is presented. ELV treatment, but not the ELV
depleted culture media, generates a classically activated phenotype. (B) J774A.1 macrophages
were treated with approximately 4 × 108 ELVs collected from a culture of Schistosoma mansoni
invasive stage schistosomules as described for Brugia (Sm ELV), live S. mansoni schistosomules
(300 per well; Sm) and naïve RPMI 1640 culture media (control). Macrophages were not
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