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Abstract

Background

Despite dengue dynamics being driven by complex interactions between human hosts,

mosquito vectors and viruses that are influenced by climate factors, an operational model

that will enable health authorities to anticipate the outbreak risk in a dengue non-endemic

area has not been developed. The objectives of this study were to evaluate the temporal

relationship between meteorological variables, entomological surveillance indices and con-

firmed dengue cases; and to establish the threshold for entomological surveillance indices

including three mosquito larval indices [Breteau (BI), Container (CI) and House indices (HI)]

and one adult index (AI) as an early warning tool for dengue epidemic.

Methodology/Principal Findings

Epidemiological, entomological and meteorological data were analyzed from 2005 to 2012

in Kaohsiung City, Taiwan. The successive waves of dengue outbreaks with different mag-

nitudes were recorded in Kaohsiung City, and involved a dominant serotype during each

epidemic. The annual indigenous dengue cases usually started from May to June and

reached a peak in October to November. Vector data from 2005–2012 showed that the

peak of the adult mosquito population was followed by a peak in the corresponding dengue

activity with a lag period of 1–2 months. Therefore, we focused the analysis on the data

from May to December and the high risk district, where the inspection of the immature and

mature mosquitoes was carried out on a weekly basis and about 97.9% dengue cases

occurred. The two-stage model was utilized here to estimate the risk and time-lag effect of

annual dengue outbreaks in Taiwan. First, Poisson regression was used to select the opti-

mal subset of variables and time-lags for predicting the number of dengue cases, and the

final results of the multivariate analysis were selected based on the smallest AIC value.
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Next, each vector index models with selected variables were subjected to multiple logistic

regression models to examine the accuracy of predicting the occurrence of dengue cases.

The results suggested that Model-AI, BI, CI and HI predicted the occurrence of dengue

cases with 83.8, 87.8, 88.3 and 88.4% accuracy, respectively. The predicting threshold

based on individual Model-AI, BI, CI and HI was 0.97, 1.16, 1.79 and 0.997, respectively.

Conclusion/Significance

There was little evidence of quantifiable association among vector indices, meteorological

factors and dengue transmission that could reliably be used for outbreak prediction. Our

study here provided the proof-of-concept of how to search for the optimal model and deter-

mine the threshold for dengue epidemics. Since those factors used for prediction varied,

depending on the ecology and herd immunity level under different geological areas, differ-

ent thresholds may be developed for different countries using a similar structure of the two-

stage model.

Author Summary

With the continuously high levels of worldwide dengue transmission, predicting dengue
outbreaks in advance of their occurrence or identifying specific locations where outbreak
risks are highest is of critical importance. However, only few studies have been conducted
in dengue non-endemic countries to evaluate the association of vector index with the
occurrence of dengue cases; and the establishment of an early warning signal would signif-
icantly enhance the public health intervention. Our study here provided the proof-of-con-
cept results, utilizing a two-stage model to identify the best set of lag effects of
meteorological and entomological variables, explaining dengue epidemics based on the
data obtained from Taiwan, which is a dengue-non-endemic country. Each of the vector
indices when combined with the meteorological factors has better performance compared
to the prediction using AI, BI, CI and HI alone, with 83.8, 87.8, 88.3 and 88.4% accuracy,
respectively. Because of the complex interplays between the size of human hosts and
movement, environmental factors and dynamic changes of mosquito population and den-
sity, each country should consider its own individual data and situation and apply this
two-stage model to find the optimal predictive models for allocating public health
resources and prevention strategies.

Introduction
Dengue viruses (DENV) are the most widespread arthropod-borne viruses affecting humans.
A recent study estimates that annually 390 million DENV infections occur worldwide with
500,000 severe cases and 25,000 deaths, mostly affecting children[1]. Infection with DENV can
result in a range of outcomes from asymptomatic infection to clinical manifestations ranging
from dengue fever (DF) to the life threatening complications of dengue hemorrhagic fever
(DHF) and shock syndrome (DSS). This mosquito-borne disease is caused by four serotypes of
dengue virus (DENV-1 to 4), which belong to the family Flaviviridae, genus Flavivirus[2].
Infection by one serotype of DENV will provide lifelong immunity to that particular strain but
not to the remaining three serotypes, which usually lead to the reduction of the susceptible
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population. However, immunity from prior infection might enhance the incidence of DHF
through antibody-dependent enhancement mechanism even though the transmission of
DENV is reduced[3,4]. The virus is transmitted to humans mainly by two mosquito vectors,
Aedes aegypti or Aedes albopictus. In the absence of an effective vaccine or specific therapy, vec-
tor control remains the only way to prevent dengue viral transmission[5].

Increased travel with population movement, global trade, crowded urban living conditions,
global warming, virus evolution and ineffective vector-control strategies are also increasing the
risk of dengue transmission in the world[6,7]. Travelers infected with dengue virus during
their trip returning home may place the local population at risk wherever mosquito vectors are
present[8,9]. Therefore, the required conditions for the occurrence of a dengue outbreak in
countries where dengue is not endemic include i) the presence of dengue viruses through
repeated introduction of imported cases, ii) a sufficient density of competent vectors above the
threshold, iii) a sufficient number of susceptible population, and iv) a favorable climatic and
environmental condition for dengue transmission[10]. Furthermore, numerous studies sug-
gested an effect of climate on DENV transmission through changes in vector population size
and distribution. The relationships between entomological measures of risk and human infec-
tion are not well understood[11–13].

The mosquito vectors, principally A. aegypti, become infected when they feed on humans
during the usual five-day period of viraemia. The virus passes from the mosquito intestinal
tract to the salivary glands after an extrinsic incubation period, a process that takes approxi-
mately 10 days, which may vary depending on the ambient temperatures[14]. Mosquito bites
after the extrinsic incubation period result in infection, which might be promoted by mosquito
salivary proteins[15–17]. The abundance of dengue vector as well as dengue transmission gen-
erally exhibits seasonal variation depending on the local ecology and urban environment.
Therefore, vector surveillance is recommended by the World Health Organization (WHO) and
is a routine practice in many dengue-occurring countries to provide quantifiable measure of
fluctuations in magnitude and geographical distribution of dengue vector populations[18,19].
The traditional standard protocol relies on surveys of larvae and pupae, which include three
most commonly used indices: the House index (HI), the Container index (CI) and Breteau
index (BI). A poor correlation with the abundance of adult mosquitoes has caused their sensi-
tivity and reliability to be questioned[20,21]. The alternative, pupal indices developed by Focks
et al[22], has been suggested to better reflect the risk for transmission, but the utility for source
reduction programs is still controversial[23,24]. The most accurate method of vector surveil-
lance is the capture of adult mosquitoes by aspiration, which directly counts dengue vectors
that are actively in search of a blood meal: adult female A. aegypti and occasionally A. albopic-
tusmosquitoes. However, capturing adult mosquitoes is labor-intensive, and requires access to
premises. Recently, fixed-position traps, designed to capture gravid mosquitoes using water-
filled pots in which A. aegypti lay their eggs, are widely used as a simple sampling tool[25,26].
However, its correlation with the incidence of dengue is still controversial[27,28].

Kaohsiung City, a modern metropolis of 1.5 million people, has been afflicted by different
serotypes of DENV and has become the focus of dengue virus activity in Taiwan during the
recent decades[29]. During 2002–2011, Kaohsiung City had annual outbreaks of variable
scales, resulting in more than 6,000 confirmed cases[30]. Since 2005, vector surveillance activi-
ties by the Department of Health, Kaohsiung City Government, were initiated by using spe-
cially trained personnel. Four different vector indices were chronically established. A previous
study suggested that adult Aedesmosquito index from 2005–2009 showed temporal correlation
with the peak of the DF activity with a lag period of 1–2 months[29]. However, the association
between different vector indices and the occurrence of dengue cases has not been comprehen-
sively evaluated. Therefore, the objectives of this study were to i) evaluate the temporal
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relationship between meteorological variables, entomological surveillance indices and dengue
confirmed cases, ii) identify the suitable conditions for an epidemic occurrence, and iii) estab-
lish the threshold for entomological surveillance indices as an early warning tool for dengue
epidemic.

Materials and Methods

Study area
Although dengue virus epidemics have occurred annually in Taiwan for the past decade, the
main focus of activity has been in Kaohsiung City (Fig 1). Kaohsiung City is a standard sub-
tropical region with annual average rainfall from 1796.7 to 2821.4 mm and concentrated from
May to September. In addition, the annual average temperature is from 24.9 to 25.7 degrees
Celsius (°C), with the lowest average 11.6°C in February and the highest average 31.5°C in
June. After December 25, 2010, the area of Kaohsiung city expanded due to the combined

Fig 1. The location of Kaohsiung city in Taiwan. The inset shows the 38 districts, including 11 districts from the old Kaohsiung administrative districts. All
districts were further classified into high, middle (mid) and low risk areas based on the household density and the average number of households with the
presence of A. aegypti from the historical entomological data.

doi:10.1371/journal.pntd.0004043.g001
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administration area between Kaohsiung County and Kaohsiung City. Since our study period
covered from January 2005 to December 2012, the study area included the former Kaohsiung
City, Fongshan, Daliao, and Linyuan districts as well as the adjacent Pingtung County and Tai-
nan City in southern Taiwan, located between 120°10032@ to 121°01015@ east longitudes and
22°280 to 23°280 north latitudes.

Data collection
Meteorological data. We systematically collected daily weather data for Kaohsiung City

that was publicly available through the 9 branch stations of the Environmental Protection
Administration (EPA). Due to the strong co-linearity among the daily minimum, maximum
and average of the meteorological data, only one type of daily data could be used in the model.
Through the two-stage model examination with the largest sum of sensitivity and specificity
under the criteria of selecting the predicting threshold (detailed explanation in the following
statistical analysis section), the meteorological variables finally analyzed in this study included
the daily accumulative rainfall, daily mean relative humidity and daily mean temperature.
Also, the nonlinear effect of the meteorological variables on the dengue case counts was noted
after examining the raw data (S1 Text). Therefore, the entire meteorological datum was tri-
sected into three levels (low, medium and high) according to the 33rd and 66th percentile.

Dengue case surveillance data. Dengue is classified as a reportable infectious disease and
suspected cases must be reported within 24 hours for a clinical diagnosis in Taiwan. Cases of
‘‘probable DF” are patients with body temperatures>38°C and two or more of the following
clinical manifestations: headache, retro-orbital pain, myalgia, arthralgia, rash, hemorrhagic
manifestations and leucopenia. The dengue case surveillance system in Taiwan is made up of
two parts: active and passive surveillance for the comprehensive and effective surveillance of
dengue infection[31]. The active surveillance includes fever screening at the airport (identifying
fever cases by infrared thermal scanner, which has been routinely operated by the government
since 2003), and health statements from the inbound passengers[32,33]. To reinforce the sur-
veillance system, once confirmed dengue cases are identified, the epidemiological investigation
will be undertaken around the residential areas, schools, and work places; and specimens of
febrile cases are taken as part of the active surveillance. The passive surveillance refers to the
hospital-based reporting system for the notification of either imported or domestic dengue
cases. The serum specimens from the suspected dengue patients are sent to the central labora-
tory for laboratory confirmation. The laboratory confirmation of dengue includes nucleic acid
identification of dengue virus by reverse-transcriptase polymerase chain reaction (RT-PCR),
serological testing on single or paired serum samples by dengue-specific envelope and mem-
brane–specific immunoglobulin M (IgM) and IgG antibody-capture enzyme-linked immuno-
sorbent assay (with the exclusion of Japanese encephalitis virus infection), or virus isolation
[34]. All relevant data and diagnostic results are reported via the web-based National Surveil-
lance System for subsequent tracking and management[35].

The analyses in this study used data from the confirmed dengue cases obtained from the
National Notifiable Disease Surveillance System of the Taiwan Centers for Disease Control
(Taiwan-CDC) and included the date of ascertainment, residency (detailed to “Li”, the smallest
administrative units), country in which infection was acquired, age at diagnosis and gender.
The definition of a confirmed dengue case includes the positive detection of RNA or viruses,
IgM titer positivity or four-fold rises of IgG titer by laboratory diagnoses[32]. A domestic or
indigenous dengue case was considered a confirmed case in which the patient had not traveled
abroad within two weeks prior to the onset of illness.

Two-Stage Model for Predicting Dengue Epidemics
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Vector surveillance data. Vector surveillance activities by the Department of Health
(DOH), Kaohsiung City Government, were initiated in 2005 by specially trained personnel. All
personnel had received training in mosquito species distinction, mosquito habitat recognition
techniques and sampling methods. The Li was used as the surveying unit in which 50–100
households were randomly selected for inspection of larval habitats or infestation of A. aegypti
and A. albopictusmosquitoes under the guidelines recommended by the World Health Organi-
zation (WHO)[19]. The inspection frequency of each Li was based on risk level according to
household density and the average number of households with the presence of A. aegypti based
on the previous entomological data. If the household density is higher than 1,000 households
per square kilometer and the prior annual average of BI is higher than 4, those Lis are classified
as the high risk district. If the household density is between 260–1,000 households per square
kilometer and the prior annual average of BI is lower than 4 but higher than 3, those Lis are
classified as the middle risk district. The rest of Lis are classified as the low risk district. Each Li
was visited for vector inspection, which covered indoor and outdoor areas of the selected prem-
ise, on a weekly, monthly and bi-monthly basis depending on the high, middle and low risk dis-
tricts, respectively (Fig 1). Adult Aedesmosquitoes were captured indoors and outdoors with
hand-nets at 8:30–11:30 AM or 1:30–4:30 PM. The captured adult mosquitoes were further
identified as A. aegypti or A. albopictus and the numbers were recorded accordingly. Capture
activities were completed for all rooms, including the basement, within a maximum of 10 min-
utes for each inspected premise. Containers with immature Aedesmosquitoes (larvae/pupae)
were considered as positive containers. For habitats with low water volume (<30 liter) the lar-
vae/pupae were strained off and transferred into white bowls for visualization and counting.
For habitats containing high water volume, as many larvae/pupae were collected as possible
and the mosquito species was determined following adult emergence from the collected speci-
mens reared at the laboratory facilities of the DOH, Kaohsiung city[36].

In this study, we focused on the high risk district where the inspection was carried on a
weekly basis and 97.9% dengue cases occurred. Three mosquito larval indices (Breteau, Con-
tainer and House indices) were used to estimate the density of immature Aedesmosquitoes in
the study. The BI was defined as number of positive containers per 100 houses. The CI was cal-
culated as percentage of water-holding containers infested with larvae or pupae. The HI was
calculated as the number of houses with at least one larval breeding site positive for A. aegypti
divided by the number of inspected premises. The adult index (AI) was calculated as the num-
ber of adult female mosquitoes captured divided by the number of inspected premises. Since
the number of A. aegypti captured was much more abundant than those of A. albopictus and
the positive correlation between both numbers was observed (p<0.05), only the number of A.
aegypti was used to calculate the AI.

Ethics statement
This study was approved by the Institutional Review Board (Approval No. IRB-R-05-002) of
Taichung Hospital, Ministry of Health andWelfare, Taiwan; and all analyzed data was
anonymized.

Statistical analysis
Since Taiwan is not a dengue-endemic country, the common season for the indigenous dengue
cases to occur starts fromMay to December after repeated introduction of imported dengue
cases as suggested by previous publication[8]. The dengue cases within this period comprised
98.7% of the annual total. Therefore, we focused our forecasting model fromMay to December.
We used a two-week interval as a unit to divide the 8-year span into 151 intervals, counting the
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dengue case (Y) and averaged the meteorological data. The environmental factors included in
the study were vector indices (VI, including AI, BI, CI, and HI), mean temperature (Temp,°C),
mean rainfall (RF, mm) and relative humidity (RH, %). We calculated the mean of the daily
average over each week in the study period for all the weather factors, so that the corresponding
33rd and 67th percentiles can be determined. We then further transformed these factors into
indicator variables of three levels (low, medium, and high) by using the percentiles as the
cutoffs.

Besides, both 2-week and 1-month lags of VI and meteorological factors were considered
here. The 2-week lag took into consideration the blood feeding of mosquito on an undetected
viremic subject and the 7–10 days interval to be able to re-infect a new subject, who requires
3–5 days to be symptomatic once infected [37]. On the other hand, the 1-month lag took into
consideration the mosquito life cycle from the laying to hatching of eggs, which requires 2
weeks and another 2 weeks from feeding to infect a new subject. Therefore, the VI distinguishes
into VI1 (2-week lag) and VI2 (1-month lag), and each VI1 or VI2 was also calculated separately
based on individual AI, BI, CI, and HI. To avoid colinearity among the VIs, we considered only
one of the VIs at a time (e.g., AI 2-week lag) joined by 6-weather variables (RF1 (2-week lag),
RF2 (1-month lag), Temp1 (2-week lag), Temp2 (1-month lag), RH1 (2-week lag), RH2

(1-month lag) as potential predicting variables. We used the minimized Akaike’s information
criteria (AIC) as the criterion for models selection, and each variable was either included or
excluded; and therefore a total of 27 = 128 combinations were tried to select the optimal subset
of predicting variables. Since there were 4 vector indices with 2 lag options, a total of 128×4×2
models were tried.

Regression models were developed by using a two-stage approach, wherein we first per-
formed an exploratory analysis to select the best models and used the selected model to create
the indices for predicting the occurrence of dengue cases and then estimated the prediction
accuracy. The stage 1 of the initial exploratory analysis used the Poisson regression to select the
optimal subset of variables and time-lags for predicting the number of DF cases. The stage 2
used the optimized model selected from Stage 1 to establish the prediction threshold and
defined the prediction accuracy from the ROC curve by logistic regression.

In stage 1, the univariate and multivariate lagged-time Poisson regression analysis was per-
formed to assess the relationship between the environmental factors and dengue cases. A basic
multivariate Poisson regression model was written as below.

Y � PoissonðlÞ;
LnðlÞ ¼ b0 þ b1 � VI1 þ b2 � VI2 þ b3 � RF11 þ b4 � RF12 þ b5 � RF21 þ b6 � RF22

þ b7 � Temp11 þ b8 � Temp12 þ b9 � Temp21 þ b10 � Temp22

þ b11 � RH11 þ b12 � RH12 þ b13 � RH21 þ b14 � RH22

where Y is the incidence of confirmed dengue cases and β0 is the intercept. VI1 and VI2 are
indicator variables with value 1 if the 2-week lag and 1-month lag, respectively, are above the
(overall) 33rd percentile; and 0 otherwise. RF11, Temp11, and RH11 are indicator variables with
value 1 if the RF1, Temp1 and RH1, respectively, are between the (overall) 33rd and 67th percen-
tiles; and 0 otherwise. Analogously, RF12, Temp12 and RH12 are value 1 if the RF1, Temp1 and
RH1, respectively, are above the 67

th percentiles. In addition, RF21, Temp21 and RH21 are indi-
cator variables with value 1 if the RF2, Temp2 and RH2, respectively, are between the (overall)
33rd and 67th percentiles; and 0 otherwise. Similarly, RF22, Temp22 and RH22 are value 1 if the
RF2, Temp2 and RH2, respectively, are above the 67

th percentiles.
In stage 2, we fitted Y on the 4 optimal subset of variables selected from stage 1, and pro-

duced the ROC curves. We considered count of outbreak for bi-week greater than 1, then
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definition of binary variable Y = 1 and = 0 if not. The final optimal models selected were vari-
ables including VI2, RF1, RF2, Temp1, and RH1 and the predicting coefficients for each VI were
as below. For each ROC curves, we picked a point that looked farthest from the diagonal line,
which has the largest area under curve (AUC) and with maximum total of sensitivity and speci-
ficity. The value decided by that point was then used as the predicting threshold. We defined
the corresponding linear combinations of variables estimated from the logistic regression as a
prediction index and the thresholds for each VI were calculated accordingly. As a result, there
were 4 models for each index: AI, BI, CI, and HI.

Sensitivity analysis
We conducted 2 cross-validations to examine the sensitivity of our method. The first is the
leave-one-out approach, of which each observation (a two-week period) was removed and the
rest were used to establish the classification criterion via multiple logistic regression and
corresponding AUC, and then that criterion was used to classify the removed one. After iterat-
ing on all the periods, the performance was assessed by the average accuracy rate. The second
approach was to leave one-year out instead of one period[38]. We repeated the above process
on Model-AI, Model-BI, Model-CI and Model-HI separately.

Two-tailed p<0.05 was regarded as statistically significant. The lagged-time Poisson regres-
sion analyses were performed by using SAS Version 9.3 for Windows (SAS Institute Inc., Cary,
North Carolina, USA).

Results

Temporal trend of dengue cases and meteorological data
From January 2005 to December 2012, Taiwan-CDC recorded 8,918 laboratory-confirmed cases
of dengue virus infections in Taiwan, and 58.1% were from Kaohsiung City (Fig 2A). The cases
were detected by passive and active surveillance activities. The successive waves of dengue out-
breaks with different magnitudes were recorded in Kaohsiung City, and they involved a dominant
serotype of DENV during each epidemic, representing more than 80% of cases confirmed by virus
detection in the specific year (Fig 2B). The annual dengue incidence rate varied with the highest
rate (1,176 cases) observed in 2011caused by DENV-2 and DENV-3; and the lowest rate (102
cases) in 2005 caused by DENV-3 without significantly secular trend. By dividing the annual den-
gue cases into four quarters of the year, the annual outbreak usually started one month before the
third quarter and reached a peak in the fourth quarter. The dengue cases during the first quarter
were residual cases from the outbreak in the previous year. Based on the geographical distribution,
98, 1.9 and 0.2% of dengue cases were from the high, middle and low risk districts, respectively
(Fig 2B). From 2005 to 2012, 159 total dengue cases were confirmed as imported, which distrib-
uted evenly throughout different months without a secular trend (Fig 2C). The peaks of the con-
firmed cases detected by passive and active surveillance were also coincided as shown in S1 Fig.

The average temperature in Kaohsiung City is around 25°C with the hottest season occur-
ring in July to September and the coldest in January to March. The hottest season usually coin-
cided with the strike of tropical hurricanes, which brought in significant amount of rainfall,
causing a rise in the annual dengue epidemic (Fig 2D). The relative humidity was relatively sta-
ble with an annual average of around 72.4%.

Seasonal trend of entomological data
The density of A. aegypti and A. albopictus in Kaohsiung City showed dynamic and periodic
variation. We focused only on the high risk district for data analysis wherein about 97.9%
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dengue cases occurred and the inspection of immature and mature mosquitoes was carried out
on a weekly basis. BI, CI or HI over 5 usually appeared in early summer and peaked during
autumn in the high risk area (Fig 3). Vector data from 2005–2012 showed that the peak of the
adult mosquito population was followed by a peak in the corresponding dengue activity with a
lag period of 1–2 months (Fig 3). Since Kaohsiung City frequently had more dengue epidemics,
which occurred annually, and had a more comprehensive vector surveillance data, the follow-
ing statistical analyses was focused on the data from Kaohsiung City.

Univariate Poisson analysis of lag-effect
Results of univariate analysis showed that the risk of an increased number of dengue cases was
significantly associated with the increase in all vector indices (including BI, CI, HI and AI) on
either 2-week- or 1-month-lag effect as shown in Table 1. However, the meteorological vari-
ables showed different patterns of association of dengue epidemics. Either medium or high

Fig 2. Secular trend of the meteorological data and the dengue cases from 2005 to 2012. (A) Comparison between Kaohsiung city and whole Taiwan of
all laboratory-confirmed indigenous dengue cases from 2005 to 2012 based on the residential area. (B) Comparison among high, middle and low risk areas
of all laboratory-confirmed indigenous dengue cases from 2005 to 2012. All dengue virus serotypes detected during each epidemic was indicated
accordingly, with the dominant serotype labeled with asterisk based on the major serotype detected frommore than 80% of dengue cases in the specific
year. (C) The quarterly total numbers of the laboratory-confirmed imported and indigenous dengue cases in Kaohsiung city from 2005 to 2012. (D) The
weekly average of temperature (temp, oC), rainfall (rain, mmHg) and relative humidity (rh, %) from 2005 to 2012.

doi:10.1371/journal.pntd.0004043.g002
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level of the temperature showed negative association with the increased risk of dengue epidem-
ics at 2-week-lag effect. However, the medium temperature showed a positive association with
the increased risk (RR: 1.32; 95% CI: 1.23–1.41), but the high level temperature showed a nega-
tive association (RR: 0.77; 95% CI: 0.71–0.83) at 1-month lag with statistical significance
(p<0.05). Similarly, both medium and high levels of RF showed negative associations with the
increased risk of dengue epidemics at 2-week-lag effect. However, the medium RF showed pos-
itive association with increased risk (RR: 1.12; 95% CI: 1.05–1.2), but the high level temperature
showed a negative association (RR: 0.86; 95% CI: 0.80–0.92) at 1-month lag. The increase of
RH showed consistently strong correlation with the increased risk of dengue cases either at
2-week- or 1-month-lag effect (Table 1).

Multivariate modeling of dengue outbreak risk
In order to find the best model for the prediction of dengue occurrence, a multivariable
Poisson regression model was fitted to the data to search for independent factors by running
different combinations of time lag effect. The final results of the multivariate analysis that best
predicted the occurrence of dengue cases were selected based on the smallest AIC value as
shown in Table 2. The 1-month lag effect of all VI was selected in the multivariable Poisson
model except AI, for which a 2-week-lag effect showed the best result. The 2-week-lag effect of

Fig 3. The temporal relationship between the indigenous dengue cases and the vector indices from the entomological surveillance data from 2005
to 2012 including Breteau index (A), Container index (B), House index (C) and adult A. aegypti index (D).

doi:10.1371/journal.pntd.0004043.g003
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all meteorological factors was also selected in the final multivariable Poisson model; however,
RF and Temp showed a negative association with the occurrence of dengue cases. In contrast,
RH and 1-month lag of RF showed a positive association. A slight difference with statistical sig-
nificance was also noted at Model-CI, in which the 1-month lag of RF showed positive associa-
tion when the RF level was medium (RR:1.12; 95% CI: 1.04–1.21) and negative association
when it was at a high level (RR:0.89; 95% CI: 0.81–0.98). Although the error between the
observed and estimated counts was large (range of R-square of four models: 0.16–0.3), the pre-
diction of peaks by the predictors selected from Poisson model quite coincided (Fig 4).

Next, in order to establish the threshold for entomological surveillance indices as an early
warning tool for dengue epidemics, a threshold, where good sensitivity and specificity both
reach above 80%, was selected. A threshold with 100% sensitivity but poor specificity will lead

Table 1. Univariate analysis of risk factors for dengue incidence by Poisson regression model.

Risk factor stratification Risk 95% CI p-value

2-week lag

Breteau index medium 1.81 (1.68, 1.95) <0.0001

Breteau index high 1.39 (1.29, 1.51) <0.0001

Container index medium 2.04 (1.87, 2.23) <0.0001

Container index high 3.01 (2.77, 3.27) <0.0001

Adult female mosq index medium 1.46 (1.34, 1.58) <0.0001

Adult female mosq index high 1.98 (1.83, 2.13) <0.0001

House index medium 1.51 (1.41, 1.63) <0.0001

House index high 1.21 (1.12, 1.31) <0.0001

Larva index medium 1.49 (1.38, 1.6) <0.0001

Larva index high 1.3 (1.21, 1.41) <0.0001

Temperature medium 0.705 (0.66, 0.752) <0.0001

Temperature high 0.381 (0.351, 0.413) <0.0001

Rain medium 0.819 (0.766, 0.875) <0.0001

Rain high 0.546 (0.506, 0.59) <0.0001

Relative humidity medium 1.08 (1.001, 1.17) 0.048

Relative humidity high 1.65 (1.53, 1.77) <0.0001

1-month lag

Breteau index medium 2.11 (1.95, 2.29) <0.0001

Breteau index high 2.12 (1.96, 2.3) <0.0001

Container index medium 3.47 (3.13, 3.85) <0.0001

Container index high 5.28 (4.78, 5.84) <0.0001

Adult female mosq index medium 1.4 (1.3, 1.52) <0.0001

Adult female mosq index high 1.97 (1.83, 2.13) <0.0001

House index medium 1.84 (1.7, 2) <0.0001

House index high 1.87 (1.73, 2.03) <0.0001

Larva index medium 2.15 (1.98, 2.33) <0.0001

Larva index high 2 (1.85, 2.17) <0.0001

Temperature medium 1.32 (1.23, 1.41) <0.0001

Temperature high 0.766 (0.709, 0.828) <0.0001

Rain medium 1.12 (1.05, 1.2) 0.001

Rain high 0.856 (0.795, 0.922) <0.0001

Relative humidity medium 1.22 (1.12, 1.33) <0.0001

Relative humidity high 2.34 (2.17, 2.52) <0.0001

doi:10.1371/journal.pntd.0004043.t001
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to too many false alarms and exhaust public health resources. Therefore, we applied each
selected VI models to multiple logistic regression models to examine the accuracy of predicting
the occurrence of dengue cases based on the ROC analysis by selecting an operating point
which provided an optimum tradeoff between false-positive and false-negative results. The
results suggested that Model-AI, BI, CI and HI, based on the operating point selected, yielded a

Table 2. Multivariate analysis of risk factors for dengue incidence.

variable risk estimator 95% CI risk 95% CI p-value

Model-BI

BI lag-1-month medium+high 0.906 (0.828, 0.983) 2.47 (2.29, 2.67) <.0001

rain lag-2-week medium -0.106 (-0.188, -0.025) 0.385 (0.347, 0.428) 0.011

rain lag-2-week high -0.953 (-1.06, -0.848) 0.899 (0.829, 0.976) <.0001

rain lag-1-month medium 0.228 (0.152, 0.305) 1.26 (1.16, 1.36) <.0001

rain lag-1-month high 0.078 (-0.02, 0.177) 1.08 (0.98, 1.19) 0.118

temp lag-2-week medium -0.352 (-0.442, -0.261) 0.703 (0.643, 0.77) <.0001

temp lag-2-week high -1.06 (-1.17, -0.961) 0.345 (0.383, 0.345) <.0001

rh lag-2-week medium 0.401 (0.319, 0.484) 1.48 (1.38, 1.62) <.0001

rh lag-2-week high 1.08 (0.995, 1.16) 2.94 (2.71, 3.2) <.0001

Model-CI

CI lag-1-month medium+high 1.68 (1.58, 1.78) 5.35 (4.84, 5.92) <.0001

rain lag-2-week medium -0.193 (-0.274, -0.111) 0.432 (0.389, 0.479) <.0001

rain lag-2-week high -0.84 (-0.945, -0.736) 0.825 (0.76, 0.895) <.0001

rain lag-1-month medium 0.115 (0.037, 0.194) 1.12 (1.04, 1.21) 0.004

rain lag-1-month high -0.114 (-0.21, -0.018) 0.892 (0.811, 0.982) 0.02

temp lag-2-week medium -0.25 (-0.34, -0.159) 0.779 (0.712, 0.853) <.0001

temp lag-2-week high -1.1 (-1.2, -0.993) 0.334 (0.302, 0.371) <.0001

rh lag-2-week medium 0.451 (0.366, 0.535) 1.57 (1.44, 1.71) <.0001

rh lag-2-week high 0.808 (0.723, 0.894) 2.24 (2.06, 2.44) <.0001

Model-AI

AI lag-2-week medium+high 0.619 (0.549, 0.689) 1.86 (1.73, 1.99) <.0001

rain lag-2-week medium -0.13 (-0.211, -0.048) 0.389 (0.351, 0.433) 0.002

rain lag-2-week high -0.943 (-1.05, -0.838) 0.878 (0.81, 0.953) <.0001

rain lag-1-month medium 0.401 (0.326, 0.476) 1.49 (1.39, 1.61) <.0001

rain lag-1-month high 0.316 (0.221, 0.41) 1.37 (1.25, 1.51) <.0001

temp lag-2-week medium -0.471 (-0.559, -0.383) 0.625 (0.572, 0.625) <.0001

temp lag-2-week high -1.002 (-1.1, -0.9) 0.367 (0.331, 0.406) <.0001

rh lag-2-week medium 0.46 (0.378, 0.543) 1.59 (1.46, 1.72) <.0001

rh lag-2-week high 1.18 (1.1, 1.26) 3.25 (2.99, 3.54) <.0001

Model-HI

HI lag-1-month medium+high 0.807 (0.732, 0.882) 2.24 (2.08, 2.42) <.0001

rain lag-2-week medium -0.982 (-1.09, -0.878) 0.374 (0.337, 0.416) <.0001

rain lag-2-week high -0.142 (-0.223, -0.061) 0.868 (0.8, 0.941) 0.0006

rain lag-1-month medium 0.206 (0.129, 0.283) 1.23 (1.14, 1.33) <.0001

rain lag-1-month high 0.085 (-0.012, 0.183) 1.09 (0.988, 1.2) 0.087

temp lag-2-week medium -0.384 (-0.473, -0.295) 0.681 (0.623, 0.744) <.0001

temp lag-2-week high -1.06 (-1.16, -0.954) 0.348 (0.314, 0.385) <.0001

rh lag-2-week medium 0.413 (0.33, 0.496) 1.51 (1.39, 1.64) <.0001

rh lag-2-week high 1.09 (1.003, 1.17) 2.97 (2.73, 3.23) <.0001

doi:10.1371/journal.pntd.0004043.t002
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sensitivity of 82, 87, 86 and 85%, respectively; and a specificity of 76, 80, 80 and 80%, respec-
tively (Table 3). The accuracy of Model-AI, BI, CI and HI in predicting the occurrence of den-
gue cases were 83.8, 87.8, 88.3 and 88.4%, respectively (S2 Fig). The individual predicting
thresholds for Model-AI, BI, CI and HI were 0.97, 1.16, 1.79 and 0.997, respectively as shown
below. Each of them when combined with meteorological factors had better performance com-
pared to the prediction using AI, BI, CI and HI alone, where the value were only 69.2, 78.7,

Fig 4. The weekly number of dengue cases from 2005 to 2012 based on the observation (solid line) and prediction (dahs line) from each vector
indexmodel including Model-BI: Breteau indexmodel (A), Model-AI: adult A. aegypti index model (B), Model-CI: Container indexmodel (C) and
Model-HI: House indexmodel (D). The values of coefficient of determination (R-square) from each vector index model were also indicated.

doi:10.1371/journal.pntd.0004043.g004

Table 3. Prediction accuracy of different mosquito indices by univariate andmultivariate logistic regressions.

univariate multivariate

Model AI BI CI HI AI BI CI HI

AIC 8447 8231 7373 8360 6801 6524 5647 6638

AUC 0.692 0.787 0.802 0.787 0.838 0.878 0.883 0.884

Sensitivity 0.78 0.84 0.85 0.84 0.82 0.87 0.86 0.85

Specificity 0.6 0.73 0.75 0.73 0.76 0.8 0.8 0.8

doi:10.1371/journal.pntd.0004043.t003
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80.2 and 78.7% accurate, respectively (Table 3).

Model BI ¼ 3:04BI � 0:357RF11 � 1:49RF12 � 0:096RF21 þ 0:405RF22 � 1:5Temp1 � 0:888Temp2

þ 0:634RH1 þ 2:77RH2 > 1:16

Model AI ¼ 2:48AI � 0:385RF11 � 1:68RF12 þ 0:719RF21 þ 1:47RF22 � 1:78Temp1 � 0:619Temp2

þ 1:02RH1 þ 3:36RH2 > 1:79

Model CI ¼ 3:39CI � 0:462RF11 � 1:37RF12 þ 0:013RF21 þ 0:329RF22 � 1:84Temp1 � 1:54Temp2

þ 0:58RH1 þ 2:61RH2 > 0:97

Model HI ¼ 3:44HI � 0:596RF11 � 2:01RF12 � 0:337RF21 þ 0:127RF22 � 1:78Temp1 � 0:866Temp2

þ 0:738RH1 þ 3:12RH2 > 0:997

where the variables definition are the same as Poisson regression variables.

Sensitivity analysis
The estimates of AUCs, as obtained by leave-one-out cross-validation for Model-AI, Model-BI,
Model-CI, and Model-HI, were 0.762, 0.818, 0.833, and 0.829, respectively; those by leave-one-
year-out were 0.814, 0.85, 0.866 and 0.843, respectively, and only slightly less (2~4%) than the
original AUC. The results suggest that our method is stable in predictive accuracy.

Discussion
With the continuously high levels of worldwide dengue transmission, predicting dengue out-
breaks in advance of their occurrence or establishing an early warning system through the
combination of climate, environmental, host and vector-based data is of critical importance.
The main purpose of an early warning system is the collection of information leading to timely
decision making process, which triggers intervention strategies in order to reduce the burden
and effect of the disease or outbreak on a specified population. Although mosquito vector is
directly involved in virus transmission, the current entomological indicators do not reliably
assess the risk of dengue case occurrence. Our study here provided the proof-of-concept
results, utilizing a two-stage model to identify the best set of lag effects of meteorological and
entomological variables, explaining dengue epidemics based on the data obtained from Taiwan,
which is a dengue-non-endemic country. AI, BI, CI and HI of the vector indices when com-
bined with the meteorological factors have better performances compared to the prediction
using AI, BI, CI and HI alone, with 83.8, 87.8, 88.3 and 88.4% accuracy, respectively. The
advantage of this two-stage model is not only to produce the unified set of predictors through-
out two-stage modeling but also to keep as much information in the set as possible. Although
the error between the observed and estimated counts could be large, the prediction of peaks by
the co-variables selected from the Poisson models quite coincided (S1 Fig). Further employing
these co-variables in the second-stage logistic models for predicting the occurrence of outbreak
came out with satisfactory results. Since same co-variables were employed in the two-stage
model, the value above the threshold would not only predict the occurrence of dengue cases,
but also the size of the outbreak based on the stage 1 model, either big or small. Therefore, each
country should consider its own individual data and apply this two-stage modeling strategy to
find the optimal predictive threshold for allocating public health resources and prevention
strategies.

Since only adult female Aedesmosquitoes are directly involved in dengue transmission,
directly counting dengue vectors (adult female A. aegypti and occasionally A. albopictusmos-
quitoes) using fixed-position traps has been advocated to replace the traditional methods,
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because stegomyia indices are developed many decades earlier for yellow fever and the relation-
ship with dengue transmission is usually ambiguous[39]. However, the stegomyia indices such
as HI and BI remain central and are most widely used in the monitoring of dengue vector pop-
ulations, but their critical threshold has never been determined for dengue virus transmission
[40,41]. Traditionally, BI< 5 was proposed to prevent yellow fever transmission and three dif-
ferent risks of HI, with<0.1% as low, 0.1–5% as medium and>5% as high, were suggested by
the Pan American Health Organization to prevent dengue transmission[42]. However, dengue
transmission was observed with vector density below that and the appropriated entomologic
level remains contentious[43]. A universal critical threshold applicable across many contexts
has never been determined even though a simple threshold (HI = 1% or BI = 5) has been used
for many years and is only valid in some situations[44]. Since the population of mosquito vec-
tors is influenced by the meteorological factors, a threshold combining VI and meteorological
variables with different lag effects would provide a better prediction of dengue epidemic. In
this study, four VI models were developed and integrated thresholds were estimated from the
multivariate Poisson model with BI, CI, AI and HI of 1.16, 1.79, 0.97 and 0.997, respectively.
These integrated VI thresholds predicted better with accuracy higher than 80%, compared to
using VI alone (Table 3). Furthermore, although choosing an arbitrary threshold of BI> 5 is
more intuitive and interpretable, the prediction accuracy of dengue epidemic is only 77% in
this study. The utilization of single global values of BI or other VI as thresholds for dengue
transmission is unreliable and is not recommended based on the previous review[13,37,45].
Therefore, our study utilized a two-stage modeling, which is a simple and direct concept for
estimating the thresholds in different locations or counties. An automatic smartphone applica-
tion which uses the two-stage model to calculate the integrated VI thresholds from the col-
lected data on a weekly basis would facilitate an early warning system for worldwide use.

The meteorological factors (temperature, rainfall and relative humidity) were important
variables which directly and indirectly affect the mosquito density and blood feeding behavior
[46,47]. Overall, temperature affects the length of Aedes gonotrophic cycle, pupae development
period and extrinsic incubation period of dengue virus, which are usually shorter at higher
temperature[48–50]. Temperatures may also influence the vector body size and its biting
behavior. Smaller mosquitoes feed more often than larger ones; and higher temperatures can
augment immature development resulting in smaller mosquitoes[51]. Higher temperatures
also speed blood meal digestion so that females need to feed more often[52]. Thus, all these fac-
tors directly and indirectly influence the contact rate between vectors, which leads to an
increased risk of viral transmission from an infected mosquito to a susceptible host[3]. On the
contrary, the effect of temperature on the mortality rate of larvae, pupae and adult mosquitoes
can be U-shaped with a lower mortality rate seen when temperature ranged from 15 to 30°C
[53,54]. This might explain the results in our study that showed a positive association of tem-
perature at medium level at 1-month-lag effect with the risk of an increased number of dengue
cases, but a negative association with the risk of an increased number of dengue cases at either
1-month lag only at a high level of temperature or 2-week lag, either in medium or high levels
of temperature. Non-linear effect of the co-variables on the number of dengue cases could also
be found at rainfall, which was also found in our and other’s studies. An increase in amount of
rainfall leads to more breeding sites, which in turn lead to an increase in the number of mos-
quito density as suggested by previous studies[11]. However, too much rainfall might wash
away the larvae or pupae inside the premise and decrease the mosquito density[55]. Adding
quadratic term is one way to cope with the problem. However, due to the co-linearity between
the linear and quadratic term, very few covariates would be significant. Another approach to
cope with the nonlinearity is to trisect the covariate (low, middle and high); and we found it
can come out with a more significant result for interpretation as shown in this current study.
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Other well-known factors may have contributed to the dynamic occurrence of dengue cases
and epidemic. The shift of age structure from children to young adults during epidemics was
previously reported[56]. The average age in confirmed dengue cases was 44.4 years old and
slightly increased from 2005 to 2012, which was consistent with the trend of gradual increase
in age from the general population in Kaohsiung city. The slight increase of age in dengue cases
was not significantly correlated with the annual dengue incidence rate (P = 0.261) (S3 Fig).
Although the ratio of primary and secondary infections might change the epidemic dynamics
and increase the disease severity, previous studies found the DHF/DF ratio increased through
the epidemic and the disease severity was not correlated with the secondary infection in Tai-
wan[57]. Previous studies also suggested that certain strain or serotype of DENV with epidemic
potential might increase viral growth in mosquito and enhance virus transmission[58,59].
Since not all the confirmed cases were determined by virus isolation or RT-PCR in this study, it
was currently not feasible to incorporate the case ratio infected by different serotypes each year
into the model. Additionally, herd immunity might affect the dengue epidemic as suggested in
other studies but the results were not conclusive[45]. How the herd immunity, measured from
the sero-prevalence data which is not available in this study, affects our model prediction
requires further study.

The results in this study should be interpreted within the context of strengths and limita-
tions. First, entomologic data collected through routine systems could pose some limitations
due to different vector control technicians for inspection, procedures that are not completely
uniform and inspection cycles. We focused on high risk areas and inspected the premises for
mosquito breeding sites on a weekly basis to minimize the bias. Second, the overall indices
were calculated for communities defined by administrative boundaries, which do not constitute
entomologically homogeneous units. The optimal geographical level for calculation would be
under household and neighborhood level, which is usually difficult to obtain due to the protec-
tion of individual privacy. The consistent collection of vector indices under the same adminis-
trative boundaries available to be used for public domain would provide better predictions in
the long term. Third, the surveillance and dengue case ascertainment did not allow us to detect
asymptomatic infection, which likely varied through time and was underestimated in this
study. Fourth, the present study was an ecological investigation; therefore, it is not possible to
make inferences concerning the causative relationship between the mosquito larvae indices
and dengue infection at the individual patient level. Fifth, the spatial heterogeneity was not
considered in this study and will be the future focus for developing a better model[60,61].
Sixth, in this study we focused on the high risk district where 97.9% dengue cases occurred and
inspection was carried out on a weekly. The potential bias is minimal since the timing of mos-
quito collection did not depend on the onset of dengue cases and the mosquito collection was
not only done in the residential districts of the confirmed dengue cases. However, the threshold
estimated in this study could only be applied to the high risk district. If the threshold is desired
to be determined in the middle or low risk area, different lag effects of meteorological variables
and monthly values of VIs would need to be determined separately. Seventh, when the case was
confirmed, the environmental interventions carried out by the health services team would be
implemented such as the chemical treatment of the location and the neighborhood of the con-
firmed case, the intensification of measures to control breeding areas and health education.
These usually lead to the elimination of breeding grounds of immature and adult mosquitoes.
Since our study was to establish a threshold for early case detection before any control mea-
sures is in place, the effect on our model prediction of the occurrence of dengue cases would be
minimal.

In conclusion, our study here provided the proof-of-concept of how to search for the opti-
mal model and determine the threshold for dengue epidemics. Unlike other studies with a
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determined threshold, here the findings cannot be extrapolated to communities with different
environment conditions or herd immunity levels. We currently are developing an automatic
system allowing implementation of the data in a weekly basis and following the two-stage
model to calculate the integrated VI threshold for worldwide use. This work provides an exam-
ple of the practical utility of research projects in the operational public health field and rein-
forces the need for a multidisciplinary approach in the understanding and management of
vector-borne diseases.
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S1 Fig. Secular trend of all laboratory-confirmed indigenous dengue cases from 2005 to
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