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Abstract

Background

Opisthorchis felineus,O. viverrini, and Clonorchis sinensis (family Opisthorchiidae) are par-

asitic flatworms that pose a serious threat to humans in some countries and cause

opisthorchiasis/clonorchiasis. Chronic disease may lead to a risk of carcinogenesis in the

biliary ducts. MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression

at post-transcriptional level and are implicated in the regulation of various cellular processes

during the parasite- host interplay. However, to date, the miRNAs of opisthorchiid flukes, in

particular those essential for maintaining their complex biology and parasitic mode of exis-

tence, have not been satisfactorily described.

Methodology/Principal Findings

Using a SOLiD deep sequencing-bioinformatic approach, we identified 43 novel and 18

conserved miRNAs forO. felineus (miracidia, metacercariae and adult worms), 20 novel

and 16 conserved miRNAs forO. viverrini (adult worms), and 33 novel and 18 conserved

miRNAs for C. sinensis (adult worms). The analysis of the data revealed differences in the

expression level of conserved miRNAs among the three species and among three the de-

velopmental stages ofO. felineus. Analysis of miRNA genes revealed two gene clusters,

one cluster-like region and one intronic miRNA in the genome. The presence and structure

of the two gene clusters were validated using a PCR-based approach in the three flukes.

Conclusions

This study represents a comprehensive description of miRNAs in threemembers of the family

Opistorchiidae, significantly expands our knowledge of miRNAs in multicellular parasites and

provides a basis for understanding the structural and functional evolution of miRNAs in these

metazoan parasites. Results of this study also provides novel resources for deeper understand-

ing the complex parasite biology, for further research on the pathogenesis andmolecular events
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of disease induced by the liver flukes. The present data may also facilitate the development of

novel approaches for the prevention and treatment of opisthorchiasis/clonorchiasis.

Author Summary

Liver flukes of the family Opisthorchiidae cause diseases of the hepatobiliary system,
known as opisthorchiasis/clonorchiasis. The chronic forms of these diseases greatly in-
crease the risk of cancer developing in the biliary ducts. Much has been elucidated regard-
ing the developmental biology of opisthorchiid flukes and the molecular pathological
effects on the definitive host; however, the role of microRNAs (short non-coding RNAs)
capable of influencing the pathogenic process and host-parasite interactions have not yet
been comprehensively studied. The aim of the present work was to identify the miRNA
genes of the liver flukes and provide a basis for further investigating the roles of these miR-
NAs in the complex opisthorchiidae life cycle and the pathogenesis of disease.

Introduction
Opisthorchis felineus, O. viverrini, and Clonorchis sinensis (class Trematoda; order Plagiorch-
iida; family Opisthorchiidae) are parasitic flatworms with complex life cycles, which include
three hosts, with human and piscivorous mammals as definitive hosts [1]. These three flukes
cause diseases of the hepatobiliary system, referred to as opisthorchiasis/clonorchiasis. These
diseases are characterized by chronicity and severe consequences, some of which are cancers of
the biliary tract and liver [2–5]. C. sinensis is endemic in China, Taiwan, Vietnam, Korea,
Japan, the Lao People's Democratic Republic and the Russian Far East; O. viverrini is found in
Cambodia, the Lao People's Democratic Republic, Thailand, and Vietnam; and O. felineus is
spread in the former Soviet Union (Ukraine, Belarus, Kazakhstan, the Baltic Republics and
Russia, particularly Western Siberia) and some European countries [6,7].

Recently, many studies focusing on the developmental biology of the opisthorchiid flukes
and the molecular mechanism of their pathological effects on host organisms were conducted
using advanced genomic and transcriptomic techniques. For example, protein-coding tran-
scriptomes have been well characterized for O. felineus [8], O. viverrini [9,10] and C. sinensis
[9,11,12], allowing investigations of diverse issues of the host-parasite interaction at the molec-
ular and cellular levels as well as indicating the diagnostic potential of particular proteins from
the excretory secretory products (ESP) of the flukes. However, the microRNA-containing tran-
scriptomes, which are known to dramatically influence many protein patterns, have not been
comprehensively studied to date in opisthorchiid flukes.

It is well known that microRNAs (18–22 nucleotide, non-coding RNAs) are able to down-
regulate target mRNA expression at the post-transcriptional level in multicellular animals and
thus play important roles in many biological processes including development, differentiation,
viral defense and apoptosis [13]. A miRNA becomes mature after processing of its stem-loop
precursors by RNase III enzymes with short miRNA duplex generation. In addition, miRNA
becomes functionally active upon detachment from its complement (miRNA�) in the duplex
during integration into RNA-induced silencing complexes (RISC) [13,14]. Both the miRNA
and the miRNA� are potentially functional in the RISC [15–18]; however, only one miRNA re-
mains functional, and the other degrades [19–21]. The RISC-containing miRNA induces trans-
lational repression or the degradation of the target mRNA by binding to its 3’-UTR [14,22].
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Increasing evidence shows that the action of miRNAs has great importance and broad roles
in pathogen-host interactions and the regulation of immunity against infectious agents [23].
Recently, miRNAs have been detected circulating outside of cells in the serum within exosomes
or in association with specific proteins [24]. These extracellular RNAs are stable in bodily fluids
[24] and are involved in cell-to-cell communication [25,26]. Therefore, they have attracted at-
tention as biomarkers of disease [26,27]. Moreover, parasite-derived miRNAs have recently
been identified in the serum of hosts infected with Schistosoma mansoni [28] and in exosome-
like vesicles in the ESP (Dicrocoelium dendriticum) [29]. MiRNA manipulation in parasites has
been also proposed as a new strategy for controlling schistosomiasis and cystic echinococcosis
[23]. Parasite miRNA studies have thus become promising for elucidating the molecular mech-
anisms of parasitic diseases and for the development of more specific diagnostic tools [30].

In the last decade, numerous miRNAs have been discovered in several flatworms species,
such as Schmidtea mediterranea [31–33], Dugesia japonica [17,34], Orientobilharzia turkesta-
nicum [35], S.mansoni [36,37], S. japonicum [38–40], C. sinensis [41], Eurytrema pancreaticum
[42], Echinococcus granulosus, E.multilocularis [43], Fasciola gigantica, F. hepatica [44],
D. dendriticum [29],Hymenolepis microstoma [45], Taenia saginata [46] and Gyrodactylus
salaris [47]. Most of the miRNAs of E. granulosus, E.multilocularis, S. japonicum, S.mansoni
and S.mediterranea have been described and are well annotated in miRBase (Release 21: June
2014). All proteins necessary for miRNA maturation and miRNA-induced silencing were iden-
tified in several flatworms species, for example, in S.mansoni [48]. The set of orthologous
proteins were also found in opisthorchiid species [10,12,49]. So the description of miRNA tran-
scriptomes of opisthorchiids is necessary for understanding gene expression and function in
these parasites.

The aims of the present study were to identify the miRNAs of O. felineus, O. viverrini and
C. sinensis, describe respective miRNA genes and provide a basis for further investigations of
the roles of miRNAs in the regulation of gene expression in liver flukes.

Materials and Methods
Adult worms of C. sinensis, O. felineus, andO. viverrini, as well asO. felineusmetacercariae were
taken for five RNA sample preparations. The first sample was prepared from adults of C. sinensis
(14 flukes) that had been grown in rats (Rattus norvegicus) frommetacercariae harvested from
naturally infected Amur bitterling (Rhodeus sericeus) from the Bolshaya Ussurka river (Pri-
morsky Krai, Russian Far East). The second sample was prepared from adults ofO. viverrini (20
flukes) that were grown in golden hamsters (Mesocricetus auratus) frommetacercariae extracted
from naturally infected cyprinoid fish captured in Khon Kaen province (Thailand). The third
and fourth samples were prepared from adults of O. felineus (20 flukes) that were grown in gold-
en hamsters frommetacercariae harvested from naturally infected ides (Leuciscus idus) from the
Ob’ river (Novosibirsk city). The twoO. felineus samples were Adult+Eggs—the manually dis-
sected body portion with distal branches of the uterus filled with the eggs containing embryos
(miracidia), and AdultNoEggs—the remaining body portion. The fifth sample (further as meta-
cercariae) was prepared from 5000O. felineusmetacercariae from the same source.

The territories where sample collection (fishing) took place were neither conservation areas
nor private or otherwise protected areas; hence, no fishing permits were required. The fish spe-
cies collected are not considered endangered or rare, and fishing methods were in full compli-
ance with the Federal Law N166-F3 of 20.12.2004 (ed. 18.07.2011) "Fishing and conservation
of water bio-resources”. This study was conducted in strict accordance with the recommenda-
tions in the Guide for the Care and Use of Laboratory Animals of the National Institutes of
Health. The protocol was approved by the animal ethics committee of the Institute of Cytology
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and Genetics (Permit Number: 7 of 19.11.2011). Euthanasia was performed by decapitation,
and all efforts were made to minimize suffering.

RNA preparation
For the detection of small RNAs of the three opisthorchiids, an enrichment technique consist-
ing of the selective fractionation of RNA (18–200 nt) in polyethylene glycol solutions of various
concentrations was used as described by Wang et al. [50]. The size distribution of the RNA
molecules was analyzed by micro-electrophoresis with a BioAnalyzer (Agilent).

SOLiD sequencing
The miRNA libraries were constructed using an Ambion1 SOLiD Small RNA Expression Kit.
For each sample, three libraries (technical replicates) were sequenced: two with Adaptor Mix A
(yields the template for SOLiD sequencing from the 5' end of the sense strand) and one with
Adaptor Mix B (yields the reverse complement sequence).

The cDNA libraries were produced using 200 ng of the small RNA fraction, following the pro-
tocol supplied with the kit, and amplified using barcoded primers and 17 PCR cycles for Mix A
libraries and 15 PCR cycles for Mix B libraries. Amplified products were concentrated using the
Fermentas1 GeneJET PCR Purification Kit and gel purified using 6% acrylamide gels. Gel pieces
containing PCR products of ~105–150 bp were excised, libraries were eluted by 5M ammonium
acetate and cleaned by ethanol precipitation. Each library was diluted to a concentration of 0.5
pM for full-scale template bead preparation. Approximately 40 million beads for each sample
were deposited on ¼ slide of the SOLiD 3.5 System and sequenced in 35-base runs. Sequencing
was performed at the Siberian Branch of Russian Academy of Science (SB RAS) Genomics Core
Facility. The library designations with corresponding GenBank database accession numbers are:

1. C. sinensis—A1 (SRX817942), rA1 (SRX817990), B1 (SRX817989)

2. O. viverrini—A2 (SRX817991), rA2 (SRX817993), B2 (SRX817992)

3. O. felineus

• AdultNoEggs—A3 (SRX817994), rA3 (SRX817996), B3 (SRX817995)

• Metacercaria—A4 (SRX817997), rA4 (SRX817999), B4 (SRX817998)

• Adult+Eggs—A5 (SRX818000), rA5 (SRX818002), B5 (SRX818001)

Computational analysis
The pipeline of the computational search for conserved and novel miRNAs in the opisthorchiid
species is presented in Fig 1. First, quality filtering of the sequences was performed using the
SOLiD preprocess filter [51] using the following parameters:Min count for Polyclonal Analysis
—1,Min QV for Polyclonal Analysis—25,Max count permitted errors—100,Max QV to consid-
er an error—10, Removal of reads with negative QV score—y, and Truncation—off. The adapter
fragments were removed by cutadapt v. 0.9.5 [52] with a maximum error rate of 12.0% and a
minimum read length of 18 bp.

To remove possible fragments of messenger and non-microRNA sequences, we mapped the
reads to mRNA sequences in Refseq (rel. 106) [53], mRNA sequences of plathyhelmints and
nematode taxa from the GenBank database (December, 2011) [54], and sequences from Rfam
(rel. 10), [55] excluding miRNAs using BFAST [56]. The BFAST program was chosen, since it
allows the mapping of short reads and uses the Smith-Waterman method, with gaps to support
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the detection of small indels at its final processing stage. This step improves the sensitivity of
alignment, which, in our case, is important for mapping reads to genomes from different spe-
cies. A significant advantage of this approach is that the alignment of sequences in the SOLiD
2-base color coding reduces the influence of sequencing errors. The following BFAST parame-
ters were used: editing distance (the number of substitutions/insertions/deletions allowed in
read alignment)� 2, multiple mapping of reads was allowed, and other parameters were set as
default. All reads mapped to these databases were removed from further analysis.

To identify conserved miRNAs, the remaining reads were mapped to animal pre-miRNA
sequences in miRBase (Release 21: June 2014) [57] using BFAST with the following parameters:
editing distance� 4, multiple mapping of read was allowed, and other parameters were set as
default. To identify genome-specific sequences of known miRNAs, we performed additional
mapping of reads similar to miRBase sequences onto C. sinensis [58], S.mansoni (rel. 4) [59]
and S. japonicum (rel. 2) [60] genomes with editing distances� 2. To verify that these se-
quences can form pre-miRNA hairpins within their genomic context, the secondary structures
of these candidate pre-miRNAs were reconstructed using the UNAFold program [61]. Two
variants of the candidate pre-miRNA sequences were selected. The first variant spans from 50
bp upstream to 10 bp downstream of the miRNA region. The second variant spans from 10 bp
upstream to 50 bp downstream of the miRNA region. We inferred miRNA sequences that met
the following criteria: (1) ΔG� -20 kcal / mol; (2) the fraction of paired nucleotides in the hair-
pin corresponding to the mature miRNA is> 70%; (3) no branching interactions for the hair-
pin forming nucleotides are allowed; (4) the sequence of miRNA is not in the terminal loop;
and (5) the difference in the side lengths of internal loops and bulge size is not more than two
nucleotides [62,63].

Fig 1. Computational pipeline for analyzing small RNA sequencing data.

doi:10.1371/journal.pntd.0003680.g001
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To identify novel miRNAs, the small RNA-like reads without similarity to sequences in
miRBase were mapped to the genomic sequences of C. sinensis, S.mansoni, and S. japonicum.
RepeatMasker (http://www.repeatmasker.org/) was used to mask repeats and regions with low
complexity in the genomes. We used BFAST with an editing distance of� 2, filtered out multi-
ple mapped reads, and other parameters were as default. Genomic regions with lengths of� 25
bp that were covered by at least three reads were considered as candidates for novel species-
specific miRNAs. To verify the stem-loop pre-miRNA secondary structure of these sequences,
we applied UNAFold analysis for their two extended sequence variants. The sequences meeting
the above mentioned secondary structure criteria were considered as novel miRNA candidates.

To estimate reproducibility of technical replicates, the Spearman's rank correlation coeffi-
cients of normalized (RPKM) expression level of several conserved miRNAs (that are common
for three flukes) were established using Past3 [64] (S1 Table). Conserved miRNAs were used in
reproducibility analysis because new miRNAs have low non-normalized expression levels
(around three reads were mapped to the genome for each new miRNA; therefore, the novel
miRNAs were not detected in all technical replicates).

Additional similarity searches were performed using the BLAST [65]. To detect violations
of one of the criteria of the conservative cluster definition (cluster of miRNAs should be a
group of miRNA precursors expressed as a polycistronic unit [66]) we applied the protein cod-
ing gene-finding procedure using the Fgenesh program [67].

The alignments of some miRNAs (two miR-71/ miR-2 clusters, miR-1, miR-133, and miR-
190) with sequences of these miRNAs orthologs (obtained from S.mediterranea, G. salaris,
S.mansoni, S. japonicum, E. granulosus, E.multilocularis,H.microstoma and T. solium ge-
nomes) were performed using the program CLUSTALW [68]; miRNA sequences of T. solium,
namely miR-1, miR-2b, miR-2c, miR-71, miR-133, miR-190, were obtained by homology
search of these miRNAs in T. solium genome (http://www.genedb.org/Homepage/Tsolium)
using the BLAST [65]. All time-consuming computations were performed using a high-
throughput computing system at the Joint Access Center for Bioinformatics and a computa-
tional cluster at the Novosibirsk State University.

Genomic region PCR amplification and sequencing
The following primers were used for the amplification of genomic regions hosting the miRNA
genes of the three opisthorchiid species: clust1-for1 (5'-CACAGCCAGTATTGATGAAC-3'),
clust1-for2 (5'-ACAGCCCTGCTTGGGACAC-3'), clust1-rev (5'-CCAAAGCTTGGACTGT
GAT-3'), clust2-for (5'-AAAGACTTGAGTAGTGAGACGCT-3'), clust2-rev (5'-TCGTCACC
TAAGCAGGACT-3'), Cl1-F (5'-CGCAAGTGATCAATGTTTTCCTC-3') and Cl1-R (5'-
GCGCACCAACGGCCTAA-3'). The amplification was conducted using a DNA thermal cycler
(Mastercycler gradient Eppendorf) as follows: initial denaturation at 95°C for 2 min, followed
by 35 amplification cycles (95°C for 25 s, 56°C for reactions with clust1-rev, clust1-for1, clust1-
for2, Cl1-F and Cl2-R and 53°C for reactions with clust2-for and clust2-rev for 30 s, 72°C for
30 s) and a final extension cycle (72°C for 5 min). PCR products were analyzed by agarose gel
(2%) electrophoresis. Purification of PCR products was performed by the method of Exo-TsAP.
To 20 μl of PCR product were added 1 μl of Exonuclease I and 1 μl of Thermosensitive Alkaline
Phosphatase, followed by an incubation for 15 min at 37°C and then 15 min at 80°C. Sequencing
reactions were performed using the BigDye1 Terminator v3.1 Cycle Sequencing Kit according
to the manufacturer's instructions and analyzed at the SB RAS Genomics Core Facility.
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Results

Computational identification of miRNAs
A three-step mapping and filtering procedure was applied to the reads (Fig 1) generated from
the 15 libraries to obtain the pool of small RNA-like sequences for the three opisthorchiid spe-
cies. The results of filtering are given in S2 Table. For O. felineus, the sequencing of nine librar-
ies generated 446 million reads that were distributed as follows: 131 millions for three Adult
+Eggs libraries, 152 millions for three AdultNoEggs libraries, and 162 millions for three Meta-
cercaria libraries. For C.sinensis, three libraries were sequenced and 126 million reads were ob-
tained. For O. viverrini, three libraries were sequenced with 150 million reads obtained. After
filtering low quality tags, including 50 and 30 adaptors and adaptor-adaptor ligation products, a
total of 279 million reads with high quality were retained for O. felineus (Adult+Eggs (84 mil-
lion reads), AdultNoEggs (108 million reads), Metacercaria (87 million reads)), 75 million
reads for C. sinensis, and 83 million for O. viverrini. Among the clean reads, an average
of 13.6% were found to be rRNA, tRNA, snRNA, and snoRNA, when searched against the
Refseq/Rfam databases. The percentage of the remaining reads mapping to miRBase sequences
averaged 2.85%. Spearman's rank correlation coefficient analysis showed high reproducibility
between A and rA libraries (~ 0.9) and somewhat less reproducibility between B and either A
or rA libraries (~ 0.8), which might be explained by the fact that rA libraries were exact techni-
cal replicates of A libraries whereas B libraries were created using another adaptor.

The miRNA was regarded as conserved if it had an ortholog in another animal species. The
ortholog search for the miRNAs of the three opisthorchiids yielded 19 conserved miRNAs be-
longing to 13 families (bantam, let-7, miR-1, miR-2, mir-7, miR-10, miR-36, miR-46, miR-71,
miR-124, miR-125, miR-133, and miR-190) (Fig 2A, Table 1, S3 Table). Most families included
one miRNA variant, but the miR-71 family consisted of two variants and the miR-2 family

Fig 2. Venn diagrams of the miRNAs sets. (A) conserved miRNAs in three opisthorchiid species, (B) O.
felineus conservedmiRNAs at different developmental stages, (C) novel miRNAs in the three opisthorchiid
species, (D) O. felineus novel miRNAs at different developmental stages.

doi:10.1371/journal.pntd.0003680.g002
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comprised five variants. Interestingly, the expression of miRNA� from the duplex carrier
strands for two miRNAs (let-7 and miR-10) was also found (S3 Table).

Sixteen conserved miRNAs were identified as common in all three opisthorchiids. Addition-
ally, miR-281 (miR-46 family) was found in two species—O. felineus and C. sinensis. There
were also conserved miRNAs either in O. felineus only (miR-10) or in C. sinensis only (miR-
36b) (Fig 2A; Table 1).

Eighteen conserved miRNAs were identified for O. felineus when combining the Adult
+Eggs, AdultNoEggs, and Metacercaria samples. Individual analyses of the O. felineus samples
(Adult+Eggs, AdultNoEggs, Metacercaria) revealed differences in miRNA composition be-
tween the samples. Fourteen of the eighteen O. felineusmiRNAs were identified in all three
samples. Two miRNAs (bantam and miR-281) were identified in AdultNoEggs and Adult
+Eggs samples only, but not in the Metacercaria sample. miR-7 was detected in AdultNoEggs
and Metacercaria samples but not in the Adult+Eggs sample, and miR-10 was found in the
Metacercaria samples only (Fig 2B, Table 2). The mapping results demonstrated that most of
the conserved miRNA sequences identified in the present study are common among
opisthorchiid and schistosome species, which was expected.

Candidate sequences for novel miRNAs (S4 Table) were selected from reads without
matches to miRBase sequences after mapping them to the C. sinensis genome and processing
the genomic fragments encompassing the resultant hits through the secondary structure filter
(see Materials and Methods). We identified 43 such miRNAs for O. felineus, 20 for O. viverrini
and 33 for C. sinensis. The occurrence of novel common and species-specific miRNAs in the
samples from the three Opisthorchiidae species is presented in Fig 2C and S4 Table.

Interestingly, most of these novel miRNAs were species-specific. Only one miRNA (new_
miR-001) had orthologs in all three species. The greatest number of novel specific miRNA can-
didates was identified for O. felineus (83%); however, the fraction of unique species-specific
miRNAs was highest for O. viverrini (95%).

Forty-three novel miRNAs were obtained for O. felineus when combining the Adult+Eggs,
AdultNoEggs andMetacercaria samples. The distribution of stage-specific and stage-nonspecific
novel miRNA candidates inO. felineus demonstrated that no common miRNAs were identified

Table 1. List of conserved miRNAs identified in three Opisthorchiidae species.

Species miRNAs

O. felineus, C. sinensis and
O. viverrini

bantam, let-7, miR-1, miR-2(a,b,c,d,e), miR-7, miR-36(a), miR-71(a,b), miR-
124, miR-125, miR-133, miR-190

O. felineus and C. sinensis miR-281 (miR-46 family)

O. felineus miR-10

C. sinensis miR-36b

doi:10.1371/journal.pntd.0003680.t001

Table 2. List of conserved miRNAs identified in different samples ofO. felineus.

Developmental stage of O.
felineus

miRNAs

AdultNoEggs & Adult+Eggs &
Metacercaria

let-7, miR-1, miR-2(a,b,c,d,e), miR-36, miR-71(a,b), miR-124, miR-
125, miR-133, miR-190

AdultNoEggs & Adult+Eggs bantam, miR-281(miR-46 family)

AdultNoEggs & Metacercaria miR-7

Metacercaria miR-10

doi:10.1371/journal.pntd.0003680.t002
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in all three sample types, and only two of the 43 novel miRNAs were identified in more than one
stage/body part (Fig 2D).

Genomic organization of opisthorchiid miRNA genes
Mapping the conserved miRNAs onto the C. sinensis genome provided evidence supporting
the presence of two miRNA clusters: miR-71a/miR-2a/miR-2b/miR-2e (miR-71a/2) and
miR-71b/miR-2d/miR-2c (miR-71b/2). Homologous clusters have been previously described
for seven flatworms (E. granulosus, E.multilocularis, G. salaris,H.microstoma, S.mediterranea,
S. japonicum and S.mansoni) [45,47], and in the current study, were also found in the T. solium
genomic sequences (Fig 3, S1 Appendix). We compared the structures of these miRNA clusters
from the C. sinensis genome with homologous sequences from the flatworm genomes men-
tioned (Fig 3).

All mature miRNA sequences of miR-71 family were located in the 5’ arm of their precur-
sors, while all mature miRNAs of the miR-2 family were located in the 3’ arm [69]. In the miR-
71a/2 cluster group, the distance between the mature miR-71 and the nearest miR-2 varied
from 104 to 121 bp; in the miR-71b/2 cluster group, this distance ranged from 121 to 150 bp.
The minimal distance between the two mature sequences of miR-2 family was found in the
miR-71a/2 group (71 bp between miR-2a and miR-2b in S. japonicum); the maximal distance
was found in the miR-71b/2 group (101 bp between miR-2a and miR-2d in G. salaris) [45,47].

The miR-71a/2 cluster mapped to C. sinensis contig 2339 and spanned 441 nucleotides
(from 103849 to 104290), with the miRNA order the same as in both Schistosoma genomes. A
comparative analysis of the miR-71a/2 cluster genomic organization among the flatworms re-
vealed three distinct types (Fig 3A). The first type, comprising the precursors for miR-71a and
the three miR-2 isoforms, was exemplified by clusters from the genomes of C. sinensis, S. japo-
nicum, and S.mansoni. The second type, consisting of the precursors for miR-71 and the two
miR-2 isoforms, was represented in the genomes of the cestodes H.microstoma, E. granulosus
and E.multilocularis. The third type, with the precursors for miR-71 and only one miR-2 iso-
form, was observed in the monogenean G. salaris and the planarian S.meditteranea (in three
genomic copies) [45,47].

The miR-71b/2 cluster mapped to C. sinensis contig 2957 and spans 416 nucleotides (from
323569 to 323984). Detailed analysis of the cluster sequences in three trematode, one monogene-
an and one turbellarian genome resulted in the discovery of the precursor for miR-2f in
C. sinensis (Fig 3B, S5 Table). This miRNA was previously described for two schistosomes
[70,71]. The miRNA order in these orthologous clusters was also well conserved in the C. sinensis,
S. japonicum and S.mansoni genomes (Fig 3B). It should be noted that sme-miR-752, although
not formally assigned to the mir-2 family, is recognized as having evolved frommiR-2 [47].

Experimental verification of the miRNA clusters miR-71a/miR-2a/miR-
2b/miR-2e and miR-71b/miR-2f/miR-2d/miR-2c
Because the mature miRNA sequences of the two clusters were identical among the three
opisthorchiid species, we designed two primer sets to experimentally prove the presence of the
clusters and partially structure the clusters using PCR amplification of corresponding regions
in the three genomes. To amplify a fragment of cluster miR-71a/2, the primer set clust1-for1,
clust1-for2, clust1-rev was used (Fig 4A, S2 Appendix). For the miR-71b/2 cluster, the primer
set clust2-for, clust2-rev was employed (Fig 4C, S2 Appendix). The electropherogram pre-
sented in Fig 4D, 4E and 4F) show the PCR products generated using these primer sets with
DNA templates prepared from C. sinensis, O. felineus and O. viverrini.
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The sequence alignments of the corresponding genomic regions of the three opisthorchid
species revealed specific variable positions: 8 per 387 nucleotides in cluster miR-71a/2 and 11
per 299 nucleotides in cluster miR-71b/2 (S3 Appendix). These variable positions were located

Fig 3. Scheme of miRNA gene clusters in Platyhelminthes. (A) miR-71a/2 cluster group, (B) miR-71b/2 cluster group. Species designations: csi—C.
sinensis, sma—S. mansoni, sja—S. japonicum, sme—S. mediterranea, hmi—H. microstoma, egr—E. granulosus, emu—E. multilocularis, gsa- G. salaris.

doi:10.1371/journal.pntd.0003680.g003
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mainly in the regions corresponding to the ends of the pre-miRNA, the terminal loops of the
pre-miRNA and the spacers between miRNA precursors.

It is worth noting that miR-2f from cluster miR-71b/2 of C. sinensis, S. japonicum and
S.mansoni (Fig 3) was also discovered in the respective clusters of O. felineus and O. viverrini.
Furthermore, the alignment of this genomic region demonstrated high conservation among
the three opisthorchiid species: only four variable positions (which were located closer to the
precursor of miR-2d) per 154 nucleotides were found.

To experimentally prove the overall structure of the miR-71a/2 clusters in the three species,
we designed primers Cl1-F and Cl1-r, which are capable of amplifying the genomic regions en-
compassing the clusters, using the only available sequences for C. sinensis (Fig 4B, S1 Appen-
dix). The results are presented in the electrophoretogram (Fig 4G).

The sequencing of the three species-specific amplicons (S4 Appendix) allowed us to deter-
mine the four pre-miRNA sequences for each of the three flukes. The secondary structures of
these pre-miRNAs were estimated by UNAFold (S2 Fig). The results of UNAFold demonstrat-
ed that the nucleotide substitutions discriminating the pre-miRNA sequences of each of the
opisthorchiid species exerted minor or no effects on the pre-miRNA secondary structures.

Cluster-like regions miR-1/miR-133
Upon analysis by Jin et al. [45], the genomic regions with matches for miR-1 and miR-133
were designated as orthologous miRNA gene clusters in three flatworms, namely the cestodes
E. granulosus, E.multilocularis and H.microstoma.

Fig 4. Upper: Scheme of primer target site positions in clusters: (A and B) miR-71a/2, (C) miR-71b/2.Grey rectangles mean miRNA precursors, blue,
purple and read rectangles—mature miRNAs; for->, for1->, for2-> and <-rev indicate primers and their directions. Lower: electrophoretogram of PCR
products generated out of the cluster genomic regions. Designations: C-—negative control, M—lengths marker. DNA templates: Cs—C. sinensis, Of—O.
felineus, Ov—O. viverrini. Primers used: (D) clust1-for1 and clust1-rev; (E) clust1-for2 and clust1-rev; (F) clust2-for and clust2-rev; G) Cl1-F and Cl2-r. The
original electrophoretogram photographs are presented in S1 Fig.

doi:10.1371/journal.pntd.0003680.g004
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We extended this list of flatworm species by demonstrating that C. sinensis and S.mansoni
also have similar genomic regions. It should be mentioned that miR-133 were not annotated
for S.mansoni in previous reports [36,37,71]. However, we found sequences highly similar to
this miRNA in read archives (ERR278825, ERR278826, ERR278827, ERR278828) using a
BLAST search. The UNAFold secondary structure prediction for the precursors of the con-
served miRNAs showed no canonical structure for the putative S.mansoni pre-miR-133,
which could possibly explain the delay in sma-miR-133 annotation (S6 Table).

Our alignment analysis did not show complete conservation over these regions of the five
genomes. Remarkably, large spacers were detected between the sites matching the miRNAs,
ranging from 11705 bp in E.multilocularis to 34008 bp in C. sinensis (Fig 5, S5 Appendix).
Hence, we referred to the regions as “cluster-like regions miR-1/miR-133”.

To elucidate the content of the spacers in genomes of five parasitic flatworms, we employed
the gene prediction program Fgenesh [67] using S.mansoni-specific gene-finding parameters
and found few unannotated ORFs without significant similarity among the species (S6 Appen-
dix). We then explored the genomic context beyond the cluster-like regions miR-1/miR-133 in
the five flatworm species using information from the C. sinensis database (http://fluke.sysu.edu.
cn/CsinGeno/home.php), NCBI (http://www.ncbi.nlm.nih.gov) (for S.mansoni) and Genedb

Fig 5. Genomic organization scheme of cluster-like regionsmiR-1/miR-133 in five flatworms.
Designations are the same as in Fig 3.

doi:10.1371/journal.pntd.0003680.g005

Identification of microRNAGenes in Three Opisthorchiids

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003680 April 21, 2015 12 / 21

http://fluke.sysu.edu.cn/CsinGeno/home.php
http://fluke.sysu.edu.cn/CsinGeno/home.php
http://www.ncbi.nlm.nih.gov/


(http://www.genedb.org/Homepage) (for E. granulosus, E.multilocularis andH.microstoma).
We found that miR-133 is located near a gene encoding one of several Mind bomb proteins in
all five genomes. We also found that miR-1 mapped near a gene encoding another Mind bomb
protein in the genomes of S.mansoni, E. granulosus and E.multilocularis (S7 Table).

Although these miRNA sites were conservatively linked (forming a putative synteny group),
the inter-microRNA distances exceeded 10 kb and contained putative genes. Altogether, the
features suggested that the expression of these two miRNAs was unlikely as a single transcrip-
tional unit in either genome. Therefore, we concluded that the case under consideration did
not adhere to the conservative definition for a miRNA gene cluster [66].

miR-190 is an intronic miRNA
The mapping of miR-190, which was also identified in the three opisthorchiid species, to the
available flatworm genomic sequences showed that this miRNA is located in an intron of the
gene encoding the talin protein. Therefore, we could classify this miR-190 as intronic [72]. It is
noteworthy that, despite some variability in the nucleotide content of the talin exons surround-
ing the intronic miRNA (S7 Appendix), the overall protein structure was conserved enough
(S8 Appendix) to ensure a reliable comparative analysis of the gene structure (Table 3).

The intronic miRNA showed the motives corresponding to both mature miR-190 and miR-
190�(S9 Appendix). The alignment depicted the sites with high conservation in either the flat-
worm class and those with evident inter-class variations, which, nevertheless, likely did not
hamper the intronic miRNA’s ability to form the necessary secondary structure and effectively
undergo maturation.

Discussion
Using deep sequencing with SOLiD technology, we have identified 88 novel and 19 conserved
miRNAs in three liver flukes of the family Opisthorchiidae—C. sinensis, O. felineus, and
O. viverrini. The discovery of the novel opisthorchid-specific miRNAs is interesting, since they
could be responsible for some opisthorchid-specific features of their parasitic life style includ-
ing some pathogenicity features in definitive hosts. Interestingly, the number of the novel
species-specific candidate miRNAs identified in the opisthorchiid flukes was larger than that of
conserved miRNAs. This may relate to a low coverage of individual novel miRNAs (three reads
were mapped to the genome for each new miRNA). Nevertheless, it is worth noting that similar
species-specific/conserved miRNA families ratios (miRBase Release 21: June 2014) are also ob-
served for other trematodes—S. japonicum (28/22) and S.mansoni (82/22). The same is seen
also for free living planarian S.mediterranea (45/44). The addition of our data on the miRNAs

Table 3. Structures of Trematoda and Cestoda talin genes with intronic miR-190.

Species Gene id Gene length in bp Exons counts Number of intron containing miRNA Intron length in bp

Trematoda

C. sinensis csin001953 70200 37 32nd 2574

S. japonicum Sjp_0006570 139915 43 40th 685

S. mansoni Smp_037860 12434 10 7th 1237

Cestoda

E. granulosus EgrG_000736000 26856 48 44th 225

E. multilocularis EmuJ_000736000 26634 43 39th 224

H. microstoma HmN_000220000 43376 41 37th 356

T. solium TsM_000902500 27324 44 40th 225

doi:10.1371/journal.pntd.0003680.t003
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of opisthorchiid flukes likely raises the question as to whether an excess of novel (species-
specific) miRNAs compared with conserved (family-, class-, and phylum-specific) miRNAs
could relate to a difference in life style (free vs. parasitic), as proposed previously [36]. It seems
that even a less significant difference in parasitic style between schistosomes or opisthorchiids
is associated with generation of numerous family-, genus-, and species-specific miRNAs. More
additional data for flatworms’miRNAs are needed to elucidate the evolutionary and biological
significance of species-specific miRNAs of parasitic flatworms.

The identification of 19 conserved miRNAs in three liver flukes of the family Opisthorchii-
dae has strengthened the results of previous attempts to explore miRNAs of liver flukes. It
should be noted that, in a previous study of C. sinensis, numerous miRNA-like sequences were
found among reads generated with high-throughput sequencing using Solexa/Illumina tech-
nology [41]. However, the authors had no opportunity to carry out mapping the miRNA-like
sequences on to the C. sinensis genome to achieve a confident assignment of their miRNA-like
sequence sets to miRNA families annotated in miRBase. Therefore, we now provide the results
of miRNA-like sequence mapping on to the C. sinensis genome, thus improving the reliability
of miRNA identification for members of the Opisthorchiidae. Furthermore, we provide the re-
sults of the miRNA family classification. The occurrence of the 19 conserved miRNAs in or-
ganisms of various taxa (including 10 miRNAs out of 34 ones arisen after “bilaterian
expansion” [72]) is presented (S8 Table).

We should mention two curious C. sinensismiRNAs: the reads corresponding to csi-miR-
36b were found in our study but were not found by Xu et al. [41], and the reads corresponding
to miR-10 as indicated by Xu et al. [41] were readily mapped in the C. sinensis genome, but
were detected in our study for O. felineus only. Perhaps these cases need further investigation.

The mapping of 19 conserved miRNAs on to the three genomes available for Trematoda
(C. sinensis, S.mansoni and S. japonicum) are presented in Table 4. Interestingly, there was some
shortfall in hits for few miRNAs after the mapping of sequencing data. This could be due to the in-
completeness of either genome assembly (miR-125 was not found in C. sinensis genome) or
indeed by the species specificity of miRNA genes (we did not find the opisthorchid miR-1 in
S. japonicum genome, we also did not locate opisthorchid miR-36b in either schistosome genome).

Our analysis of the genomic organization of the opisthorchid miRNA genes confirmed the
presence of gene clusters and intronic miRNAs. It is known that the miR-71/miR-2 cluster,
which we experimentally proved to be in two copies in opisthorchiids (like in other parasitic
trematodes studied) is present as one copy in parasitic cestodes, and five copies in the free-
living planarian S.mediterranea [45]. This variation in the number of miR-71/miR-2 clusters
in the genomes of representative flatworms of different classes could not be explained by the bi-
ology of the organism or by the reduction of targets for these miRNAs. The parasitic nematode
Ascaris suum and Brugia malayi display one miR-71/miR-2 cluster, while the freeliving Cae-
norhabditis species have either one or no such cluster (miRBase Release 21: June 2014). There-
fore, it seems that the miR-71/miR-2 cluster evolution proceeded differently in the Nematoda
compared with the Platyhelminthes, and the details of the evolution remains to clarify in
further studies.

Both clusters miR-71a/miR-2a/miR-2b/miR-2e and miR-71b/miR-2f/miR-2d/miR-2c were
conserved, suggesting their functional importance in all three opisthorchiid species (Fig 3). To
date, some miRNAs belonging to miR-71 and miR-2 families are known to have female-biased
expression in S.mansoni [71] and to play an important role in regenerative processes in planar-
ian [73]. Also the miR-2 family miRNAs are probably involved in neural development and
maintenance in Drosophila melanogaster and C. elegans [69]. Their detection in exosome-like
vesicles in the ESP of the liver fluke D. dendriticum leads to a speculation about the possible
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implications of trematode miRNAs in the modulation of parasite-host interactions by a new
means of regulating host gene expression [29].

The fact that expressed sequences (reads) corresponding to miR-2f have not been detected
in opisthorchiids requires further studies to explain why the expression pattern of this putative
miRNA is so strikingly different from that of its neighbors.

In previous papers, the combination of the miR-1/miR-133 miRNA genes was described
also as a miRNA cluster for many animal species (see data in miRBase) [74] including flat-
worms [45]. However, this combination in Drosophila genomes has been shown to escape the
conserved cluster definition [66]. Hence, due to the distance between the sites corresponding
to the miRNAs in flatworms, as well as the capability to predict protein-coding genes in be-
tween these sites, we suggest referring to these regions as “cluster-like regions miR-1/miR-
133”, which form a putative synteny group.

The next miRNA cluster that should be discussed is let-7/miR-100/miR-125. Its main charac-
ters are conserved in almost all Deuterostomia taxa. However, in Protostomia, many variations
of its structure have been discovered, while in some animals (Annelida, Trichinella, Arthro-
poda), its general structure is conserved. Important is that the cluster was shown to be disinte-
grated in flatworms with a complete loss of miR-100 [75]. We can support this conclusion for
opisthorchiids also. First, mir-100-like sequences were not detected in the three opisthorchiid
species. Second, the combination of let-7/ miR-125 genes is unlikely to exist as a synteny group,
as the two miRNA genes map to different chromosomes in S.mansoni (S9 Table).

The present analysis corroborates the classification of the miR-190 gene as intronic within
the talin gene. The intronic nature of the miR-190 gene has been described for many animals
[36,45,76]. High conservation of the structural (and maybe functional) association between

Table 4. Results of conservative miRNAsmapping onto Trematoda genomes.

miRNA Genomes

C. sinensis S. mansoni S. japonicum

bantam + + +

let-7 + + +

miR-1 + + −

miR-2a + + +

miR-2b + + +

miR-2c + + +

miR-2d + + +

miR-2e + + +

miR-7 + + +

miR-10 + + +

miR-36a + + +

miR-36b + − −

miR-281 + + +

miR-71a + + +

miR-71b + + +

miR-124 + + +

miR-125 − + +

miR-133 + + +

miR-190 + + +

Mapped miRNA is designated by plus; unmapped—by minus.

doi:10.1371/journal.pntd.0003680.t004
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miR-190 and the talin protein in platyhelminths appears very interesting and is worthy of
further elucidation.

Just prior to submission of this manuscript, an article on the O. viverrini genome was pub-
lished [49]. In the article, the authors predicted in silico 178 conserved miRNA genes. These
data will give us the opportunity for a more detailed analysis of O. viverrinimiRNA genes, in
particular for a comparison of our data based on miRNA real expression with the results of in
silico prediction based on genomic sequence analysis.

In conclusion, the present study presents the results of large-scale identification and char-
acterization of miRNAs sets encoded in the genomes of O. felineus, O. viverrini and C. sinen-
sis. This first comprehensive comparative analysis of the miRNA genes of these species
allowed us to reveal the conserved and species-specific miRNAs in these sets. For several con-
served opisthorchiid miRNAs, the genomic organization was analyzed by comparison with
orthologous genes in other platyhelminths. The structures of two miRNA gene clusters were
experimentally validated for the three opisthorchiid species. The differences in expression
level found for some conserved miRNA among the three species and among the three stages
of O. felineus stimulate studies to more precisely profile the expression of miRNAs. Finally,
the present data provide a sound basis for further studies of the molecular mechanisms of
host interactions of opisthorchiids and for development of novel methods to control these
neglected parasites.
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