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Abstract

Background: Sub-Saharan Africa harbors the majority of the global burden of malaria and schistosomiasis infections. The
co-endemicity of these two tropical diseases has prompted investigation into the mechanisms of coinfection, particularly
the competing immunological responses associated with each disease. Epidemiological studies have shown that infection
with Schistosoma mansoni is associated with a greater malaria incidence among school-age children.

Methodology: We developed a co-epidemic model of malaria and S. mansoni transmission dynamics which takes into
account key epidemiological interaction between the two diseases in terms of elevated malaria incidence among
individuals with S. mansoni high egg output. The model was parameterized for S. mansoni high-risk endemic communities,
using epidemiological and clinical data of the interaction between S. mansoni and malaria among children in sub-Saharan
Africa. We evaluated the potential impact of the S. mansoni–malaria interaction and mass treatment of schistosomiasis on
malaria prevalence in co-endemic communities.

Principal Findings: Our results suggest that in the absence of mass drug administration of praziquantel, the interaction
between S. mansoni and malaria may reduce the effectiveness of malaria treatment for curtailing malaria transmission, in S.
mansoni high-risk endemic communities. However, when malaria treatment is used in combination with praziquantel, mass
praziquantel administration may increase the effectiveness of malaria control intervention strategy for reducing malaria
prevalence in malaria- S. mansoni co-endemic communities.

Conclusions/Significance: Schistosomiasis treatment and control programmes in regions where S. mansoni and malaria are
highly prevalent may have indirect benefits on reducing malaria transmission as a result of disease interactions. In particular,
mass praziquantel administration may not only have the direct benefit of reducing schistosomiasis infection, it may also
reduce malaria transmission and disease burden.
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Introduction

Malaria is highly endemic throughout sub-Saharan Africa in

which 85% of global malaria cases and 90% of malaria deaths

occur [1]. Schistosoma mansoni (the causative agent of intestinal

schistosomiasis) is likewise prevalent in many sub-Saharan African

countries [2,3], accounting for approximately one-third of the total

cases of schistosomiasis in the region [4]. Both malaria and

intestinal schistosomiasis share similar epidemiological distribu-

tions and present challenges to public health and socio-economic

development throughout these regions [5]. Due to their coende-

micity, there has been increased investigation into the interactive

pathology between malaria and S. mansoni [6–9].

Heavy S. mansoni infections have been found to be associated

with a significant increase in the incidence of malaria among

school-age children [6]. While the mechanism responsible for the

exacerbation of malaria in individuals infected with S. mansoni is

not yet fully understood [7,9], the interactions between the two

diseases are possibly driven by countering effects the parasites have

on immunological cytokines [10,11]; that is, S. mansoni may alter

the balance between Th1 and Th2 type immune responses [12–

14] which reduces immunological control of malaria, although

other mechanisms are possible.

Artemisinin-based combination therapies (ACT) are increasing-

ly used as first-line treatment against malaria in sub-Saharan

Africa [15,16]. ACT is an efficacious drug regimen that reduces

the risk of malaria-induced morbidity and mortality as well as

malaria transmission from humans to vectors [17,18]. For the

control of schistosomiasis, current World Health Organization

(WHO) guidelines recommend frequent mass administration of

praziquantel, a highly effective and relatively inexpensive anti-

schistosomal agent [19], to school-age children or to entire

communities depending on schistosomiasis prevalence and avail-

able resources [20]. However, the adoption of mass praziquantel

administration remains suboptimal in sub-Saharan Africa mainly

due to limited drug availability, even as the schistosomiasis disease
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burden continues to rise [21]. Mass praziquantel treatment

coverage and compliance may vary substantially from one

schistosomiasis endemic area to another.

We evaluated how S. mansoni infection and mass praziquantel

administration may affect the dynamics and control of malaria in

co-endemic communities. In the absence of field studies that

directly measure the effect of schistosomiasis control on malaria

transmission and progression [6,22–25], we address this question

by using epidemiological and clinical findings that estimate the

elevation in relative risk of malaria attributable to S. mansoni
infection [6] to develop a mathematical model of the joint

dynamics of malaria and S. mansoni among children. We use this

model to evaluate the inter-dependent impact of S. mansoni on

malaria infection and the potential impact of schistosomiasis and

malaria treatment for reducing malaria transmission.

Methods

To quantify the potential impact of S. mansoni infection and

mass praziquantel administration on malaria transmission, we

developed a compartmental deterministic model for co-endemic

communities in sub-Saharan Africa. Specifically, our model

describes the joint dynamics of malaria and S. mansoni
transmission among children younger than 15 years old. This

age group is the most at risk for both malaria and schistosomiasis

transmission in sub-Saharan Africa [22].

Model
We developed a mathematical model of the interplay between

malaria and S. mansoni. Malaria transmission was modeled as

follows [26]: At each point in time people can be in one of six

infectious states – susceptible (S), treated symptomatic disease (T),

untreated symptomatic disease (D), asymptomatic patent infection

(A), asymptomatic sub-patent infection (U) and protected by a

period of prophylaxis from treatment (P). We assumed that

individuals entered the model susceptible and become infected at a

rate determined by the force of infection in the population given

by LM~(amIM )b, where a represents the biting rate on humans

by a female mosquito, m is the density of mosquitoes per human, b
is the probability of successful human inoculation upon an

infectious bite, and IM the proportion of infectious mosquitoes

in the vector population. Upon infection, individuals either

develop symptomatic disease (with a probability W) or develop

patent asymptomatic infection (12W). Those who develop

symptomatic disease have a fixed probability (fT) of being treated

successfully with an ACT (T), in which case they clear infection at

a rate rT and enter a period of prophylactic protection (P) before

returning (rP) to being susceptible to new infection. Those who fail

treatment (12fT) are assumed to eventually clear disease (D) and

become patently asymptomatic (A) at rate rD. From patent

asymptomatic infection, individuals will move to a sub-patent stage

(U) at a rate rA and then clear infection at rate rU and individuals

return to being susceptible. The force of infection of malaria on

the mosquito population, LV
M , was given by the product of host

biting rate per mosquito, probability of mosquito infection upon

biting an infectious human (CD,CU ,CA), and the proportion of

infected individuals at each infectious stage (D, A, U). The

intensity of malaria transmission is represented as the annual

entomological inoculation rate (AEIR), defined as the product of

the human biting rate of mosquitoes and the proportion of

mosquitoes that are infectious. AEIR is measured in the number of

infective bites per person per year (ibpy). Here malaria prevalence

refers to any level of parasitaemia rather than symptomatic disease

alone.

For S. mansoni transmission, we assumed that at each point in

time people can be in one of three states – susceptible (S), infected

with low egg output (IL), and infected with high egg output (IH)

[27]. Likelihood of schistosomiasis transmission from humans to

snails depends on worm burden and mean egg production per

worm. For the sake of simplicity, egg production was not explicitly

modeled. However consistent with previous schistosomiasis

modeling studies, we used transmission rates that implicitly

account for egg production rate per worm, contact with infested

waters, and probability of worm establishment per contact [27,28].

We assumed that individuals entered the model susceptible and

become infected with an initially low egg output at a transmission

rate bL. Individuals with low egg output may then transition to

high egg output at a transmission rate bH~vH bL, where vH

determines the rate of transition to a high egg output from a low

egg output relative to bL. We assumed the individuals infected

with low egg output infect susceptible snails at a transmission rate

bS , and individuals with high egg output infect snails at a

transmission rate vH bS , where vH is the relative increase of

transmission rate to snails for high egg output individuals relative

to low egg output individuals. Because rates of schistosomiasis

reinfection are very high in endemic areas, we assumed that there

is no natural recovery for S. mansoni infected individuals, and that

without treatment infected individuals with a high egg output will

not transition to a low egg output. We incorporated annual

praziquantel treatment into the model by assuming that treatment

has an efficacy of 70% [29,30]. We assumed that upon treatment,

70% of individuals with low egg output will recover from infection,

and 70% of individuals with high egg output will either recover

from infection or have their egg output reduced to a low level, such

that 40% of treated high egg output will recover from infection,

while 30% will have their egg output reduced to a low level

[29,30]. We evaluated the potential impact of deworming through

mass drug administration with praziquantel on malaria prevalence

by considering different levels of treatment coverage ranging from

30–80%.

Individuals can be infected with malaria only, S. mansoni only,

or dually infected with malaria and S. mansoni. The model

Author Summary

Malaria and Schistosoma mansoni are co-endemic in many
regions of sub-Saharan Africa. Evidence from clinical and
epidemiological studies support the hypothesis that
concurrent infection with S. mansoni is associated with
greater malaria incidence among school-age children. We
use mathematical modeling to evaluate the epidemiolog-
ical impact of S. mansoni infection on malaria transmission
in sub-Saharan Africa. Using epidemiological data on the
increased risk of malaria incidence in S. mansoni endemic
communities from Senegal, we developed a co-epidemic
model of malaria and S. mansoni transmission dynamics to
address key epidemiological interactions between the two
diseases. Parameterizing our model for S. mansoni high-
risk endemic communities, we show that the interaction
between S. mansoni and malaria may reduce the
effectiveness of malaria treatment for curtailing malaria
transmission. Moreover, we show that in addition to
reducing schistosomiasis health burden, mass praziquantel
administration will generate indirect benefit in terms of
reducing malaria transmission and disease burden in S.
mansoni–malaria co-endemic communities. Our findings
indicate the possible benefit of scaling up schistosomiasis
control efforts in sub-Saharan Africa, and especially in
areas were S. mansoni and malaria are highly prevalent.
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captures the epidemiological interaction between the two diseases

in terms of S. mansoni enhancing susceptibility to malaria denoted

as CM and parameterized from epidemiological field data [6]

(Table 1). We focused on communities in which malaria and S.
mansoni are co-endemic, and considered variation in malaria

transmission intensity by varying the AEIR from 1 ibpy to 500

ibpy [31]. We present results obtained at endemic equilibrium. A

detailed description of the model is given in the Supplement

Material and an overview of parameters and values used to

generate the model outcomes are given in Table 1.

Results

By comparing malaria prevalence in the presence and absence

of S. mansoni co-endemicity, we showed that the impact of

schistosomiasis co-infection on increasing malaria prevalence was

higher in areas of low malaria transmission than areas of high

malaria transmission (Figures 1 & S1). For example, disease

interaction was shown to increase malaria prevalence by 3.0–4.5%

for an AEIR of 10 ibpy and by 0.6–1.5% for an AEIR of 100 ibpy,

depending on malaria treatment coverage, ranging from 30–90%

(Figure 1). The effect of S. mansoni co-infection on malaria

prevalence plateaued from 100 ibpy upwards (Figure 1).

We also found that the interaction between malaria and S.
mansoni may reduce the effectiveness of malaria treatment for

decreasing malaria prevalence (Figure 2). For an AEIR of 100

ibpy, S. mansoni co-infection was shown to decrease the

proportional reduction of malaria prevalence due to treatment

by 1.3% for 90% treatment coverage, 1% for 60% treatment

coverage, and 0.5% for 30% treatment coverage (Figure 2A). For

90% malaria treatment coverage, S. mansoni co-infection

increases symptomatic malaria episodes by 29 episodes per 100

people annually, by 45 episodes per 100 people annually for 60%

treatment coverage, and 93 episodes per 100 people annually for

30% treatment coverage (Figure 2B).

For an AEIR of 10 ibpy, disease interaction was shown to

decrease the proportional reduction of malaria prevalence due to

treatment by 2.5% for 90% treatment coverage, 1.4% for 60%

treatment coverage, and by 0.6% for 30% treatment coverage

(Figure 2A). For 90% malaria treatment coverage S. mansoni co-

infection increases symptomatic malaria episodes by 11 episodes

per 100 people annually, by 16 episodes per 100 people annually

for 60% treatment coverage, and 21 episodes per 100 people

annually for 30% treatment coverage (Figure 2B).

When ACT is used in combination with annual mass

praziquantel administration, we showed that the intervention

Table 1. Parameter definitions of our Schistosoma mansoni-malaria co-infection model.

Parameter Definition Value (95%CI) Ref

md Natural death rate of host 0.05 yr21 —

a Biting rate on humans by a female mosquito 0.67 Day21 [71]

b Probability of successful human inoculation upon an infectious bite 0.25 [38]

m Density of mosquitoes per human varied{ —

w Probability of becoming symptomatic case upon infection (susceptibility) 0.72 [72]

rD
21 Duration of symptomatic malaria 5 Days [73]

rA
21 Duration of asymptomatic malaria 180 Days [26]

rU
21 Duration of sub-patent malaria 180 Days [74]

rT
21 Duration of clinical malaria upon chemotherapy 5 Days [75]

rP
21 Duration of prophylaxis from malaria treatment 20 Days [75,76]

fT Proportion of symptomatic malaria cases treated effectively 0.5 (0–0.9) [77,78]

mM Mosquito natural mortality rate 1/8 Day21 [26]

tincub Mosquito incubation period 10 Days [26]

CD Probability of mosquito infection upon biting a human in state
untreated clinical disease

0.3 [79]

CA Probability of mosquito infection upon biting a human in state
Asymptomatic patent infection

0.1 [79]

CU Probability of mosquito infection upon biting a human in state
sub-patent infection

0.05 [79]

CM Enhancement of malaria susceptibility due to high worm burden 1.85 (1.16–2.74) [6]

bS Human low worm burden to snails transmission 0.02 (0.01–1.88) yr21 estimated*

bL Snail to human transmission from no infection to low worm burden 7.08 (0.2–9.84) yr21 estimated*

eH Human high worm burden to snails transmission relative to bS 1.91 (1.0–18.3) estimated*

vH Snail to human transmission from low to high worm burden relative
to bL

0.77 (0.04–0.97) estimated*

dS Snail natural mortality rate 0.17 yr21 [80]

CT Mass praziquantel treatment coverage 30–80% —

*Parameters were estimated suing a Bayesian Melding procedure [81,82] to fit the S. mansoni dynamic model to prevalence data for high-risk endemic communities. In
high-risk communities, the overall S. mansoni prevalence was varied from 40–80% and the high worm burden prevalence was varied from 15–60% [6,17,83,84]. High
worm burden was defined as having a S. mansoni load exceeding 1000 eggs/g of stool [6].
{Density of mosquitoes per human was varied so as to account for different value of the annual entomological inoculation rate.
doi:10.1371/journal.pntd.0003234.t001
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was more effective in reducing malaria prevalence and that this

effectiveness increases both with the coverage of praziquantel and

with the increased susceptibility to malaria infection due to S.
mansoni (Figure 3). This increase in effectiveness was more

pronounced in areas of low malaria transmission intensity

(Figure 3A) than in areas of high transmission intensity (Fig-

ure 3B). The interaction between S. mansoni and malaria

generated an additional indirect benefit for mass praziquantel

administration by reducing malaria prevalence (Figure 3).

Discussion

We developed a co-epidemic model of malaria and S. mansoni
transmission dynamics to take into account elevated susceptibility

to malaria mediated by S. mansoni infection. We used this model

to investigate the potential effect of malaria-S. mansoni interaction

on the effectiveness of ACT and mass praziquantel administration

for schistosomiasis for reducing malaria prevalence in co-endemic

communities. Our results suggested that co-infection with schis-

tosomiasis in low malaria transmission settings increases malaria

prevalence. We further showed that in the absence of mass

praziquantel administration, the interaction between S. mansoni
and malaria may have contributed to reductions in population-

level effectiveness of malaria treatment in areas of stable malaria

transmission. In regions of low malaria treatment coverage, co-

infection with schistosomiasis led to the greatest increase in per

person malaria episodes, independent of whether malaria trans-

mission was high or low. Our finding is consistent with

epidemiological observations and laboratory studies that have

suggested that presence of S. mansoni infections may affect the

efficacy of malaria control measures, including a potential vaccine

in co-endemic communities [9,32]. The interaction between the

two diseases may increase the health benefits of mass praziquantel

administration by generating the additional indirect benefit of

reducing malaria transmission in co-endemic communities. Our

results indicated that this benefit was particularly strong in low

malaria transmission regions that experienced increased malaria

susceptibility due to schistosomiasis co-infection. Malaria is

associated with a Th1 immune response [12], while S. mansoni
infection is associated with a Th2 response and had been

demonstrated to impair immune responses to malaria [11,13].

By reducing S. mansoni worm burden of infected individuals,

praziquantel treatment may reduce the Th2 immune response

associated with S. mansoni infection which may in turn result in a

shift in the Th1/Th2 immune balance [14,33] towards the Th1

response that protects against malaria parasite. Though our study

focused on Plasmodium falciparum, our results may be applicable

to other forms of malaria such as Plasmodium ovale and

Plasmodium vivax, which may also interact with S. mansoni.
Prototype vaccines for both malaria [34] and S. mansoni intestinal

schistosomiasis [35] are under development, such that the two

vaccines could be co-formulated or combined [36]. Our results

suggest that a co-formulated or combined vaccine may be more

efficacious in reducing malaria transmission in S. mansoni
endemic communities than a vaccine targeting malaria alone.

In addition to increasing malaria incidence, clinical studies have

shown that malaria–S. mansoni co-infection may exacerbate

clinical manifestations of both diseases [14,33,37]. These

additional impacts were not factored into our model, making

our predictions of the effectiveness of joint programs of ACT and

praziquantel conservative. Our model also did not account for

malaria age-dependent immunity [26,38]. Age-dependent malaria

immunity is less important among children than adults, however,

and it is even less relevant in areas of low malaria transmission

[26,38,39]. We anticipate that accounting for age-dependent

malaria immunity would only have a marginal quantitative effect

on our results, such that the findings would remain qualitatively

unchanged. Malaria and S. mansoni may differ in their

distribution of disease intensity, prevalence, and morbidity, with

some portion of the population being at higher risk than others

[33]. Therefore, the magnitude of the interaction between malaria

and S. mansoni on malaria transmission dynamics may vary from

one risk group to another. Given that data on risk group specific

interaction between malaria and S. mansoni are not available, our

model only accounted for elevated malaria susceptibility from S.
mansoni high egg output. Future studies could account for

heterogeneity in malaria intensity and prevalence.

Currently, there is debate surrounding the extent and direction

of the effects of malaria and co-infection with different helminth

species on human hosts [7,33,40]. Apparent contradictions arising

from clinical and epidemiological studies may be resolved by the

possibility of species-specific effects of helminth infections on

malaria [7,40,41]. As well as qualitatively different interactions for

different worm burdens For example, Ascaris has been associated

with protection from severe malaria complications [7]. Converse-

ly, epidemiological studies have suggested that hookworm elevates

malaria prevalence [42] and exacerbates malaria-induced anaemia

[22,43]. Similarly, S. mansoni has been shown to be associated

with increased malaria incidence [6] and exacerbation of

hepatosplenomegaly [37,44] and anemia [45] in individuals co-

infected with malaria. It has also been reported that children with

low (but not high) S. haematobium infection intensity co-infected

with malaria have significantly lower P. falciparum parasitemia

than worm-free individuals [46]. This observation implies that the

interaction between P. falciparum and S. haematobium may have

contributed to lower malaria prevalence in S. haematobium low

risk endemic communities, but that the reverse could be the case in

S. haematobium high risk communities. Additionally, malaria-

schistosomiasis coinfection may have opposite effect on malaria

transmission in S. haematobium compare to S. mansoni endemic

communities. Therefore, in S. mansoni - S. haematobium co-

Figure 1. Malaria prevalence attributable to S. mansoni in a
range of malaria transmission settings. The prevalence attribut-
able to S. mansoni is the difference between the equilibrium malaria
prevalence in the presence of interaction and that in the absence of
interaction between S. mansoni and malaria. S. mansoni high worm
burden was assumed to increase the risk of malaria infection by 85%
(CM~1:85), consistent with epidemiological studies [6].
doi:10.1371/journal.pntd.0003234.g001
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endemic communities [47,48], schistosomiasis control may have a

very complex impact on malaria transmission. Further studies are

needed on the interaction of S. mansoni and S. haematobium and

their potential impact on malaria transmission. Future transmis-

sion models on this topic could also account for worm mating

probability and density dependent effects on egg output per worm,

which can affect schistosomiasis transmission [49,50].

Polyparasite helminth infections and malaria co-infection are

widespread throughout sub-Saharan Africa [22,51,52]. Therefore,

studies investigating how co-infection affects the course of each

infection, as well as immune responses, are fundamental to

understand the potential additional benefits or perverse effects of

mass drug administration and control programmes for tropical

diseases. There are myriad examples of parasitic co-endemicity

and co-infections affecting health outcomes in sub-Saharan Africa.

For example malaria and hookworm co-infections [22,53] as well

as and S. mansoni and hookworm co-infections [54] can lead to

severe anemia. A new modeling study on the interaction between

lymphatic filariasis and malaria that takes into account increase in

vector mortality due to lymphatic filariasis prevalence in mosquito

and antagonistic Th1/Th2 immune response in co-infected host

has shown that control strategies that reduce lymphatic filariasis

transmission could potentially increase malaria prevalence [55].

Similarly, some studies have indicated that antimalarial bednets

may reduce transmission from lymphatic filariasis transmitted by

anopheles mosquitoes [56,57]. In addition, S. haematobium is

interacting with HIV by increasing susceptibility to HIV infection

through lesions and inflammation of genital track and immuno-

modulation effects [58]. Two large studies in Zimbabwe and Tan-

zania found that women with genital schistosomiasis have a 3–4

fold increased odds of having HIV compared to women without

genital schistosomiasis [59,60]. Subsequent models have shown

that female genital schistosomiasis (caused by S. haematobium)

control strategies could reduce HIV transmission [61,62], in co-

endemic communities. One of the limitations of our study was that

we did not examine the relationship between S. haematobium and

malaria. Future studies could investigate the interaction between

malaria and S. haematobium, as well as other helminths in-

cluding hookworm. Such studies could also investigate low risk

schistosomiasis communities where, because of the low rate of

schistosomiasis reinfection, the sequential order of infection

between malaria and schistosomiasis may impact the co-infections

of schistosomiasis on malaria transmission.

Clinical studies have shown that ACT used in combination with

praziquantel may reduce both the malaria and the schistosomiasis

health burden in co-infected individuals [63–66], and that

artemisinin-based therapy may have indirect benefits for reducing

schistosomiasis health burden [63].

Figure 2. The impact of the interaction between S. mansoni and malaria on the effectiveness of ACT for reducing malaria prevalence
and symptomatic malaria episodes. We compared (A) the proportional reduction of malaria prevalence with and without interaction and (B) the
increase in symptomatic episodes of malaria due to elevated susceptibility to malaria mediated by S. mansoni infection. S. mansoni high worm
burden was assumed to increase the risk of malaria infection by 85% (CM~1:85), consistent with epidemiological studies [6].
doi:10.1371/journal.pntd.0003234.g002

Schistosoma mansoni and Malaria Interaction
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Additional drug interaction studies may be required if ACT and

praziquantel are combined for purposes of mass drug administra-

tion. In an experimental rat model of clonorchiasis, combinations

of praziquantel and artemisinins produced both synergistic and

antagonistic effects depending on the doses administered [67]. In

humans infected with S. japonicum in China, it was noted that the

combination of artemether and praziquantel chemotherapy did

not improve treatment efficacy relative to praziquantel alone [68],

while in Africa (Cote d’Ivoire) the addition of mefloquine-

artesunate did not increase the efficacy of praziquantel against

S. haematobium infection [69].

Integrating mass screening and treatment for malaria using

ACT with mass drug administration of praziquantel could

contribute to reducing both malaria and schistosomiaisis trans-

mission in sub-Saharan Africa. Therefore, future studies would

investigate the complementary effects of ACTs and mass

praziquantel administration for reducing both malaria and

schistosomiasis transmission in co-endemic communities. Immu-

nological studies have suggested that praziquantel treatment in

malaria-schistosomiasis co-endemic communities may alter the

immune response of treated individuals, making them less

susceptible to malaria infection [70]. However, more studies are

needed to confirm this impact of praziquantel treatment.

Our results suggest that in S. mansoni endemic areas, mass

treatment of schistosomiasis may not only have a direct benefit of

reducing schistosomiasis infection, it may also reduce malaria

prevalence and disease burden. This reduction of malaria

prevalence was higher in areas of low malaria transmission

intensity, but less pronounced in areas of high transmission

intensity (AEIR greater than 100 ibpy). Additional epidemiological

and clinical data on malaria–S. mansoni co-infection to determine

influence on immune responses and duration of malaria infection

are needed to fully evaluate the potential effects of S. mansoni and

schistosomiasis control strategies on malaria.

Figure 3. The impact of mass praziquantel administration on malaria prevalence over a six-year intervention period. The proportion
of symptomatic malaria cases that received treatment was 70%. Interaction between S. mansoni and malaria and the effect on malaria prevalence for
annual entomological inoculation rate (AEIR) equals (A) 10 infective bites per person annually and (B) 100 infective bites per person annually.
doi:10.1371/journal.pntd.0003234.g003

Schistosoma mansoni and Malaria Interaction
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Supporting Information

Figure S1 Difference in malaria prevalence attributable to S.
mansoni at different level of malaria treatment coverage for a wide

range of malaria and Schistosoma mansoni transmission settings.

Malaria transmission settings were obtained by varying the AEIR,

whereas S. mansoni transmission settings were obtained by

sampling schistosomiasis transmission parameters over the ranges

of values given in Table 1. S. mansoni high worm burden is

assumed to increase the risk of malaria infection by 85%

(CM~1:85). Interaction between malaria and S. mansoni and

the effect on (A) the difference in malaria prevalence attributable

to S. mansoni for 70% malaria treatment coverage versus 50%

treatment coverage, and (B) the difference between 90% malaria

treatment coverage versus 70% coverage.

(TIF)

Text S1 Supplementary Material for Epidemiological impact of

Schistosoma mansoni on Malaria transmission in sub-Saharan

Africa.

(DOC)
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