
A Model for a Chikungunya Outbreak in a Rural
Cambodian Setting: Implications for Disease Control in
Uninfected Areas
Marguerite Robinson1.*, Anne Conan2., Veasna Duong2, Sowath Ly2, Chantha Ngan3, Philippe Buchy2,

Arnaud Tarantola2", Xavier Rodó1,4"
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Abstract

Following almost 30 years of relative silence, chikungunya fever reemerged in Kenya in 2004. It subsequently spread to the
islands of the Indian Ocean, reaching Southeast Asia in 2006. The virus was first detected in Cambodia in 2011 and a large
outbreak occurred in the village of Trapeang Roka Kampong Speu Province in March 2012, in which 44% of the villagers had
a recent infection biologically confirmed. The epidemic curve was constructed from the number of biologically-confirmed
CHIKV cases per day determined from the date of fever onset, which was self-reported during a data collection campaign
conducted in the village after the outbreak. All individuals participating in the campaign had infections confirmed by
laboratory analysis, allowing for the identification of asymptomatic cases and those with an unreported date of fever onset.
We develop a stochastic model explicitly including such cases, all of whom do not appear on the epidemic curve. We
estimate the basic reproduction number of the outbreak to be 6.46 (95% C.I. [6.24, 6.78]). We show that this estimate is
particularly sensitive to changes in the biting rate and mosquito longevity. Our model also indicates that the infection was
more widespread within the population on the reported epidemic start date. We show that the exclusion of asymptomatic
cases and cases with undocumented onset dates can lead to an underestimation of the reproduction number which, in turn,
could negatively impact control strategies implemented by public health authorities. We highlight the need for properly
documenting newly emerging pathogens in immunologically naive populations and the importance of identifying the route
of disease introduction.
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Introduction

Chikungunya virus (CHIKV) belongs to the genus Alphavirus.

It is a mosquito-borne pathogen transmitted by the Aedes

mosquitoes. In humans, the virus causes an acute illness with

symptoms including fever, headaches, rash and arthralgia [1]. The

virus was first identified in Africa, during an outbreak in Tanzania

in the 1950s [2]. In Africa the virus is maintained in a mainly

sylvatic cycle, being spread among wild primates by forest dwelling

mosquitoes [3,4]. In contrast, in Asia the virus is spread between

humans and the primary vector Aedes aegypti [5]. Chikungunya

was first recorded in Asia in Thailand in 1958 [6]. Large epidemics

were recorded throughout Asia in countries including Cambodia,

Vietnam, Burma, Sri Lanka, India, Indonesia and the Philippines,

before the virus virtually disappeared following the 1973 outbreak

in India [5]. A large outbreak in Kenya in 2004 initiated a

resurgence of the virus leading to widespread infection in the

Indian Ocean islands of the Comoros, Seychelles, Mauritius and

the French islands of Mayotte and La Réunion. The epidemiology

of the virus changed, with the major vector on La Réunion

identified as Aedes albopictus [7]. At the time, this was the largest

documented outbreak, with over 266,000 cases estimated to have

occurred [8]. Sizeable undocumented outbreaks were also

observed in Asia and India during the 1960s but exact case

numbers are unavailable [5]. Large outbreaks were detected in

India in late 2005 [9], followed by outbreaks in Southeast Asia

(Thailand, Singapore and Malaysia) in 2006 [10]. In 2011, a strain

from the Asian lineage was reported in the Pacific island of New

Caledonia, the first cases of chikungunya in this part of the world

[11]. Countries in Europe, Asia and North America documented

imported cases associated with travellers returning from India and

the Indian Ocean islands [4,12–14]. In 2007 the first chikungunya

epidemic in a temperate country was recorded in the region of

Emilia-Romagna in north-eastern Italy [15]. The virus was
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assumed to have been imported by a traveller from an infected

region of India [16] and established itself in the local Aedes
albopictus population, first detected in 1990 [17]. In September

2010, two autochthonous cases were documented in the southern

French city of Fréjus where the Aedes albopictus vector is present

[18]. There was no documented transmission beyond these two

cases; whether the aggressive surveillance and control efforts

implemented around those cases had a significant impact is

unknown. In Cambodia, the virus was first detected in 1961, when

the Asian genotype was circulating in the region [19]. From 2000,

CHIKV serologies were performed at the Institut Pasteur in

Cambodia on the samples collected by the dengue national

surveillance and control program. The virus was first detected in

Battambang province (Thai border) in 2011 and, since then, new

cases have been reported in the country following a northwest-

southeast direction [20].

Unlike dengue fever, which has been extensively modelled,

chikungunya has only started to receive attention since its

reemergence in 2005. Mathematical models have been developed

to describe detailed mosquito dynamics and the host-vector

interactions [21,22]. A primary focus has been on determining

the reproduction number, R0, of an epidemic, which is defined as

the number of secondary infections from an infected host in a

completely susceptible population [23]. The standard approach

has been to fit a dynamic model, with varying levels of detail

describing the mosquito life cycle, to the epidemic curve. Such an

approach has yielded various estimates for the La Réunion

epidemic. Dumont and Chiroleu [24] obtained a value of

0:89{2:28 depending on the location on the island. They also

considered the inclusion of increased mosquito mortality due to

infection, yielding estimates of 1:46{1:78 [25]. Considering

seasonal fluctuations in the vector population, Bacaer [26]

estimated a reproduction number of 3.4. More recently an

estimate as high as 4.1 has been obtained [27]. A vastly different

approach was adopted by Boëlle et al [28], who constructed the

generation interval of chikungunya based on the gonotrophic cycle

of the causative mosquito, obtaining a best estimate of 3.7, with a

range of 2–11. A temperature-dependent host-vector model was

fitted to the 2007 Italian outbreak by Poletti et al [29], estimating

an R0 of 3.3 with a range of 1.8–6. Finally, the risk of chikungunya

infection in an endemic dengue region was estimated to be 64%

that of dengue with an R0 of 1.22 [30].

The scale of imported cases into previously unaffected countries

(e.g. UK, France, Hong Kong, USA [4]) observed during the

recent resurgence of chikungunya in the Indian Ocean has caused

great concern due to the presence of a competent vector (Aedes
albopictus) in many of these regions [31]. The threat of disease

introduction is further compounded by the apparent ease at which

the infection was established in the local Italian albopictus
population during the 2007 outbreak. The urgent need to establish

adequate monitoring and mosquito control programs in vulner-

able countries is particularly highlighted by the recent outbreak in

Singapore, in which 1059 cases were recorded in 2013 [32],

despite a history of successful control measures to curb the

transmission of this disease [33]. Recent work on the spatio-

temporal spread of chikungunya through an immunologically

naive population driven by asymptomatic individuals [34]

underlines the risk of unknowingly importing the infection into

new regions. With little information available in the early stages of

an epidemic, estimates of the reproduction number are commonly

used to inform public health decision makers and methods to

obtain accurate estimates in newly infected regions are thus

required to effectively assess the public health preparedness needs,

the impact, and success of control measures.

The impact of asymptomatic cases and biologically-confirmed

symptomatic cases with an undocumented date of onset is

investigated in this paper. In March 2012, a local outbreak of

chikungunya fever was reported in the rural village of Trapeang

Roka in the Kampong Speu Province, Cambodia [35]. Chikun-

gunya infection was confirmed by laboratory analysis allowing the

identification of both asymptomatic and unreported cases. We

formulate a stochastic model to describe the temporal dynamics of

the outbreak and estimate the reproduction number by fitting the

model to the recorded epidemic curve. The inclusion of

biologically-confirmed cases undocumented by date of onset,

which do not appear on the epidemic curve, allowed a more

accurate estimate of the reproduction number to be obtained, in

comparison to that obtained when such cases are excluded. This is

the first attempt to apply such a stochastic model to a relatively

isolated village typical of the Cambodian rural habitat, presenting

the unique opportunity to consider the introduction of the virus

into a comparatively closed and immunologically naive popula-

tion.

Methods

Ethics Statement
The data collection protocol, implemented on March 26 2012,

in Trapeang Roka village was validated by the Cambodian

Ministry of Health. Informed consent was obtained in writing

from all adults in the Khmer language and parents were asked to

sign for their children.

Description of the Cambodian Outbreak
An outbreak investigation was conducted on the 26th of March,

2012, after reports of illness, consisting of fever and rash, among

residents of Trapeang Roka village were confirmed by blood

samples to be CHIKV infection [35]. The population of the village

was estimated to be 695 individuals, living in 134 houses. The

investigation protocol was validated by the Cambodian Ministry of

Health. As part of the investigation, 98 houses were visited and

425 people were interviewed. Adults were asked for their consent

Author Summary

During the recent resurgence of chikungunya, the scale of
imported cases into previously unaffected countries has
caused great concern due to the presence of a competent
vector (Aedes albopictus) in many of these regions. This
study describes a mathematical model for a chikungunya
outbreak in the rural Cambodian village of Trapeang Roka,
where a chikungunya epidemic was recorded and docu-
mented in March 2012. The outbreak data is unique, in
that all infections were confirmed by laboratory analysis,
enabling the identification of asymptomatic individuals, in
addition to individuals who failed to report details of their
infection. A stochastic model, partitioning the infectious
population into three distinct classes, is implemented
using Gillespie’s algorithm. We show that the incorpora-
tion of both biologically-confirmed symptomatic cases
undocumented by date of fever onset and asymptomatic
cases yields a higher estimate of the reproduction number.
Our results highlight how reproduction numbers could be
underestimated by limiting analysis to the epidemic curve.
Carefully documenting cases and performing laboratory
testing in cluster regions, such as the village considered
here, could provide a more comprehensive insight into the
true infection dynamics.

A Model for a Chikungunya Outbreak
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and the consent for their children. All the people in the visited

houses were asked to complete a standardized questionnaire in the

Khmer language. Questions were about demographic data (such

as age and sex), socio-economical data (such as occupation and

level of education) and clinical data during the previous 6 weeks,

corresponding to the time period since the rains occurred. Clinical

data included observed symptoms (skin rash, joint pain, temper-

ature) and the date of symptom onset. Blood was collected on

blotting paper for each individual. A venous blood sample was

performed on febrile individuals. Samples were sent to the Institut

Pasteur in Cambodia. Serology by IgM-Capture Enzyme-Linked

Immunosorbent Assay (MAC-ELISA) to detect IgM against

CHIKV was performed on dry blood spots [36]. No follow up

blood test was performed on sero-negative people to observe

seroconversion. The blood of febrile individuals was tested by RT-

PCR for CHIKV [37]. The chikungunya variant E1-226V strain

was identified [20]. A positive case was defined as a person who

had at least one sample which tested positive for CHIKV (IgM

serology and/or RT-PCR). Serologic testing was also performed

for flavivirus antibodies. Anti-dengue virus or anti-Japanese

encephalitis virus antibodies were detected in 20 CHIKV

seropositive people. The epidemic curve was built with the

number of biologically-confirmed CHIKV cases per day deter-

mined from the date of fever onset, which was self-reported in the

questionnaire.

The data spanned a period of 48 days between February 7 and

March 25 inclusive, the the final laboratory confirmed cases of

chikungunya, with a clinical onset, detected on March 24,

Figure 1. It has been documented previously that chikungunya

outbreaks often follow large rainfall episodes [38–40], which result

in a surge in the local mosquito population [41–44]. The

dominant mosquito population identified in the region during an

entomologic assessment performed on March 29-30 was Ae.
aegypti [35]. The rains arrived on February 14 and persisted for 2

days. Following the rains and the associated increase in water

availability for oviposition, the time delay between the rains and

the epidemic gaining momentum (approximately 16–18 days) is

consistent with the duration of the larval/pupal stages (12.5 days)

[45] and the minimum egg incubation period (3 days) [46].

Data collection took place on March 26, and it is likely that

there were some cases after this date. The 98 houses visited were

randomly located throughout the village, with longitude and

latitude recorded for all but 10 houses (Figure 2). Of the 425

individuals interviewed, 190 laboratory confirmed cases of

chikungunya were detected, 5% of which were asymptomatic.

The date of symptom onset was recorded for 138 of the confirmed

cases and 52 individuals were either asymptomatic (10 individuals)

or could not recall the date of symptom onset. The outbreak

consisted of an initial period, between epidemic days 1 and 25,

during which sporadic cases occurred but with no consistent

growth pattern. It is noted that the outbreak itself struck houses at

random throughout the village and was not spatially restricted to a

particular region (Figure 2). The high incidence observed in four

houses located in the north of the village can be attributed to their

above average household sizes in the range 6–13 individuals per

house (village average 4.3). A single infectious mosquito in such a

house has many hosts available for feeding and would thus be

capable of transmitting the infection to a greater number of

individuals. As the data collection occurred 7 weeks after the index

case, it is possible that the 42 individuals who failed to recall their

specific infection details, despite testing positive for infection, may

have been infected in the earlier period of the epidemic. Another

possibility is that these individuals suffered minor illness and, as

such, could not recall specific details. The location of these

Figure 1. Epidemic curve showing confirmed chikungunya per day by date of reported onset in the village of Trapeang Roka,
Cambodia. The grey arrow indicates the start of a two-day rain spell.
doi:10.1371/journal.pntd.0003120.g001

A Model for a Chikungunya Outbreak
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individuals, undocumented by date of onset, does not form an

isolated cluster within the village and they are distributed

randomly among the houses surveyed, Figure 3.

Finally, we considered any bias that may have caused people to

not report dates of symptom onset, Figure 4. We found that

gender did not play a role, with both men and women equally

likely to report infections. Age also did not appear to be a

significant factor, with only slightly lower reporting rates amoung

31–50 year old groups. Surprisingly, individuals with a secondary

level education were less likely (22%) to report their infection in

comparison to those with no schooling (32%) or a primary level

education (29%). Students and homemakers were more likely to

report symptoms, a fact that could perhaps be attributed to their

increased likelihood of being present during the data collection

campaign. In fact, this could possibly also explain the increased

reporting rates amoung middle aged people with secondary level

education. This indicates that the time of day the data collection

takes place may play a factor and is likely to omit people working

outside the home or village.

Model Formulation
The disease dynamics are modelled by considering both host

and vector populations explicitly. The human population is

divided into susceptible (S), exposed (E), infectious (I ) and

recovered (R) individuals. The outbreak was short (7 weeks)

relative to the human lifespan and the total human population is

taken to be constant, Nh~SzEzIzR, and it is assumed that

the exposed population is not infectious. The data did not record

the date of symptom onset for 52 laboratory confirmed cases. Of

these 52 individuals, 10 were asymptomatic and the remainder

could not recall the exact date of onset, possibly due to the seven

week lapse between the epidemic outbreak and the data collection

campaign. Nonetheless, these cases will be incorporated into the

model as these individuals are also capable of transmitting the

infection.

Firstly, it is assumed that, following the latent phase, both

asymptomatic and symptomatic cases become infectious at the

same time. It is also assumed that the latent and incubation periods

coincide, so that exposed individuals are not infectious to biting

mosquitoes. This may not be strictly true for chikungunya, but a

definitive consensus on the relative lengths of these infection states

has not been reached to date [47]. Unlike directly transmitted

diseases, such as influenza or measles, the absence of symptoms

does not necessarily decrease the likelihood of transmitting the

infection. There is a possibility that a lower viral load in

asymptomatic individuals may decrease their ability to transmit

the virus to susceptible mosquitoes, however, these is no evidence

to confirm this theory and, in fact, the difference in viral loads

observed between symptomatic and asymptomatic individuals

have been shown to not be statistically significant [48]. In addition,

there is documented evidence of virus transmission from

symptomatic seropositive primates to seronegative animals via

Figure 2. A map of Trapeang Roka village, showing all houses for which gps co-ordinates were collected. The map shows the
distribution of biologically-confirmed symptomatic cases, documented by date of fever onset. Each circle denotes the location of a house within the
village. Unfilled circles indicated houses that escaped infection. The colour bar indicates the number of symptomatic cases with a documented date
of symptom onset in each house. The black diagonal line indicates the main road running through the village, about which the houses are clustered.
doi:10.1371/journal.pntd.0003120.g002
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experimental mosquito bites [49] at viremic levels detected in

asymptomatic humans. Furthermore, viremia levels in asymptom-

atic cases are sufficiently high as to cause widespread concern for

possible contamination of donated blood supplies [16,50]. Other

factors could also lead to differences in the transmission potential

of individuals. For example, self-imposed quarantine of clinical

cases could reduce the mobility of symptomatic people and reduce

transmission to other houses in the village. Therefore, we assume

that both infectious states transmit the virus at the same rate but

will consider a reduced transmission rate for asymptomatic

individuals in a sensitivity analysis. However, the asymptomatic

cases, lacking overt clinical presentations, avoid detection and act

as silent spreaders within the population. The symptomatic cases

with undocumented dates of onset, while overtly presenting

clinical symptoms, are also not visible on the epidemic curve but

are equally likely to infect a susceptible mosquito. To this end, the

infectious compartment is separated into three sub-compartments,

individuals who are asymptomatic IA, those who are symptomatic

but undocumented by date of onset Iu
S and those who are

symptomatic and documented by date of onset Id
S . The total

number of infectious individuals can thus be written as

I~IAzIu
SzId

S . Finally, it is assumed that the recovery rates for

each of the infectious states are identical. All of the above

assumptions are commonly used in dynamic models for chikun-

gunya fever [22,27].

The stochastic nature of the infection process becomes important

in small populations or when the number of infectious individuals is

relatively small [51]. In a village of less than 1000 individuals a

stochastic modelling framework is appropriate and is adopted

herein. The deterministic equations, from which the stochastic

model can be easily derived, for the human population are

dS

dt
~{

BbH

Nh

ImS,

dE

dt
~

BbH

Nh

ImS{nhE,

dIA

dt
~(1{p)nhE{ghIA,

dIu
S

dt
~p(1{q)nhE{ghIu

S,

dId
S

dt
~pqnhE{ghId

S ,

dR

dt
~gh(IAzIu

SzId
S ):

Figure 3. A map of Trapeang Roka village, showing all houses for which gps co-ordinates were collected. The map shows houses with
no confirmed infection (unfilled circle), houses with only infections documented by date of onset (black circle), houses with only infections
undocumented by date of onset (red circles) and houses which have both cases with documented and undocumented infection onset dates (green
circle). The black diagonal line indicates the main road running through the village, about which the houses are clustered.
doi:10.1371/journal.pntd.0003120.g003
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The susceptibility of a human to infection following a bite from

an infectious mosquito is denoted by bH . 1=nh and 1=gh are the

human incubation and infectious periods respectively, and B is the

average daily biting rate of the mosquito. The proportion of

infected individuals who develop symptoms is denoted by p and q
is the proportion of symptomatic individuals who are documented

by date of onset.

Following Dumont et al [24,25], the adult female mosquito

population is divided into susceptible (Sm), exposed (Em) and

infectious (Im) mosquitoes. A larval compartment (Lm) is included

to describe the dynamics of the immature mosquito populations

(Figure 5). The mosquito dynamics are described by

dLm

dt
~mb 1{

Lm

K

� �
(SmzEmzIm){gLLm{mLLm,

dSm

dt
~gLLm{

BbA
M

Nh

IASm{
BbM

Nh

(Iu
SzId

S )Sm{mmSm,

dEm

dt
~

BbA
M

Nh

IASmz
BbM

Nh

(Iu
SzId

S )Sm{nmEm{mmEm,

dIm

dt
~nmEm{mmIm,

where bM is the susceptibility of the mosquito to infection after

biting a symptomatic infectious human and, similarly, bA
M is the

susceptibility of the mosquito to infection after biting an asymp-

tomatic human. The transmission rates will be treated as equal,

bM~bA
M , but a lower transmission from asymptomatic individuals

will be considered later in a sensitivity analysis. 1=nm is the mosquito

latent period and mm is the adult mosquito natural death rate. It is

assumed that mosquitoes do not recover from infection. gL is the

maturation rate of the immature mosquito population. mb is the

average number of female eggs laid per day per adult female

mosquito and K is the carrying capacity, the maximum population

of immature mosquitoes that can be sustained by the available

resources. mL is the natural larval mortality rate.

The basic reproduction number can be easily calculated from

the next generation matrix [24] to obtain

R0~
knmB2bH ½(1{p)bA

MzpbM �
mmgh(nmzmm)

gL

mm

{
gLzmL

mb

� �
:

For the stochastic version of the model, all the continuous variables

become discrete numbers and each compartmental transition

becomes a distinct event with an associated rate. There are 16

distinct events in the stochastic model which are listed in Table 1.

Model Parameters
The human population is set to the sample size, Nh~425. The

latent period in the human population is the time from a mosquito

Figure 4. Bar charts showing the distribution of cases with documented and undocumented (including asymptomatic) dates of
symptom onset within the population. (a) gender of cases, (b) age group of cases in years, (c) education level of cases: No schooling (N), Primary
school (P), Secondary school (S), (d) occupation of cases: Student (S), Stay at home (H), Factory worker (W), Construction worker (C), Child (Ch), Vendor
(V), Farmer (F).
doi:10.1371/journal.pntd.0003120.g004
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bite to the onset of infectiousness, which for the clinical cases is

assumed to coincide with the onset of symptoms. The incubation

period for chikungunya can range from 2 days to 12 days, with a

mean of approximately 3–7 days [1,8,28,47,52]. The value

1=nh~3 days is used in this work, which is comparable with

values used in other modelling studies [24,25,29]. The duration of

infection for chikungunya is typically in the range 1–7 days [5,53]

but symptoms can persist for several weeks [8]. The data collection

campaign conducted in the village recorded both the date of fever

onset and the date the fever resolved. The mean febrile period was

calculated as 4.28 days with a standard deviation of 2.5. The

duration of the infectious period was thus taken as 1=gh~4 days.

The proportions p and q are estimated from the data to be

p~0:95 (yielding 10 asymptomatic individuals in an infectious

population of 190) and q~0:77 (yielding 138 cases which are

documented by date of onset out of a total of 180 symptomatic

cases.)

Biting rates for Ae. aegypti have been measured in laboratory

settings with average values of 0.7 bites per day [54,55]. However,

they have been shown to be opportunistic feeders with biting

frequency increasing with host availability [56]. Taking a

conservative estimate, we limited host availability to 12 hours

per day and the resulting biting rate is approximately B~0:5 [54].

Laboratory experiments, in which Ae. aegypti were infected orally

with chikungunya variant E1-226V, detected the virus in the

salivary glands 2 days after infection [57], indicating a mean

extrinsic incubation period of 1=nm~2 days. The susceptibility of

mosquitoes to infection following a blood meal has been

extensively studied. Ae. aegypti mosquitoes challenged with a

strain of the virus from the La Réunion epidemic displayed

infection rates of 88.5% to 90.7% [57]. Ae. aegypti from the

French West Indies and French Guiana, infected by blood with a

titre of 107:5pfu=ml showed infection rates from 88.9% to 100%,

but as low as 37.6–62% when infected with a titre of 106pfu=ml
[58]. Girod et al found that infection rates were found to depend

heavily on the housing density of the region where the mosquito

was captured, with dense housing yielding an infection rate of

56.8% and diffuse housing a rate of 38.2%. However, these results

were for mosquitoes collected from chikungunya-free regions,

where local transmission has not been documented to date.

Mosquitoes from Cameroon and Vietnam, exhibited infection

rates of 37.1–84.8% and 66.5–99.6% respectively, when chal-

lenged with several viral strains [59]. In particular, when

challenged with the East/Central/South African strain (06.117),

which was identified in this outbreak [35], the Cameroon and

Vietnamese mosquitoes displayed infection rates of 64.8% and

78.3% respectively. Mourya et al [45] found that, at 280C and

relative humidity 70–80%, the rate of infection was 61.82%. Such

values are comparable with conditions in the relevant region of

Cambodia during March, with a long-term average from 1981 to

2013 yielding a temperature of 28:60C (range 27:5{29:30C) and

relative humidity in the range 75–83%. A conservative value of

bM~0:6 is taken in this work. No studies have been conducted on

human susceptibility to infection following a bite from an infected

mosquito and the value of bH will be estimated from the epidemic

curve.

Figure 5. Schematic of the disease transmission pathway. Black arrows indicate transitions between disease states. A susceptible mosquito
(Sm) can be infected by a symptomatic human documented by date of onset (Id

S ), a symptomatic human undocumented by date of onset (Iu
S ) or an

asymptomatic (IA) human (dashed blue arrow). A susceptible human (S) can be infected by an infected mosquito (Im) (dashed red arrow).

doi:10.1371/journal.pntd.0003120.g005
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All other parameters are intrinsically linked with the mosquito

life cycle. The lifespan of the female Ae. aegypti mosquito under

various temperatures has been measured in a laboratory setting

[45]. Observations indicate that the adult female has a mean

survival duration of 43.7 days at 280C but this is considerably

reduced to 18.17 days at temperatures up to 370C. However, the

controlled environment of such laboratory studies will undoubt-

edly overestimate the life span. Mark-release-recapture studies

performed on wild Ae. aegypti populations in Rio De Janeiro

during the wet season with temperatures in the range 23{300C
estimate an average life expectancy (ALE) of 3–16 days [60], with

this being limited to 1.9–5 days in high income neighbourhoods

[61]. Similar studies in Kenya calculate a mean survival of 9 to

10.7 days [62,63]. Studies in Northern Australia, performed in the

temperature range 20{340C, found the probability of daily

survival (PDS) to be 0.86–0.91 [64], which yields an ALE in the

range 6.6–10.6 days (using the relation ALE~1{logePDS [65]).

A value of 1=mm~10 days is used in this analysis. A study in

Malaysia found that Ae. aegypti produced an average of 86 eggs

per oviposition [66]. The mean gonotrophic cycle length was

found to be 3 days, which yields an average of approximately 3.3

cycles in a 10 day lifespan and a lifetime total of 286 eggs. Thus,

the breeding rate per female mosquito is approximately 28:6 eggs

per day. Assuming approximately half of all eggs laid result in the

emergence of a female mosquito [45] then the breeding rate is

14:3 eggs per day. Finally, for temperatures in the range

25{300C, 29.6% of eggs fail to hatch [67] yielding mb~10 per

day. Laboratory measurements by Mourya et al [45] for the

duration of larval stages indicated a length of 1=gL~12:5 days to

the emergence of the adult mosquito. Furthermore, they found

that larvae and pupae experience 2% and 6.63% daily mortality

rates respectively. In the wild, larval mortality will be dependent

on many factors such as the destruction of breeding sites, moisture

levels, temperature and interspecific competition [68]. As such, we

take the upper limit of the mortality range and set mL~0:06.

Finally, following Dumont et al [24], the carrying capacity of

the immature mosquito population Lm is taken to be a multiple of

the human population K~kNh, where k is the total number of

immature mosquitoes per human. Surveys performed in Cambo-

dia during the months August to October in areas at high-risk for

dengue outbreaks found that the number of pupae in households

was highly correlated with the adult mosquito population [69].

The mean pupae density was 16.4 per house, with a distribution

ranging from 5.2/house in the rural area of Takeo province and

up to 56.9/house in a rural area of Battambang, both comparable

to the study site. In rural areas the pupae per person index is 3.6

and this was found to be independent of the human population

density and the distribution of water containers [69]. We assume

that the number of larva per person can be inferred from this;

taking into account a 2% larval mortality rate and a 50% male-

female ratio [45], we obtain k~3:8 larva per person at the start of

the outbreak. All parameters used in the simulations are

summarised in Table 2.

Model Implementation
The epidemic curve, Figure 1, indicates the presence of a single

documented symptomatic case on epidemic day 1 (February 7)

yielding an initial condition with Is(0)~1. Following Dumont et al

[24,25], the mosquito abundance is taken to be dependent on the

total human population present, such that initial mosquito

populations are taken as

Lm(0)~K, Sm(0)~mNh,

where m is the number of adult female mosquitoes per human. For

a typical village in South East Asia, consisting of wooden houses,

measurements indicate a population of 14.2 mosquitoes per house

[70]. The village in the present study has the same construction

characteristics and consists of a total of 134 houses, yielding an

Table 1. Events and rates in the stochastic model.

Event Transition Rate

mosquito-to-human infection S{1, Ez1 BbH

Nh

ImS

onset of asymptomatic infection E{1, IAz1 (1{p)nH E

onset of undocumented symptomatic infection E{1, Iu
Sz1 p(1{q)nhE

onset of documented symptomatic infection E{1, Id
S z1 pqnhE

recovery from asymptomatic infection IA{1, Rz1 ghIA

recovery from undocumented symptomatic infection Iu
S{1, Rz1 ghIu

S

recovery from documented symptomatic infection Id
S {1, Rz1 ghId

S

mosquito egg deposition Lmz1 mb(SmzEmzIm)

egg death due to resource limitations Lm{1
mb

Lm

K
(SmzEmzIm)

mosquito maturation Lm{1, Smz1 gLLm

larval death Lm{1 mLLm

human-to-mosquito infection Sm{1, Emz1 BbA
M

Nh

IASmz
BbM

Nh

(Iu
SzId

S )Sm

onset of infectiousness Em{1, Imz1 nmEm

susceptible mosquito death Sm{1 mmSm

exposed mosquito death Em{1 mmEm

infected mosquito death Im{1 mmIm

doi:10.1371/journal.pntd.0003120.t001
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average of 2.7 mosquitoes per person. Furthermore, investigations

found that, in December, the percentage of female mosquitoes was

42% [71]. Thus, the number of female mosquitoes per human in

the village is approximately m~1:2. It is assumed that there is no

pre-existing immunity in the village population as no other

chikungunya outbreaks had been recorded in the village or in

Cambodia for 50 years, as attested by the attack rate which

remained at 50% until the age of 50, after which it dropped

dramatically [35].

The stochastic process detailed in Table 1 is implemented using

Gillespie’s tau-leap algorithm, such that in a given time interval t
the event rates are calculated and the number of transitions in the

interval ½t, tzt� are evaluated. For each realisation of the model,

the number of new symptomatic cases documented by date of

onset on a given day t is determined from

Nd
S (t)~½Id

S (t){Id
S (t{1)�z½Rd

S(t){Rd
S(t{1)�,

which, in the deterministic framework, corresponds to the integral

ð t{1

t

pqnhE dt,

and where Rd
S denotes the individuals who have recovered from a

symptomatic infection and who were documented by date of

onset. The objective function
P

t (Y (t){N
d

S(t))2, where Yt is the

number of newly documented cases on day t given by the data and

N
d

S(t) is the mean of nsim realisations of the model, was minimized

using the patternsearch routine included in the Matlab Global

Optimization Toolbox [72,73]. The number of realisations nsim

was chosen to ensure convergence. Each stochastic realisation is

permitted to run for a maximum of 1 year or until the population

is infection free, such that the following condition is satisfied:

E(t)zIA(t)zIu
S(t)zId

S (t)zEm(t)zIm(t)~0:

For the realisations where the duration of the simulated

epidemic exceeds that of the observed epidemic it is assumed that

no cases occurred after March 24 such that the data is padded

with zeros to enable calculation of the objective function. 95%

confidence intervals were calculated by performing a latin

hypercube sampling of the parameter space using 1000 samples

and minimizing the objective function using the deterministic

version of the model.

Results

On inspection of the epidemic curve, Figure 1, it can be seen

that additional symptomatic cases of chikungunya fever were

recorded from as little as 2 days after the initial index case on

February 7. As such, given the extrinsic (&2 days) and intrinsic

(2{12 days) incubation periods, it is not possible that the recorded

index case could have caused secondary infections so rapidly.

Therefore, the data itself indicates that this was not the true index

case. It is possible that either this individual incorrectly recorded

the date of symptom onset (collected 7 weeks after the event) or the

infection was already present in the population before February 7.

Infection with another pathogen is also possible, however, the

index case tested negative for other flaviviruses. We adopt the

hypothesis that the infection was already present in the population

on February 7 and to reflect this the initial conditions which are

considered herein are

E(0)~E0, IA(0)~I0
A, Iu

S(0)~Iu0

S , Id
S (0)~1, R(0)~0,

S(0)~Nh{E0{I0
A{Iu0

S {1,

Lm(0)~K, Sm(0)~mNh, Em(0)~E0
m, Im(0)~I0

m:

Fitting the stochastic model to the data yields estimates of the

initial infected human population of E0~0:158 (95% C.I. [0.08–

1.08]), I0
A~2:63 (95% C.I. [0.27–5.24]) and Iu0

S ~6:25 (95% C.I.

[2.68–9.46]). The infected mosquito populations were estimated as

E0
m~2:44 (95% C.I. [0.29–5.28]) and I0

m~1:75 (95% C.I. [0.25–

4.26]). The results corroborate our earlier observation that

infection was certainly more widely spread within the population

on the recorded outbreak day (February 7) and indicate that the

infection was present in at least 8 other members of the

population. These infectious individuals, being asymptomatic or

undocumented by date of symptom onset, would have escaped

detection and could account for the symptomatic cases observed

on epidemic days 4 and 5. Many of the villagers worked outside of

the village raising the possibility that these early secondary cases

were in fact imported from other local infected regions. However,

it is unlikely that such a large number of cases were simultaneously

imported into an uninfected village. Furthermore, our model

estimates that approximately 3 infected mosquitoes were also

circulating within the village on February 7. Due to the limited

flight range of the causative mosquito (maximum of approximately

500 m [74]) they could have been infected outside and transported

by road into the village and thus seeded the epidemic.

Alternatively, they could have been infected within the village.

In the latter scenario, the duration of the extrinsic incubation

period indicates that the infectious mosquitoes were infected at

least 2 days before February 7. This indicates that a visitor to the

village or a local who was either asymptomatic or undocumented

by date of symptom onset may have imported the infection, which

was then established in the local mosquito population, leading to

the recorded index case.

Finally, the data fitting procedure estimated the human

susceptibility to infection as bH~0:43 (95% C.I. [0.41–0.45]),

which yields an estimate for R0 in Trapeang Roka village in

February-March 2012 of 6.46 (95% C.I. [6.24, 6.78]). The daily

cases are plotted, along with the epidemic curve, in Figure 6. An

initial slow rise of the simulated epidemic can be observed which

mirrors the true epidemic progression. However, the simulated

epidemic does not wane near epidemic day 20 on February 27 (see

epidemic curve in Figure 1). The timing of the epidemic peak

shows a good comparison with the data and the simulated

epidemic starts to decline in line with the epidemic curve. In

addition, an eigendecomposition was applied to the chikungunya

symptomatic cases time series to ease comparison with the model

estimate. This partition of variance by strength of components is

an effective method to separate signal from noise particularly in

short time series such as the one under investigation. The

covariance matrix equivalent of processing a forward prediction

data matrix is generated with an eigendecomposition order of 20.

Above 60% of the overall variability was accounted for by this

reconstructed component to which the average model estimate can

be compared. The eigendecomposition shows two distinct

A Model for a Chikungunya Outbreak
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epidemic periods, the initial low level outbreak followed by the

main epidemic event. Our model displays the initial slow growth,

peaks several days earlier but shows a similar declining trend. The

simulated solutions for the three infectious states (IA, Iu
S and Id

S ),

together with the total number of infectious individuals are shown

in Figure 7. The curves show that an underestimate of approx-

imately 5 cases at the peak is made by neglecting asymptomatic

cases and those undocumented by date of symptom onset.

In place of daily cases, the cumulative cases could have been

used for the estimation procedure. Some authors believe that this

presents an advantage as it can smooth out demographic noise and

avoid sociological factors that lead to noisy data, such as

inaccurate reporting [75,76]. We ran the fitting procedure using

the cumulative cases which yielded an estimate of R0~8:68 (95%

C.I. [8.39–8.88]). This larger value appears to result from the

rapid increase in cases in early March that follows a relative slow

growth phase throughout February and imparts a steep slope on

the cumulative case numbers. The parameter estimates obtained

in this case were bH~0:58 (95% C.I. [0.56–0.59]), E0~0:38

(95% C.I. [0.06–0.82]), I0
A~1:98 (95% C.I. [0.27–5.44]),

Iu0

S ~5:23 (95% C.I. [2.56–9.37]), E0
m~3:7|10{4 (95% C.I.

[0–2.1]) and I0
m~1:12|10{5 (95% C.I. [0–2.09]). Apart from the

mosquito populations, these estimates are comparable with the

results obtained using the daily case numbers. The negligible

mosquito populations could be attributed to the lack of significant

disease spread during February. This imparts a very low number

of cumulative cases initially, which the model achieves by having

negligible infected mosquito populations, and hence low virus

transmission.

To investigate the impact of including compartments for the

asymptomatic individuals and those undocumented by date of

onset in the model structure we reconsider the estimation

procedure using a simplified SEIR model. This essentially

corresponds to the special case where p~q~1, so that only

symptomatic cases documented by date of onset are considered. A

simple integration of the model yields IA(t)~IA(0)e{ght and

Iu
S(t)~Iu

S(0)e{ght, and we take IA(0)~Iu
S(0)~0 so that the

populations of these two compartments are identically zero. This

model yields a much lower R0 value of 3:45 (95% C.I. [3.37–3.88]).

However, the human and mosquito population estimates are

E0~0:3039 (95% C.I. [0.05–2.22]), E0
m~17:01 (95% C.I. [14.07–

19.85]) and I0
m~0:043 (95% C.I. [0.02–1.94]). The simulated

epidemic under these conditions is presented in Figure 6. The curve

shows a slower rise in case numbers which appears to fit the data

better, however, the simulated epidemic continues long after the

real epidemic has finished. The estimated population of initial

exposed mosquitoes is particularly unrealistic given the lack of

infection in the human population. This high value is required by

the model to ignite the epidemic due to the absence of individuals

who are either asymptomatic or undocumented by date of onset in

the population.

A sensitivity analysis was conducted to identify the most

influential parameters. The results of a univariate analysis are

displayed in Figure 8. The model parameter that had the greatest

influence on R0 is the biting rate B: A 10% decrease in B yields an

estimate as low as 3.4. The model is less affected by increases in B,

with a 10% increase yielding R0~6:62. Significantly larger

estimates of R0 are obtained if the mosquito lifespan is extended

(i.e. lower mm). Permitting adults mosquitoes to survive longer

enables them to continue spreading infection for longer periods of

time yielding R0 estimates as high as 7:97 for a 10% decrease in

mm. Other model parameters that show a substantial impact on the

estimate of R0 are the duration of the larval stage, g{1
L , the

mosquito susceptibility to infection, bM , and the number of

immature mosquitoes per human, �k. Notably, the solution is not

sensitive to variations in the transmission potential of asymptom-

atic individuals, bA
M . Undoubtedly, this is due to the small

proportion of asymptomatic infection in the population, only 5%.

This result justifies the earlier model simplification that asymp-

tomatic individuals transmit as efficiently as those exhibiting

symptoms. Other recorded chikungunya outbreaks have estimated

larger asymptomatic prevalence, in the range 16.7–27.7% [77–

79], and in such cases the impact of this parameter may be

significantly more pronounced. Other parameters that exert little

influence on R0 are the number of adult mosquitoes per human,

m, the natural mortality of immature mosquitoes, mL and the

mosquito breeding rate mb.

Table 2. Parameters and values used in numerical simulations.

Parameter Description Value Reference

Nh Human population 425 -

bM Mosquito susceptibility to infection from symptomatic 0.6 [45,59]

bA
M

Mosquito susceptibility to infection from asymptomatic 0.6 -

B Average daily biting rate 0:5 day{1 [54]

1=gh Mean viremic period 4 days -

1=mm Average lifespan of adult mosquitoes 10 days [60,62–64]

mb breeding rate of females mosquitoes 10 day{1 [66]

mL Natural mortality of immature mosquitoes 0:06 day{1 [45]

1=gL Duration of larval stage 12.5 days [45]

1=nm Extrinsic incubation period 2 days [57]

1=nh Intrinsic incubation period 3 days [1,8,28,47,52]

k Number of immature mosquitoes per human 3.8 [69]

m Number of female mosquitoes per human 1.2 [70,71]

K Maximal larval capacity k|Nh [24]

doi:10.1371/journal.pntd.0003120.t002
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Discussion

In this paper an estimation procedure for the basic reproduction

number of a chikungunya outbreak in a rural Cambodian village

has been presented. This isolated outbreak is particularly

important because it presents the opportunity to analyse the

idealised situation of the importation of a new pathogen into an

isolated and immunological naive population. The outbreak data

is unique amongst other chikungunya outbreaks, in that all

infections were confirmed by laboratory analysis, enabling the

identification of asymptomatic individuals, in addition to individ-

uals who failed to report details of their infection. This provided us

with the opportunity to develop a novel mathematical model in

which both symptomatic cases undocumented by date of disease

onset and asymptomatic cases were incorporated. We found that

the infection was already established in the village population on

the reported epidemic start date, in the form of cases with an

undocumented date of onset and asymptomatic cases. The

presence of such individuals can lead to inaccuracies in the

calculation of the basic reproduction number, which we showed

using a simplified model excluding these cases. A rapid

implementation of data collection campaigns, including laboratory

analysis of all exposed individuals, in newly infected regions could

possibly reduce such inaccuracies by allowing identification of the

route of disease importation. Such inaccuracies in data collection

could have a large impact on the implementation of control

measures by public health authorities, who commonly rely on the

reproduction number to inform decisions in the early stages of an

epidemic.

The epidemic displayed a bimodal character, with a minor

outbreak in February followed by the main outbreak in March. A

similar structure was observed in La Réunion Island, which was

due to a viral mutation and spanned months rather than weeks. In

this case, we believe the arrival of the rains may have impacted the

epidemic timing. The structure of our model is unable to

reproduce this bimodel behaviour without an external forcing

source. The inclusion of rainfall data as a mechanism for mosquito

reproduction can produce such behaviour and this has been

shown elsewhere using an agent-based model (ABM) [34]. Further

work on understanding the dynamics of this outbreak could

include a spatial analysis using the ABM framework to incorporate

the topography of the village and local rainfall data to drive

mosquito reproduction.

The model results highlight the importance of accurate

epidemiological data collection to identify the route of disease

importation and the ability of poor human recall to impact the

epidemic curve by excluding cases with an undocumented date of

onset. The consequences of excluding these cases was demon-

strated by considering a simplified SEIR model which yielded

biologically unrealistic mosquito population estimates and pro-

duced a simulated epidemic that continued for long after the real

epidemic had finished. Furthermore, many individuals interviewed

Figure 6. The mean of 1000 stochastic realisations for the number of daily symptomatic cases documented by date of onset (solid
black line) plotted with the epidemic curve (solid red line). Also shown is the mean of 1000 realisations of the SEIR model (dashed black line)
and an eigendecomposition of the epidemic curve (dashed red line). The grey shaded area shows the 95% confidence interval. Day 0 corresponds to
the start of the epidemic on February 7.
doi:10.1371/journal.pntd.0003120.g006
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recalled a date of symptom onset but infection was not confirmed

by IgM. This indicates that biological confirmation is crucial to

avoid errors introduced due to the presence of other diseases (e.g.

dengue, Japanese encephalitis), the impact of memory bias and the

unintentional effects of people aiming to please the interviewers by

confirming a non-existent infection. The results demonstrate that

the identified index case was not alone in the population at the

epidemic onset and the infection was already present in both the

human and mosquito populations. The infected humans could

have imported the infection from nearby regions, however, it is

more probable that the infection was imported by an infected

visitor or a resident who was either asymptomatic or undocu-

mented by date of symptom onset, who would not have been

recorded on the epidemic curve but nonetheless seeded the

epidemic within the village’s mosquito population.

The estimate obtained for R0 is larger then, but within the

range, of values estimated for other chikungunya outbreaks in La

Réunion [28] and Italy [29]. We believe this is largely due to the

specific characteristics of the village, where large household sizes

prevail in a small relatively isolated location. This resulted in an

outbreak that was both quick and severe, with the infection

sweeping rapidly through the village, infecting 44% of inhabitants

within 7 weeks. It has been suggested that the basic reproduction

number increases with mean household size [80]. This effect can

be contributed to a larger quantity of water being stored to

accommodate a greater number of people for daily tasks such as

eating, washing and cleaning, providing a larger reservoir for

mosquito breeding [81]. The average household size in Trapeang

Roka village is 4.3, which is significantly higher than those

recorded in La Réunion (2.9, [82]) and Italy (2.4, source:

Eurostat). A similar pattern was shown for the Indian Ocean

island of Mayotte, where more cases occurred in larger households

[83] and clustering of cases within households has also been

reported for dengue fever [84]. Other local factors such as climate

and lifestyle also contributed to this larger estimate. In particular,

detailed information on local vector densities could provide a more

accurate estimate. Furthermore, the accurate data on the presence

of asymptomatic individuals, and those with an undocumented

date of symptom onset, provided a unique opportunity to assess

their impact on the calculation of R0. The importance of

asymptomatic infections in the spatio-temporal spread of chikun-

gunya has been demonstrated [34] and it has been shown that the

movement of asymptomatic individuals alone is sufficient to

initiate an epidemic in an immunologically naive population.

Therefore, neglecting such individuals when determining the

reproduction number may produce unrealistically low estimates,

as we have demonstrated using a simple SEIR model. Further-

more, a sensitivity analysis showed that the model is highly

influenced by parameter choices, such as the biting rate and

mosquito longevity, with estimates of R0 ranging from as low as

3.4 to as high as 7.97. More accurate estimates of such quantities

tailored to specific outbreak locations could help to better

Figure 7. The mean of 1000 stochastic realisations for number of symptomatic cases documented by date of onset (solid black
line), symptomatic cases undocumented by date of onset (dotted black line), asymptomatic cases (dashed black line) and the total
number of infectious cases (solid blue line) plotted with the epidemic curve (solid red line). Day 0 corresponds to the start of the
epidemic on February 7.
doi:10.1371/journal.pntd.0003120.g007
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parameterise mathematical models and reduce calculation errors.

In particular, biting rates have been shown to be affected by the

disease status of individuals with febrile patients being more

attractive to mosquitoes [85]. Such a phenomenon could be

further explored using the ABM framework to allow for variable

biting rates as a function of disease status throughout the

population. Another parameter with great uncertainty is the

extrinsic incubation period. The virus has been detected in

infected mosquitoes at two days post infection, however, this could

be significantly delayed if the mosquito was exposed to a lower

viremia. The sensitivity analysis found that small variations in the

extrinsic incubation period did not have a large impact on the

results, however, a more detailed analysis showed that significantly

small R0 estimates (as low as 2.2) could be obtained for incubation

periods of duration 6 days or greater. Better laboratory estimates

of such mosquito characteristics could help to identify more

realistic incubation times and reduce calculation errors.

Accurate estimates of R0 are particularly important in recent

times which have seen non-native mosquitoes invade and colonise

previously unoccupied regions. The non-native Aedes albopictus
mosquito was responsible for the first chikungunya outbreak in a

temperate region recorded in the Emilia Romagna region of Italy.

This outbreak highlighted the need to understand the dynamics of

disease introduction into new regions and the impact of biological,

human and climatic factors on invasion dynamics. The model presented

here provides an estimate for R0 in an immunologically-naive, relatively

isolated, population. The large value obtained for R0 may not be

replicated on larger spatial scales, where sustained transmission

between towns and cities may be lower than that recorded in a

small village with many houses in close proximity. Nevertheless, the

model provides insights into the initial dynamics of newly invading

pathogens and the importance of closely monitoring new outbreaks

for cases that may escape detection. The model indicates the need

for accurate monitoring of newly emerging pathogens, or

pathogens endemic in tropical areas visited by tourists, in order

to identify the route of introduction. This is particularly relevant in

the European context, where many chikungunya cases were

imported during the Indian Ocean outbreak and many territories

can seed European outbreaks with imported cases [86,87]. The

need to develop and implement stochastic models is especially

needed in the early stages of such outbreaks, when the number of

infected individuals is small. A better understanding of the

dynamics of such disease invasions can better inform public health

officials and impact control strategies. Models developed in pre-

epidemic periods can be used to predict hospital planning needs,

the impact of school closure, the financial burden and the cost-

effectiveness of mitigation measures.
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28. Boëlle PY, Thomas G, Vergu E, Renault P, Valleron AJ, et al. (2008)
Investigating transmission in a two-wave epidemic of Chikungunya fever,

Reunion Island. Vector-Borne and Zoonotic Diseases 8: 207–218.

29. Poletti P, Messeri G, Ajelli M, Vallorani R, Rizzo C, et al (2011) Transmission
potential of chikungunya virus and control measures: the case of Italy. PLoS

ONE 6: e18860.

30. Massad E, Ma S, Burattini MN, Tun Y, Coutinho FAB, et al (2008) The Risk of
Chikungunya Fever in a Dengue-Endemic Area. J Travel Med 15: 147–155.

31. European Center for Disease Control. VBORNET maps Mosquitoes. Available:

http://ecdc.europa.eu/en/activities/diseaseprogrammes/emerging_and_vector

borne_diseases/Pages/VBORNET maps.aspx. Accessed on 19/06/2013.

32. Ministry of Health Singapore, Weekly Infectious Disease Bulletin, Epidemio-

logical Week 52, Accessible at http://www.moh.gov.sg/content/dam/moh

web/Statistics/Infectious_Diseases_Bulletin/2013/December/2013 week

52.pdf

33. Ho K, Ang LW, Tan BH, Tang CS, Ooi PL, et al. (2011) Epidemiology and

control of chikungunya fever in Singapore. J Infect 62: 263–270.

34. Dommar CJ, Lowe R, Robinson M, Rodó X (2014) An agent-based model
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chikungunya prevalence in la Réunion Island outbreak by serosurveys: two

methods for two critical times of the epidemic. BMC Infect. Dis. 8: 99.
80. Becker NG, Dietz K (1995) The effect of household distribution on transmission

and control of highly infectious diseases. Math Biosci 127: 207–219.
81. Brown PJ, Inhorn MC (Eds.) (2013). The anthropology of infectious disease:

international health perspectives (Vol. 4). Routledge.

82. Marie CV, Rallu JL, Temporal F, Roux J, Breton D, et al. (2012) Demographic
and migration trends in the outermost regions: impacts on territorial, social and

territorial cohesion. Executuve summary - Reunion Island. Institut National
D’études Démographiques.

83. Sissoko D, Moendandze A, Malvy D, Giry C, Ezzedine K, et al. (2008)

Seroprevalence and risk factors of chikungunya virus infection in Mayotte,
Indian Ocean, 2005–2006: a population-based survey. PLoS ONE 3: e3066.

84. Hayes JM, Garcia-Rivera E, Flores-Reyna R, Suarez-Rangel G, Rodriguez-
Mata T, et al (2003) Risk factors for infection during a severe dengue outbreak in

El Salvador in 2000. Am J trop Med Hyg 69: 629.
85. Gilbert IH, Gouck HK, Smith N (1966) Attractiveness of men and women to

Aedes aegypti and relative protection time obtained with DEET. Florida

Entomologist, 53–66.
86. Bitar D, Tarantola A, Capek I, Barboza P, Che D (2009) Risk of importation of

tropical diseases in metropolitan France: dectection, alert, response. Bulletin de
l’Academie Nationale de Medecine 193: 1847.

87. Seyler T, Grandesso F, Strat YL, Tarantola A, Depoortere E (2009) Assessing

the risk of importing dengue and chikungunya viruses to the European Union.
Epidemics 1: 175–184.

A Model for a Chikungunya Outbreak

PLOS Neglected Tropical Diseases | www.plosntds.org 15 September 2014 | Volume 8 | Issue 9 | e3120


