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Abstract

Background: There is much uncertainty about the future impact of climate change on vector-borne diseases. Such
uncertainty reflects the difficulties in modelling the complex interactions between disease, climatic and socioeconomic
determinants. We used a comprehensive panel dataset from Mexico covering 23 years of province-specific dengue reports
across nine climatic regions to estimate the impact of weather on dengue, accounting for the effects of non-climatic factors.

Methods and Findings: Using a Generalized Additive Model, we estimated statistically significant effects of weather and
access to piped water on dengue. The effects of weather were highly nonlinear. Minimum temperature (Tmin) had almost
no effect on dengue incidence below 5uC, but Tmin values above 18uC showed a rapidly increasing effect. Maximum
temperature above 20uC also showed an increasing effect on dengue incidence with a peak around 32uC, after which the
effect declined. There is also an increasing effect of precipitation as it rose to about 550 mm, beyond which such effect
declines. Rising access to piped water was related to increasing dengue incidence. We used our model estimations to
project the potential impact of climate change on dengue incidence under three emission scenarios by 2030, 2050, and
2080. An increase of up to 40% in dengue incidence by 2080 was estimated under climate change while holding the other
driving factors constant.

Conclusions: Our results indicate that weather significantly influences dengue incidence in Mexico and that such
relationships are highly nonlinear. These findings highlight the importance of using flexible model specifications when
analysing weather–health interactions. Climate change may contribute to an increase in dengue incidence. Rising access to
piped water may aggravate dengue incidence if it leads to increased domestic water storage. Climate change may therefore
influence the success or failure of future efforts against dengue.
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Introduction

Dengue is the most widely distributed and rapidly spreading

mosquito-borne viral disease in the world [1]. This acute febrile

disease affects all age groups [2], and is caused by four

antigenically distinct but genetically related viruses (serotypes)

[3]. Dengue has become endemic in over 100 countries in Africa,

the Americas, the Eastern Mediterranean, South-east Asia and the

Western Pacific [1]. Approximately 2.5 billion people are at risk

from dengue transmission. About 50 million new dengue infections

[1] and at least 12,000 deaths, mainly among children, occur

worldwide every year [4]. The economic burden of dengue has

been estimated at approximately 2.1 billion US dollars per annum

in Latin America and the Caribbean alone [5]. In some regions,

such as the Americas, the economic losses caused by dengue are

similar to those attributed to malaria and tuberculosis [6]. As there

are no specific antiviral medicines treating or vaccines preventing

dengue, the only way to manage the disease is through the control

of vector populations [7].

The global incidence rate of dengue has substantially increased

over the last six decades (from about 900 annual cases reported to

WHO over 1955—1959 to about 926 thousand annual cases over

2000—2007) [1,4] influenced by numerous mechanisms including

population growth, unplanned urbanisation, increased travel and

transportation of goods, lack of political will and limited resources

for implementing effective control measures [7]. The spatial

distribution of the main dengue vector, Aedes aegypti, has also

increased over the last 25 years [8]. Increases in both dengue

incidence and A. aegypti distribution have also been associated to

variations in the climate system, including climate change (see

references [9,10] for an example). The evidence of the effects of

climate drivers on dengue incidence is still under debate [8,11].

This paper estimates the relative effects of weather (minimum

and maximum temperature, and precipitation) on dengue

accounting for a range of non-climatic factors (e.g. access to

piped water, urbanisation, gross domestic product, and long-term

trends and seasonality; see Methods). Our model parameters are

then used to project the potential effects of climate change on
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dengue incidence by 2030, 2050 and 2080 under three emission

scenarios (A1B, A2, and B1) described by Nakicenovic and

Swart [12].

Several empirical models have been developed for estimating

the effects of weather on dengue (for example, references [10,13]),

and some of these have been used as a baseline to estimate

the potential impacts of climate change on the future distribution

and risk of dengue infection (for example, references [10,14]).

However, the majority of these studies have been conducted in

small geographical areas, covered relatively short periods of time,

and include very limited non-climatic confounders (for example,

references [10,13,15]) leading to several limitations. For example,

small populations commonly result in low disease numbers leading

to unstable risk estimations [16]; small areas are also more likely

to be climatically and socioeconomically homogeneous [17,18],

making it harder to extrapolate the results to areas with greater

climatic or socioeconomic variability.

Our case-study has various unique features that minimize the

identified problems. First, we used a large panel of province-

specific data with a refined temporal resolution (monthly) covering

the entirety of Mexico to investigate a greater geographical

area (,2 million km2), time frame (276 months), and number of

reported cases (417,668) than previous studies. Second, the great

socioeconomic heterogeneity [19] and climatic diversity of

Mexico, which includes both tropical and subtropical areas [20],

allowed us to estimate robust and generalized relations between

dengue, climatic and socioeconomic factors, which may be

extrapolated to a large number of regions with similar climatic

and socioeconomic features. Third, we control for the effect of

potential un-observed confounders (e.g. social behaviour) by

incorporating province-specific fixed-effects into our model.

Fourth, we allowed for nonlinear relationships between dengue

and weather by adopting a semi-parametric modelling approach.

Specifically, we implemented a Generalized Additive Model

(GAM) coupled with penalized likelihood function and an

automated smoothing selection criterion, which estimated the

optimal degree of nonlinearity of the model directly from the data

[21]. The advantage of this approach is that it determines the

model flexibility within the actual estimation process. This method

has been described in detail elsewhere [21].

Methods

Dengue data
Province-specific monthly reports of laboratory confirmed

dengue cases were collected from the Mexican National System

of Epidemiologic Surveillance [22] for the period 1985—2007

(Figure 1). Dengue and severe dengue cases were aggregated

because they correspond to different presentations of the disease.

Weather data
We obtained the province-specific monthly mean values of

minimum temperature, average maximum temperature and

monthly accumulated precipitation from the Mexican National

Meteorological Service for each province for the period 1971—

2007. These monthly mean values were computed using province-

specific observations from all available meteorological stations

across Mexico. The network of meteorological stations from the

National Meteorological Service consists of over 2,000 stations

distributed across the whole country. The frequency and duration

of rainy events were not considered as such information was not

available from the National Meteorological Service. We preferred

station data over satellite data because meteorological stations

seem to provide more reliable information about the conditions

(particularly rainfall) of an area than do satellites [23,24].

Because the modulating effects of the climate system on vector

populations do not immediately result in changes on dengue

transmission, we specified meteorological variables within biolog-

ically and physically plausible time lags based on literature reports

in Mexico (for example, references [25,26,27]), and considering

the delays in laboratory confirmation of suspected cases and

their reporting. Optimal lags for the climatic variables comprised

monthly average minimum temperature, average monthly max-

imum temperature and accumulated monthly precipitation lagged

one and two months. Due to significant autocorrelation between

the lags of these variables (Spearman’s rank rho 0.7), we created

new variables (Tmin1:2, Tmax1:2, and Precipitation1:2) taking

the mean of the values of the two optimal lags.

Socioeconomic data
Provincial population data were retrieved from the National

Institute of Statistics and Geography (INEGI) [28] for 1990, 1995,

2000 and 2005. The proportion of the population with access

to piped water was also obtained from INEGI for 1990, 2000,

2005 and 2010. The share of the population living in urban

areas (urbanisation) was obtained from the Chamber of Deputies

[29] for 1980, 1990, 1995, 2000 and 2004. Intervening years

for these variables were estimated using linear interpolation.

Yearly GDP per capita was obtained from the World Bank for the

whole period of study. These data were then deflated at constant

2003 values. GDP data were originally aggregated at the national

level. To obtain province-specific GDP estimates we assumed that

the proportion of the national GDP for each province was the

same as that for which GDP information were available (1993–

2005) from INEGI. Thus, the province-specific proportion of

GDP for the period 1985–1993 was assumed to be the same

than that observed in 1993 on the INEGI data. Proportions for the

Author Summary

Relationships between weather and mosquito-borne dis-
eases are nonlinear in nature. This means that the number
of disease cases does not vary equally with changes in the
climate system. Identifying adequately the form of the
relationship between disease outcomes and their drivers in
an empirical fashion can be tedious and imprecise. Here,
we use a statistical modelling approach that estimates the
form of the relationships between dengue and weather in
an automated way. We use this approach to analyse a
comprehensive dataset covering 23 years of dengue
reports from Mexico. Our model incorporates the effects
of some non-climatic factors that are key for disease
occurrence. We then use our estimations to project the
potential impact of climate change on dengue incidence
under three different scenarios for three different time
periods. The estimated effects of weather on dengue were
highly nonlinear. These results highlight the importance of
using flexible modelling approaches for the analysis of
disease-weather relationships with a nonlinear behaviour.
Rising access to water supply was related to increases in
dengue incidence. This situation may be related to
increased water storage induced by unreliable water
supply. Dengue incidence may increase to about 40% by
2080 due to climate change. This increase in dengue
incidence may be aggravated by a rising access to piped
water if it leads to domestic water storage, although any
adaptation measures to rising dengue may also affect the
risk. Our results contribute to a better overall understand-
ing of the epidemiology of dengue.

Effects of Weather and Climate Change on Dengue
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subsequent years were assumed to be the same as in the INEGI

data.

Climate change data
To project the potential impact of climate change on dengue

(with Monte Carlo 95% confidence intervals), we retrieved

province-specific historical values (relative to the 1970—1999

climatology) and projected changes for the years 2030, 2050 and

2080 under three climate change scenarios (A1B, A2 and B1) for

monthly mean temperature and precipitation from the National

Institute of Ecology [30] using the coordinates of the centroids of

each province. The coordinates of the centroids were obtained

using the standard ‘coordinates’ routine within the ‘sp’ package for

R [31] and a digital map of Mexico. Average monthly minimum

temperature, maximum temperature and precipitation were

estimated as the monthly averages of the baseline period based

on the observational data obtained from the Mexican National

Meteorological Service. To generate new temperature values for

each scenario, we added the corresponding projected changes to

the historical values. Precipitation was rescaled multiplying the

historical value by the corresponding projected percentage of

variation. Average minimum and maximum temperature, and

accumulated precipitation values (historical and projected) lagged

1 and 2 months were then used for the climate change projections.

GAM analysis
We specified the expected number of dengue cases during

month t and province i as:

g(mit)~b0z S
J

j~1
sj(Xjit)z S

K

k~1
bk(Zkit)zs1(t0)zdizlog(jit) ð1Þ

where g(.) is a log link function of the expectation mit;E(Yit),

with Yit as the series of dengue counts. Xjit denotes the j-th

meteorological variables, sj(.) and s1(.) are smooth functions for the

meteorological variables and the time trend defined via penalized

cubic regressions splines; Zkit denotes the k-th socio-economic

variables (GDP per capita, proportion of people living in urban

areas, proportion of people with access to piped water) which enter

the model linearly; di are province-specific fixed effects [32] to

capture the effects of potential unobserved confounders (e.g. social

behaviour) in the model. Log(jit) indicates the logarithm of the

population/month at risk included as an offset variable. This offset

variable standardises dengue occurrence by population to compute

estimations on the incidence rate rather than on the total number

of dengue cases. To account for possible over-dispersion, we

allowed the scale parameter to be different from the mean [33].

This led to a quasi-maximum likelihood Poisson model, which is

the standard consistent estimator for count variables [34].

The province-specific fixed effects control for province-specific

omitted variable bias and un-modelled confounders such as social

behaviour. The smooth function of time controls for long-term

trends and seasonality that could arise from non-climatic factors

such as resistance of the vector to insecticides, changes in the

diagnostic techniques, holidays and seasonal water storage

practices. To ensure the robustness of our results, we tested other

specifications to account for long-term and seasonal trends

including: 0,1 categorical variables for each year and for each

season for the period, categorical variables for each year with a

sinusoidal term for seasonal trends, and a linear trend with a

sinusoidal term for seasonal trends. As is the case of the smooth

function for time, our categorical variables account for long-term

and seasonal changes that could happen as a consequence of

confounding non-climatic factors such as seasonal water storage or

Figure 1. Time series of average monthly dengue incidence in Mexico (cases/100,000 people) over the period January 1985 to
December 2007.
doi:10.1371/journal.pntd.0002503.g001

Effects of Weather and Climate Change on Dengue
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year-specific disruptions in the public health systems. Estimations

were conducted using the ‘mgcv’ package [21] for R version 2.12.0

[31].

The smooth functions are represented by regression splines,

which can be written as linear-combinations of known basis

functions of the regressors.

sj(Xjit)~ S
q

l~1
dlbl(Xjit)~d0b ð2Þ

where bl(.) denotes the basis functions and dl the parameters to be

estimated. The number of basis functions q determines the

maximum possible flexibility of the relation between Xjit and g(mit)

(see Equation 1); the greater the value of q, the more flexible is the

estimated effect. Here, we used Cubic Regression Splines (CRS) in

which the basis functions bl(.) are constructed by dividing the range

of values of the independent variable into segments separated by

knots. A local cubic regression is fitted to each segment. The

continuity and smoothness at the knots is ensured imposing

conditions on the first and second-order derivatives [35]. Our

estimation method, implemented via Penalized Iteratively Re-

weighted Least Squares (P-IRLS) is designed to automatically

reduce the nonlinearities not supported by the data to simple

linear forms [21].

Climate change scenarios
We generated extrapolations of projected dengue risk based on

our fitted GAM parameters for the years 2030, 2050 and 2080,

under the A1B, A2 and B1 climate change scenarios. The

storylines behind these scenarios are described in detail elsewhere

[12]. Briefly, the A1B scenario relates to a future with very rapid

economic growth, global population peaking in mid-century, and

the introduction of more efficient technologies with a balance in

energy-sources-related technological change [12]. The A2 scenario

describes a future with a continuously increasing global popula-

tion, economic development regionally oriented, and a slower and

fragmented per capita economic growth and technological change

than other scenarios [12]. Lastly, the B1 scenario considers a

similar global population growth as the A1B, but with an

economic structure towards a service and information economy,

reductions in material intensity, and the introduction of clean and

resource-efficient technologies [12].

We retrieved province-specific temperature and precipitation

ensemble outputs of multiple models (relative to the base period

climatology of 1970–1999) from the website of the Mexican

National Institute of Ecology for the years 2030, 2050 and 2080.

The methodology and outputs of these ensembles have been

described by Magaña and Caetano [36]. Briefly, the three

scenarios (A1B, A2, and B1) describe rising temperature at an

increasing rate all over the country. The north-west region is the

most greatly affected by temperature at the end of the century

[36]. In these scenarios, changes in precipitation are be very

irregular; though they agree that decreases are expected mainly in

the north and north-west, followed by the Yucatán Peninsula and

central Mexico [36]. Changes in both temperature and precipi-

tation are expected to be greater under the A2 scenario (high

emissions) followed by the A1B and B1 [36].

To conduct our estimations, we used future projections of

climate holding all the other driving forces constant (fixed to the

baseline year 2000) to isolate the effects of climate on dengue.

While our model is robust to the confounding effects of observed

and un-observed non-climatic factors, these projections are not

predictions of the future but rather aim to show the potential

impact of climate change on dengue incidence whilst keeping the

other driving forces constant.

Results

GAM analysis
Table 1 presents the estimates of our Poisson GAM for dengue

incidence per province. This specification explained 61% of the

Table 1. Model estimates of the effects of weather and socioeconomic development on dengue across Mexico.

Smooth terms edf (F )

s(Time) 44.187 (49.880)

s(Tmin1:2) 3.820 (27.530)

s(Tmax1:2) 2.958 (52.870)

s(Precipitation1:2) 3.570 (76.580)

Linear terms Estimate (SE)

Constant 223.270 (2.975)

Access to piped water 0.052 (0.007)

Urbanisation 0.016 (0.010)

GDP per capita 21.393 (0.869)

Model statistics

Fixed-effects Included

Log-Likelihood 2398002.5

Explained deviance 61%

GCV 88.727

Scale parameter 85.459

Values in bold font were significant at the 0.001 level. edf = effective degrees of freedom of the smooth function terms (edf.1 indicate nonlinear relationships); F-value
is an approximate F-test as in [21], maximum number of spline basis for the meteorological terms = 5. SE = approximate asymptotic standard error; GCV = Generalized
Cross Validation. Estimation was performed via Penalized Iteratively Reweighted Least Squares (P-IRLS) and GCV score minimization by outer iteration.
doi:10.1371/journal.pntd.0002503.t001

Effects of Weather and Climate Change on Dengue
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deviance of dengue incidence. The high values of the effective

degrees of freedom (edf) of the smooth functions indicate that

associations between dengue and weather are highly nonlinear.

The effects of all meteorological variables and access to piped

water on dengue were found to be significant. The estimate of the

scale parameter was very high (.80) indicating over-dispersed

data. The results presented here were robust to other model

specifications with different controls for long-term and seasonal

trends (Table S1).

Figure 2 depicts the relationships estimated by our model.

Figure 2A shows almost zero response of dengue to Tmin1:2 below

5uC, a modest increased response above this threshold, and then

a rapid increasing response when temperatures rise above 18uC.

Dengue incidence also increases gradually with rising Tmax1:2

(Fig. 2B), showing a peak at approximately 32uC after which

the response declines. Figure 2C shows a quadratic relationship

between dengue incidence and Precipitation1:2 with a plateau at

approximately 550—650 mm. Figure 2D depicts a positive

relationship between dengue incidence and the proportion of the

population with access to piped water, indicating that as access to

piped water rises so too does dengue. Urbanisation and GDP did

not show a significant association with dengue. This may indicate

that these variables do not play a key role in determining dengue

transmission in Mexico or that our data, after the removal of time

invariant characteristics by the province-specific fixed-effects, do

not contain enough variability for estimating meaningful relation-

ships for these variables.

Higher incidence rates were observed during the wet season

(May to October) compared to the rest of the year. We compared

the model estimates with the observed data for the whole year,

the wet and dry seasons. The model captured much of the

spatiotemporal variability observed in dengue incidence (see

Figure S1) providing evidence that our estimates are robust. We

tested the influence of the province with the greatest incidence rate

on the model fit excluding it from the model. The results presented

in this paper were robust to these changes.

Climate change projections
Our projections suggest that mean annual dengue incidence

may increase by about 12—18% by 2030, 22—31% by 2050, and

33—42% by 2080 across Mexico showing an increasing effect of

climate change on dengue (Table 2). Such positive and increasing

impact of climate change on dengue cases is also evident at the

province level. As an illustration, we report the results obtained for

the Mexican provinces of Nuevo León, Querétaro and Veracruz.

These provinces not only have very different climatic regimes, but

also show different levels of endemicity. Veracruz is an endemic

province with very regular seasonal transmission and a warm

and humid climate. Nuevo León is endemic but with periods of

very low or no transmission during the dry season, and it has a

semi-warm semi-dry climate. Querétaro, on the other hand, is

epidemic-prone with very intermittent transmission, and a

temperate semi-dry climate. Further information on the prov-

ince-specific projections for the whole country can be found on

Table S2. Our projections indicate that in already endemic

provinces (Nuevo León and Veracruz) we observe a very sig-

nificant raise in dengue cases, (from 1.7 to about 2.4 reported

cases/100,000 people in Nuevo Leon; and from 2.6 to about 4.2

Figure 2. GAM-estimated relationships. The figure shows the GAM estimated relationships between average monthly dengue incidence and (A)
Tmin1:2, (B) Tmax1:2, (C) Precipitation1:2, and (D) the proportion of the population with access to piped water. Solid lines indicate the average expected
number of dengue cases (cases/100,000 people per month); dashed lines indicate the estimated 95% Bayesian estimation confidence intervals.
doi:10.1371/journal.pntd.0002503.g002

Effects of Weather and Climate Change on Dengue
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reported cases/100,000 people in Veracruz annually). On the

other hand, in epidemic-prone provinces (Querétaro), we do not

observe a significant increase in transmission; with dengue cases

remaining uncommon (from 0.04 to about 0.08 reported cases/

100,000 people annually).

Figure 3 shows that the majority of provinces across Mexico are

expected to undergo an increase in dengue transmission under

future climate change. The difference in mean annual dengue

incidence between the projections and the baseline scenario are

likely to be greater in endemic provinces (with year-round

transmission or with periods of no transmission during the dry

season), and particularly stronger in southern and eastern

provinces characterized by warm and humid climates. However,

our projections show significant spatial heterogeneity with some

north-western provinces and the north of the Yucatán Peninsula

being likely to observe decreases in dengue incidence by 2080

presumably due to the impact of reduced precipitation on the

creation of breeding sites [8,37,38].

Discussion

In this study we have presented an analysis of the association

between dengue incidence and climatic variables in Mexico. We

then used the model generated to make projections about the

impact of future climate change on dengue incidence. For this

work we brought together one of the longest (276 months of

dengue reports) and more spatially diverse (nine major climatic

regions across ,2 million km2) dengue and climate datasets yet

assembled. We furthermore used an analytic approach (General-

ized Additive Modelling) that is specifically designed to analyse

data when the impact of the predictors on the outcome variables

are nonlinear. GAMs coupled with penalized estimation provide a

more flexible modelling approach than conventional regression

methods, allowing the specification of flexible functional forms

with the degree of non-linearity estimated directly from the data

[21]. This characteristic of GAMs resolves the subtle task of

determining the model flexibility a priori [21].

We showed that weather significantly influences dengue

incidence in Mexico. However, all these relationships are highly

nonlinear. Tmin1:2 has the biggest impact on dengue with almost

zero risk below 5uC, a modest increased risk above this

temperature, and a rapid increasing risk when average minimum

temperatures rise above 18uC. The sharp increase in dengue

incidence at minimum temperatures beyond 18uC provides a

partial explanation for the strong seasonality observed in tropical

provinces where seasonal variations in temperature are not greater

than a few degrees [39]. These effects are consistent with the

biology of both the dengue vector and the dengue virus because

rising temperatures shorten the extrinsic incubation period (EIP) of

the virus, as well as the development time and the gonotrophic

cycle of the mosquito resulting in an increased likelihood of

dengue transmission [8,39,40].

Maximum temperature also has an effect independently from

Tmin. The risk of dengue increases as Tmax1:2 rises above about

20uC to a peak around 32uC after which the risk declines. The

decay in the response of dengue to high levels of Tmax1:2 may be

explained by the maximum transmission efficiency of A. aegypti

achieved above 32uC [40], and by adult mosquitoes gradually

dying at temperatures above 36uC [39].

There is also an increasing risk as Precipitation1:2 rises to about

550 mm beyond which risk declines. The progressive increase

in dengue incidence at low Precipitation1:2 levels suggests the

creation of rain-filled (outdoors) breeding sites, whereas the decay

observed at high levels, may be due to the wash-out of such

breeding sites [37].

Our findings regarding the impact of weather on dengue risk

are consistent with the results of other studies using empirical

modelling (for example, [10,41,42,43]). However, previous studies

using OLS, GLM, or ARIMA methods are unlikely to have fully

captured the nonlinearities that we have demonstrated. Also,

because of the larger database over more climate zones, we have

been able to model these relationships over the whole range of

climate variations likely to be seen under future climate change.

Our results should therefore be generalizable to other regions and

climatic zones and provide a better basis for modelling the impact

of future climate change.

Also of interest is the significant association between dengue

incidence and the proportion of the population with access to

piped water. This finding is at odds with previous observations

suggesting that piped water supply was protective [15]. Schmidt

and colleagues suggested that dengue risk was higher in people

without access to piped water supply because of the need to

Table 2. GAM-estimated average annual dengue incidence under climate change.

Region Baseline (95% CI) Scenario 2030 (95% CI) 2050 (95% CI) 2080 (95% CI)

National 1.001 (0.708–1.466) A1B 1.177 (0.832–1.723) 1.315 (0.926–1.961) 1.411 (1.001–2.078)

National 1.001 (0.708–1.466) A2 1.118 (0.798–1.640) 1.258 (0.894–1.863) 1.412 (1.016–2.093)

National 1.001 (0.708–1.466) B1 1.149 (0.814–1.702) 1.222 (0.870–1.813) 1.333 (0.942–2.003)

Nuevo León 1.683 (1.141–2.589) A1B 2.092 (1.427–3.208) 2.296 (1.555–3.510) 2.539 (1.757–3.874)

Querétaro 0.042 (0.014–0.138) A1B 0.056 (0.018–0.179) 0.067 (0.022–0.227) 0.082 (0.026–0.278)

Veracruz 2.630 (1.801–3.961) A1B 3.358 (2.292–5.067) 3.388 (2.653–5.901) 4.470 (3.104–6.836)

Nuevo León 1.683 (1.141–2.589) A2 2.001 (1.360–3.082) 2.240 (1.520–3.430) 2.654 (1.801–4.043)

Querétaro 0.042 (0.014–0.138) A2 0.053 (0.017–0.181) 0.067 (0.020–0.223) 0.085 (0.026–0.274)

Veracruz 2.630 (1.801–3.961) A2 3.005 (2.067–4.568) 3.377 (2.556–5.731) 4.289 (2.934–6.578)

Nuevo León 1.683 (1.141–2.589) B1 1.950 (1.330–2.997) 2.248 (1.539–3.399) 2.392 (1.617–3.601)

Querétaro 0.042 (0.014–0.138) B1 0.056 (0.018–0.200) 0.062 (0.194–0.202) 0.072 (0.023–0.251)

Veracruz 2.630 (1.801–3.961) B1 3.250 (2.235–4.892) 3.522 (2.399–5.363) 4.216 (2.823–6.345)

The values for each climate change scenario represent the difference in mean annual dengue incidence (expressed in cases/100,000 people) relative to the 1970–1999
baseline scenario. Confidence intervals were generated with 5,000 Monte Carlo repetitions.
doi:10.1371/journal.pntd.0002503.t002
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Figure 3. Changes in annual dengue incidence under climate change. The figure shows the GAM-estimated 1970–1999 average annual
dengue incidence (cases/100,000 people) across Mexico for the baseline scenario (top), and the estimated difference in mean annual dengue
incidence relative to that baseline (cases/100,000 people) by 2030, 2050, and 2080 under the A1B, A2, and B1 climate change scenarios.
doi:10.1371/journal.pntd.0002503.g003
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store water, and mosquitoes could then breed in this stored water.

However, paradoxically they showed that people using rainwater

harvesting had the lowest adjusted risk, and one would expect

these people to store most water. It may be that in Mexico people

reliant on piped water have intermittent water delivery making

water storage necessary, hence providing mosquito breeding sites.

The relationship between water supply and dengue risk is not

simple and may differ from one locality to another.

We project an increase of up to ,40% in dengue incidence in

Mexico by 2080 due to climate change, holding the other driving

factors constant. These estimations were computed considering

the projected changes in monthly mean temperature and preci-

pitation. Downscaled projections on the intensity and variability

of rainy events in Mexico are, to our knowledge, currently

unavailable at this point in time.

Based on the number of cases reported each year in the dataset,

this would equate to about 7,000 extra cases reported each year.

However, actual excess disease burden will be greater than this

value would suggest. Previous research has shown that for every

official dengue report included in surveillance, there are 10—27

cases unreported [44,45]. Consequently, the real increase may be

of the order of 70,000 to 189,000 extra cases per year. In addition,

there may be many more asymptomatic infections. There is an

even bigger concern in that this increase in infections, both

symptomatic and asymptomatic may increase the incidence of

the more severe forms of dengue. Previous research in the field

has demonstrated that secondary infection with a new serotype

increases the risk of severe dengue (see for example [3,46,47]).

Therefore, if dengue incidence increases under climate change, the

severe-dengue:dengue ratio may potentially increase.

Although our projections suggest that dengue incidence may

increase in the long run, they have been computed to show the

potential impact of climate change on dengue incidence whilst

holding the other driving forces constant. Therefore, the projected

increasing trends in dengue incidence may be different in the

presence of adaptation strategies (e.g. changes in water storage

technologies, as well as water supply practices and systems) to

alleviate the adverse effects of climate change. The assessment

of this hypothesis is beyond the scope of this study.

In conclusion, we have reported on the association between

dengue incidence in Mexico and climate variables using one of the

longest and more spatially diverse dengue and climate datasets yet

assembled. We argue that our results provide a much improved

empirical model of the relationship between the dengue and

climate than has been presented to date, because of the much

longer data set and the use of GAM regression to better model

the nonlinear nature of the relationships. Such an improved model

is critical to help make better estimations of the impact of climate

change on dengue into the future. Consequently, we further argue

that this dataset can be used to draw conclusions about the

relationship between dengue and weather regions with similar

climatic and socioeconomic features. We have estimated the

impact that future climate change will increase dengue incidence

by about 40%, but that the proportional increase in severe dengue

forms may be greater.

Supporting Information

Figure S1 Observed vs. GAM-estimated mean monthly dengue

incidence. The figure shows a comparison between the observed

and GAM-estimated mean monthly dengue incidence across

Mexico during the whole year (upper), wet season (middle), and

dry season (lower). The wet season occurs between November–

April, and the dry season between May–Oct. Incidence is

expressed in cases/100,000 people.

(TIFF)

Table S1 Model estimates using different representations of

long-term and seasonal trends. Values in bold font were significant

at the 0.001 level. The original model is as in Equation 1. Model 2

replaces the smooth variable of time (Equation 1) with categorical

variables for calendar year and month. Model 3 uses categorical

variables for calendar year and season. Model 4 includes a

categorical variable for calendar year and a sinusoidal term for

season. The sinusoidal term can be expressed as sin(26p6time/

12)+cos(26p6time/12), where time is an index variable 1,…,n.

Model 5 includes a linear trend and a sinusoidal function identical

to that for Model 4.

(DOC)

Table S2 Province-specific GAM-estimated average annual

dengue incidence (per 100,000 people) under climate change.

The national average annual values are included as a reference.

Confidence intervals were generated with 5,000 Monte Carlo

repetitions.

(DOC)
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Cambio Climático Regionalizados (SIECCRe), Mexico. Available: http://

zimbra.ine.gob.mx/escenarios/. Accessed 20 September 2012.

31. R Development Core Team (2010) R: A Language and Environment for

Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

32. Johnston J, DiNardo J (1997) Econometric Methods. Singapore: McGraw-Hill

International Editions. 437 p.

33. Cameron AC, Trivedi PK (1990) Regression-based tests for overdispersion in the

Poisson model. J Econom 46: 347–364.

34. Wooldridge JM (2002) Econometric Analysis of Cross Section and Panel Data.

London: MIT Press. 752 p.

35. Keele LJ (2008) Semiparametric regression for the social sciences. Chichester:

Wiley & Sons. 230 p.

36. Magaña V, Caetano E (2007) Pronóstico climático estacional regionalizado

para la República Mexicana como elemento para la reducción de riesgo, para

la identificación de opciones de adaptación al cambio climático y para la
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