
Non-peptidic Cruzain Inhibitors with Trypanocidal
Activity Discovered by Virtual Screening and In Vitro
Assay
Helton J. Wiggers1,2, Josmar R. Rocha2, William B. Fernandes2,3, Renata Sesti-Costa4, Zumira A. Carneiro4,
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Abstract

A multi-step cascade strategy using integrated ligand- and target-based virtual screening methods was developed to select
a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to
23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (Ki) in the low micromolar range (3–
60 mM) acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by
determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a
validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian
homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to
metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar
range (4–80 mM), yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their
effect on cell proliferation. In order to select the most promising enzyme inhibitors retaining trypanocidal activity for
structure-activity relationship (SAR) studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells.
Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was
established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite
inhibition activities. The IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ
strain was found to be 10.660.1 mM, tenfold lower than that obtained for benznidazole, which was taken as positive control.
In addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a
ligand efficiency (LE) of 0.33 kcal mol21 atom21 (compound Nequimed176) is highlighted as a novel non-peptidic, non-
covalent cruzain inhibitor as a trypanocidal agent candidate for optimization.
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Introduction

Chagas disease, widespread in Latin America, is caused by the

kinetoplastid protozoan parasite Trypanosoma cruzi. Despite efforts

to reduce the transmission of the parasite by controlling the

hematophagous triatomine insect vector, the World Health

Organization estimates that 10 million people are infected worldwide,

with another 25 million at risk. Most cases are in Latin America,

where Chagas disease is endemic, but it is also found in Canada,

the United States, Europe (mainly in Spain and Portugal), Japan

and Australia [1–3].

T. cruzi’s complex life cycle involves two replicative forms: the

epimastigote, in the gut of the insect vector, and the amastigote, an

intracellular form in the infected mammal. The two infective non-

replicative forms are the metacyclic trypomastigote in the insect

vector and the bloodstream trypomastigote released from infected

cells into the blood of the mammal [4].

Chagas disease has an acute phase and a chronic latent phase.

The acute phase, which occurs shortly after infection, lasts for a

few weeks or months, whereas the chronic phase develops over

many years. The acute phase may not be noticed because it is

symptom-free or exhibits only mild symptoms that are not unique
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to Chagas disease. These can include fever, fatigue, body aches,

headache, and rash, loss of appetite, diarrhea and vomiting.

Chronic phase symptoms appear between 10 and 20 years after

infection and affect the heart, nervous and digestive systems.

The treatment of Chagas disease involves the front-line drugs

nifurtimox and benznidazole. These two old drugs are effective at

curing the infection mostly in the acute phase, with successful cure

up to 80%, but are almost ineffective in chronically infected

patients [5]. Moreover, due to its collateral effects nifurtimox is no

longer available in most Latin American countries. In addition to

the severe side effects of the available chemotherapy, drug-

resistance has been observed in some trypanosome strains. Thus,

the discovery of new, safer and more effective drugs to treat

Chagas disease is of utmost importance.

Cruzain (a recombinant form of cruzipain, EC 3.4.22.51) has

excellent pre-clinical validation evidence as a druggable target.

Cruzain belongs to the family of cysteine proteases (papain-like

enzymes known as clan CA) and is closely related to cathepsins L

and S, which are also associated with other pathologies in humans

[6]. It is the major cysteine protease in T. cruzi and is essential for

the development and survival of the parasite within the host cells.

Numerous protease inhibitors with different scaffolds and catalytic

mechanisms show activity against the parasite in culture and

animal models of the disease [7]. Clan CA cysteine proteases are

effectively inhibited by several classes of peptide inhibitors

including transition state-based, reversible and irreversible inhib-

itors [8]. Examples of reversible transition state-based inhibitors

are peptide aldehydes, a-diketones, a-ketoesters, a-ketoamides and

a-ketoacids [9]. Clan CA proteases are also irreversibly inhibited

by peptidyldiazomethyl ketones, fluoromethyl ketones, peptide

epoxides (E-64, E-64-c, E-64-d) and vinyl sulfones [10]. Recently,

non-covalent inhibitors have been discovered through high-

throughput screening (HTS) platforms and, despite their lower

potency relative to previously reported covalent compounds, they

represent important breakthroughs in the development of non-

peptidic compounds with drug-like features [11,12].

A promising molecular class acting with antiparasitic activity

can be found in vinyl sulfones. In pre-clinical trials, the inhibitor

K11777 (Figure 1A) has been shown to be non-mutagenic, well

tolerated, to have an acceptable pharmacokinetic profile and

demonstrated efficacy in models of acute and chronic Chagas

disease both in mice and dogs [13]. Additional studies of vinyl

sulfone compounds have led to the identification of an arginine

variant of K11777, named WRR-483 (Figure 1B) with remarkable

biological properties [14].

The aim of this study was to identify new molecular classes of

cruzain inhibitors by focusing on non-peptidic non-covalent

ligands. To this end, we have carried out virtual screening of the

ZINC Database [15], a free database of commercially-available

compounds for virtual screening, utilizing ligand- and target-based

virtual screening methods [16,17], followed by enzymatic assays,

X-ray crystallography and SAR studies of the most promising hits.

Of nine cruzain inhibitors, five show trypanocidal activity against

the trypomastigote infective form of the Tulahuen lacZ strain. We

also expect that a newly identified fragment of the 2-acetami-

dothiophene-3-carboxamide class can advance the search for new

non-covalent cruzain inhibitors.

Methods

Computational methods
A variety of methods are available to virtually screen small

organic compound databases. A multi-step cascade strategy using

integrated ligand- and target-based virtual screening methods was

applied as illustrated in Figure 2.

Ligand-based methods. FILTER (v2.0.2): The FILTER

program (OpenEye Scientific Software) [18] was used to filter ca.

8.5 million chemical structures in the ZINC version 8.0 database.

This molecular filtering tool uses a combination of physical

property calculations and functional group properties to assess

libraries and ultimately remove non drug/lead-like compounds.

The default drug-like parameter settings were modified in order to

accommodate known cruzain inhibitors. Parameters modified

were: ?? molecular weight (minimum value = 300 Da, maximum

value = 700 Da), number of heavy atoms (15–35 atoms), number

of ring systems (0–5), number of functional groups (0–18), number

of connected unbranched non-ring atoms (0–6), number of

carbons (7–45), number of heteroatoms (2–20), halide fraction

(0–6), number of rotatable bonds (2–20), number of rigid bonds

(0–35), number of Lipinski violations 2. Predicted known

aggregators and compounds of moderate to low calculated

solubility were excluded.

OMEGA (v2.0.2): Compounds that passed through FILTER

were assembled into a conformer library using the OMEGA

program [19–21]. The algorithm implemented in OMEGA dissects

molecules into fragments and reassembles them to generate many

possible conformations, then submits each conformer to a

simplified energy evaluation. Next, all conformers below a defined

energy threshold are compared and those falling within a certain

root mean square deviation of atomic coordinates (RMSD) are

clustered into a single representative group. Default parameters

were used with the following exceptions: (1) ewindow (a parameter

used to discard high-energy conformations), set to 25.0 kcal mol21;

(2) maxconfs (maximum number of conformations to be generated),

set to 500 (default = 400). This library of conformers was employed

as input to the ROCS and FRED programs.

ROCS (v2.4.1): ROCS (Rapid Overlay of Chemical Structures,

OpenEye) uses a shape-based superposition method in which

molecules are aligned by maximizing the overlap volume between

a reference structure (the query molecule) and every conformer of

the molecules contained in the database. The ligands K11777

(D1R, PDB ID 2OZ2) and T10 (PDB ID 1ME4) in co-crystallized

conformations retrieved from X-ray structures deposited in the

Protein Data Bank, were used as query molecules. The degree of

structural similarity was calculated using ComboScore, the sum of

the Shape Tanimoto and the Scaled Color values. This choice was

made based on previous findings where this metric showed good

performance in retrieving cruzain inhibitors from a dataset

composed of active and inactive compounds [22–25].

Author Summary

Chagas disease (American trypanosomiasis) is a parasitic
infection that kills millions of mostly poverty-stricken
people in Latin America. In recent years it has also spread
to nonendemic countries – the United States, Canada,
Europe, Australia and Japan – as a result of immigration.
The only available drugs for its treatment were introduced
more than forty years ago, have low efficacy, and cause
various severe side effects. This dire public health situation
has prompted us to search for new small molecules to act
as drug candidates to treat Chagas disease. The T. cruzi
enzyme cruzain, a key biological catalyst used by the
protozoan to digest host proteins, is a validated drug
target for Chagas disease. By combining in silico molecular
design, X-ray crystallography and biological screening, we
found a new class of non-covalent small molecules that
inhibit cruzain in low micromolar concentrations.

New Non-peptidic Cruzain Inhibitors
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HQSAR: A Quantitative Structure Activity Relationships Based

on Molecular Hologram model had been previously developed

and validated [24]. Since pKi value calculations are fast and the

dataset is independent of conformation and alignments, this

HQSAR model was used in a prospective way in order to

prioritize compounds for in vitro assays.

Target-based methods. The 3D structure of cruzain (PDB

ID 1ME4) used for docking was prepared with the Biopolymer

structure preparation module from Sybyl v8.0 (Tripos Interna-

tional). Ligand and water molecules were subtracted and all

missing hydrogen atoms were added to the protein structure. The

residues belonging to the catalytic triad Cys25 and His159 were set

as uncharged and the azo-hydrogen of His159 was kept on the

delta nitrogen, since structural data show the epsilon nitrogen as a

possible hydrogen bond acceptor from the hydroxyl group of the

a-hydroxy-ketone ligand. The prepared structure was used as the

initial state for molecular docking in all docking programs.

FRED (v2.2.5) [26]: Default docking parameters were used with

the following exceptions: inner and outer contour maps were

disabled, so that the van der Waals radii of active site atoms and

box limits were taken as thresholds for docking. The box was

added to encompass all residues within 5 Å from the ligand

coordinates to represent the site for docking. Consensus scoring,

with PLP, chemgauss3 and oechemscore scoring functions were

enabled during selection of the pose and, along with all remaining

available functions (shapegauss, chemgauss2, chemscore, screen-

score and zapbind) were also used to score the selected pose.

Predicted binding energy for each of these scoring functions was

used in the analysis. The Gly66 Na (H-bond donor) and Leu67

side chain (hydrophobic positional) were set as interaction

constraints in order to achieve a RMSD ,2 Å in the re-docking

experiment.

Glide (v4.5) [27,28]: As input for the program Glide

(Schrödinger), the receptor grid generation was generated within

a grid box of 30630630 Å3, centered on the complexed ligand

coordinates. Gly66 Na (H-bond donor) and Leu67 side chain

(hydrophobic positional) were set as interaction constraints; all

remaining parameters for docking were kept in the default mode.

The extra precision scoring function (Glide XP) was used to score

the docked compounds. These inputs were sufficient to predict a

crystallographic pose of the complexed ligand with RMSD ,2 Å

in the re-docking experiment

Biochemical assays
Enzyme assays. Recombinant cruzain enzyme was ex-

pressed and purified as previously described [29]. The activity of

the cruzain enzyme was measured and quantified through active-

site titration with the irreversible inhibitor E-64, as described

previously [30]. Cathepsin L enzyme and all reagents used for

buffer preparation were purchased from Sigma-Aldrich (St. Louis,

MO, USA). The compounds screened against the enzymes were

purchased from Enamine (Kiev, Ukraine), Chemdiv (San Diego,

CA, USA), Asinex (Moscow, Russia) and IBScreen (Moscow,

Russia) and had more than 95%purity, according to these

suppliers. All experiments were carried out with freshly made

solutions.

The activity of cruzain was measured in 100 mM phosphate

buffer, 100 mM NaCl, 10 mM EDTA, DMSO (5.0% v/v), Triton

Figure 2. A scheme of the multi-step virtual screening protocol used for the identification of cruzain inhibitors.
doi:10.1371/journal.pntd.0002370.g002

Figure 1. 2D structural representation of (A) K11777 and (B) WRR-483 inhibitors.
doi:10.1371/journal.pntd.0002370.g001
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X-100 (0.01% v/v) and 5.0 mM DTT at pH 6.3. The activity of

cathepsin L was measured in 100 mM sodium acetate buffer,

100 mM NaCl, 10 mM EDTA, DMSO (5.0% v/v), Triton X-100

(0.01% v/v) and 5.0 mM DTT at pH 5.5. Both assays were

carried out with 2 nM of the respective enzymes and 2 mM of the

substrate Z-FR-MCA.

IC50 determination. IC50 measurements were carried out by

incubating the enzyme with the buffer containing DTT for

activation of the cruzain for 5 minutes, followed by the addition of

inhibitors in concentrations varying from 150 mM to 0.15 mM

with additional 5 minutes incubation. The reaction started by

the addition of the substrate Z-FR-MCA was monitored by

recording the emission at wavelength 460 nm while exciting at

360 nm. Fluorescence was measured using a Synergy HT fluorim-

eter microplate reader (Biotek). The percentage of inhibition was

calculated according to following equation:

% of inhibition~100 1{
vi

v0

� �

where vi and v0 are the initial velocities determined in presence and

absence of inhibitors, respectively. The activity of enzyme in the

presence of inhibitors was measured in 11 different concentrations

in order to obtain the dose-response curves, which were analyzed

using the Origin 7.0 program to determine the IC50 values. All

experiments were repeated at least in duplicate.

Affinity constant determination. The Michaelis-Menten

curves were obtained for affinity constant (Ki) determinations. The

buffer solutions used for cruzain and cathepsin-L enzymes were

the same as for the activity assays, with the exception that substrate

concentration was changed from 0.1 to 10 mM.

The Michaelis-Menten curves were determined in the absence

and presence of 30, 50 and 70 mM respectively of each inhibitor.

The enzymes were incubated for 5 minutes with buffer containing

DTT followed by 5 minutes incubation with inhibitors. The

reaction was started and monitored as described above. The

mechanisms of inhibition and Ki values were determined using

the kinetic module of SigmaPlot 10.0 by adjusting the velocities into

the competitive, non-competitive and uncompetitive modes [31].

All experiments were done at least in duplicate.

Crystal structure of cruzain co-complexed with

compound Neq176. Recombinant cruzain was expressed and

purified in a modified version as described recently by Lee et al.

2012 [32]. The 0.5 mg mL21 solution of procruzain (in 100 mM

sodium acetate, 10 mM EDTA and 300 mM NaCl, at pH 5.2)

was activated at 37uC for 3.5 hours with 5 mM DTT. After

activation, cruzain was immediately inhibited with the covalent

reversible inhibitor methyl methanethiosulfonate (MMTS) to a

final concentration of 1 mM to prevent self-degradation of the

protein. The protein was dialyzed in 50 mM Tris, 300 mM NaCl

pH 7.5, and concentrated to 3 mg mL21 for purification using

preparative scale Superdex 200 (10/300), size exclusion column

(GE Healthcare Life Sciences) and the same buffer (50 mM Tris,

300 mM NaCl pH 7.5), with flow 0.5 ml min21. The fractions

with the pure MMTS-inhibited cruzain (highest peak at 34 min)

were collected, concentrated to 8 mg mL21, and buffer-ex-

changed in 2 mM Bis-Tris pH 5.8. MMTS was reversibly

removed with 5 mM of DTT. The inhibitor Neq176, the one

with higher ligand efficiency, was added until the final concen-

tration of 4.2 mM (1.5% of DMSO) was attained with the final

ratio of 1:8.5 (protein/inhibitor). The solution was stirred for

1.5 hours at 4uC until protein inhibition was complete. The

protein was then concentrated to 11 mg mL21. Hanging drops

encompassing 192 crystallographic conditions (Joint Center

Structure Genomics screens III–IV, Qiagen) were configured

using a Mosquito Nanoliter Dropsetter (TTP Labtech). Each

condition was screened in 1:1 and 2:1 ratio between protein

solution and mother liquor. After one week of incubation at 20uC,

crystals were obtained in 0.1 M Bicine pH 9.0, 1.6 M ammonium

sulfate (100 nL protein solution):(100 nL mother liquor) drops.

Crystals were then reproduced under the same conditions in 2 mL

hanging drops. Before data collection, crystals were immersed in a

cryoprotectant solution composed of 25% ethylene glycol in

mother liquor, and flash cooled in liquid nitrogen.

Diffraction was measured at beamline 8.3.1 of the Advanced

Light Source, (ALS, Lawrence Berkeley Lab, CA), using ELVES

[33] to determine the data collection strategy. The best crystal of

the series diffracted at 2.62 Å resolution. Reflections were indexed

and integrated using Mosflm [34] and scaled using SCALA [35].

The initial phasing model without waters, ligands, and heteroat-

oms used for molecular replacement in Phaser [36] was prepared

from the model (PDB entry 3KKU). Phenix Refine [37] and Coot

[38] were used for all steps of structure refinement and model

building. The model was positioned initially by rigid body

refinement and subjected to one round of simulated annealing to

reduce model bias with torsional non-crystallographic symmetry,

followed by multiple cycles of individual coordinate refinement

and Bfactor refinement. B-factors were refined isotropically and the

protein was subjected to TLS refinement.

The geometry of the structure was assessed using Molprobity

[39]. There were no outliers in the Ramachandran statistics, with

97.3% of all residues in favored regions. The data collection and

refinement statistics can be found in Table 1.

In vitro evaluation of trypanocidal activity. In vitro

trypanocidal activity of the compounds was evaluated against

amastigote forms of Tulahuen strain that was genetically modified

to express b-galactosidase gene from E. coli (lacZ). A monkey

kidney cell strain (LLC-MK2 - ATCC) was resuspended in RPMI

medium without phenol red (Gibco-BRL Life Technologies,

Grand Island, NY) containing 10% fetal bovine serum (Life

Technologies Inc., Bethesda, MD) and antibiotics (Sigma Chem-

ical Co., St. Louis) at 26103 cells/well and were cultured in 96-

well plates for 24 h. The cells were infected with 16104

trypomastigote forms of T. cruzi Tulahuen strain, and after 24 h

compounds were added with different concentrations (250, 125,

62.5, 31.25, 15.6, 7.8, 3.9 and 1.95 mM). After 4 days of culture,

50 mL of PBS containing 0.5% of Triton X-100 and 100 mM

Chlorophenol Red-b-D-galactoside (CPRG - Sigma) were added.

Plates were incubated at 37uC for 4 h and absorbance was read at

570 nm. Benznidazole (N-benzyl-2-nitro-1-imidazolacetamide), in

the same concentrations as above was used as a reference

trypanocidal drug (positive control) [40,41].

Cytotoxicity assays. Mammalian cell cytotoxicity was eval-

uated using the protocol previously reported [42]. Spleen cells

from C57BL/6 mice were isolated by mechanical dissociation,

followed by incubation for 5 min with red blood cell lysis buffer

(one part of 0.17 M Tris–HCl [pH 7.5] and nine parts of 0.16 M

ammonium chloride). The cells were washed and suspended in

RPMI 1640 medium (Gibco-BRL Life Technologies, Grand

Island, NY) supplemented with 10% fetal bovine serum (Life

Technologies Inc., Bethesda, MD) and antibiotics (Sigma). The

cell suspension was cultured in flat-bottom 96-well plates at 56105

cells per well with different concentrations of the tested

compounds and incubated at 37uC in a humidified atmosphere

of 5% CO2 for 24 h. Tween 20 at 0.5% was used as cell

death positive control. To analyze cytotoxicity, cells were

harvested, incubated with 10 mg mL21 propidium iodide (Sigma)

and after 15 min data were acquired using a FACSCantoII

New Non-peptidic Cruzain Inhibitors
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(Becton-Dickinson Immunocytometry System Inc., San Jose, CA,

USA). Data analysis was performed using FlowJo software

(Ashland, OR, USA). The range of concentrations used for

assaying cytotoxicity was 250, 125, 62.5, 31.25, 15.6, 7.8, 3.9, and

1.95 (mM).

Ethics statement
The Ethics Committee on Animal Experimentation of the Faculty

of Medicine of Ribeirão Preto – University of Sao Paulo approved

the cytotoxicity assays (approval no. 076/2010). This Committee

adheres to Conselho Nacional de Controle de Experimentação

Animal – CONCEA, created by Brazilian Law number 11794 of 8

October 2008. Assays were run according to the guidelines of the

Ministry of Science, Technology and Innovation of Brazil.

Results and Discussion

The compound collection enrichment process began by the

filtering ca. 8.5 million structures from the ZINC Database,

resulting in a sub-library containing ca. 3.5 million structures.

Since the sub-library still encompassed a large number of

structures, two fast virtual screening methods based on ligand

and receptor were employed in order to enrich it. The agreement

between ligand- and target-based virtual screening methods was

then used as the criterion for the selection of an enriched, focused

sub-library. Based on the predicted Tanimoto similarity metric

and docking score of known inhibitors, a set of thresholds was

established for the selection of untested compounds. The values

adopted as thresholds and the numbers of compounds resulting

from this analysis are summarized in Table 2.

The analysis of cruzain-inhibitor complexes available in the

PDB database reveals the importance of residues Gly66 and

Leu67, located between subsites S2 and S3, to the molecular

recognition of ligands. The amidic nitrogen of Gly66 along with

the amidic oxygen of Asp158 frequently interact via hydrogen

bonding with amides from known cruzain inhibitors. Furthermore,

Leu67 is able to accommodate hydrophobic groups that occupy

the S2 portion of the active site, thus contributing to adequate

shape-matching of small molecules in this cleft. Hence, we have

used these important interactions to set Gly66 and Leu67 as

constraints for pose selection in all docking experiments. Based on

these constraints and established thresholds, the molecular docking

using the FRED program performed well at discriminating

between active and inactive compounds when using the SHAPE-

GAUSS score function. Although the binding energy predicted by

the molecular docking programs is not rigorously calculated, it was

used as preliminary filter for lessening the number of molecules in

the compound library.

As can be seen in Table 2, the thresholds established from

available information of known ligands and employed as criteria

for selecting compounds in the virtual screening (VS) experiments

resulted in a significant enrichment of the compound collection.

Since compounds retrieved according to the metric threshold

adopted for each program may differ, we used this lack of

agreement for the removal of more compounds from the enriched

collection. Only those compounds retrieved by both programs that

had a docking score or similarity index above the defined

threshold were selected to join the smaller final sub-collection.

Thus, the integration of target- and ligand-based methods resulted

in the selection of a series of compounds with high potential to

inhibit the enzyme cruzain and with diverse chemical features to

allow the identification of new scaffolds to target this enzyme.

The reduction of the number of molecules in the virtual

library allowed us to apply the consensus score strategy including

pKi values calculated by the HQSAR (Hologram Quantitative

Structure Activity Relationship) model and Glide Extra Precision

scoring function (Glide XP), which requires a higher computa-

tional cost compared to the ROCS and FRED programs.

Combined ranking was calculated using the scaled rank-by-

number approach as described in [25]; the top 5% compounds

were submitted to visual inspection.

The criteria used for selection of compounds based on

visual inspection were: (i) the occupation of the site, mainly in

subsites S1, S2 and S3, (ii) hydrogen bonding, emphasizing the

Gly66 H-bonding interaction set up as constraint in molecular

Table 1. Data collection and refinement statistics.

Data collection

Wavelength (Å) 1.116

Space group P 43 21 2

No. of molecules in ASU 5

Cell dimensions (Å)

a, b, c (Å) 138.72 138.72 163.58

a, b, c (u) 90 90 90

Rmerge (%) 2.6 (33.5)a

Completeness (%) 99.5 (98.4)a

I/s(I) 15.9 (2.1)a

Redundancy 2.6 (2.0)a

Refinement

Resolution (Å) 39.23 - 2.62 (2.71 - 2.62)a

No. of reflections (test set) 48282 (1954)a

Rwork/Rfree (%) 18.99/23.89

No. atoms

Proteinb 7960

Ligandb 54

Water 109

B-factors (Å2)

Protein 33.50

Ligand 84.00

Water 26.30

R.m.s. deviations

Bond lengths (Å) 0.008

Bond angle (u) 1.08

aValues in parenthesis represents the highest resolution shells.
bCalculated for both molecules in the asymmetric units.
doi:10.1371/journal.pntd.0002370.t001

Table 2. Thresholds for FRED and ROCS adopted for initial
enrichment of compound library and number of compounds
resulting from each VS experiment.

Method (scoring function
/metric) Threshold

Number of compounds
retrieved

FRED (SHAPEGAUSS) 2470 16151

ROCS query 1 (ComboScore) 0.71 9090

ROCS query 2 (ComboScore) 0.68 6159

doi:10.1371/journal.pntd.0002370.t002
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docking and (iii) chemical structure diversity, where we prioritized

compounds with similar shape to known inhibitors. Figure 3A

shows the binding mode of K11777 inhibitor to the enzyme

cruzain in the crystal structure conformation, which was also used

as reference in the 3D similarity search; Figure 3B to Figure 3D

are the docking poses predicted by Glide XP for three compounds

selected for in vitro assays. As can be seen, the occupation of the

active site by these compounds is similar to that of the co-

crystalized inhibitor, appropriately filling the focused pockets and

fulfilling the requirements imposed through H-bonding constraint.

[43]

After visual inspection, 23 compounds were selected for in vitro

assays against the enzyme cruzain. First, the activity of compounds

was determined through measurement of IC50 values in the

presence of Triton X-100 (0.01% v/v) in order to avoid artifactual

aggregate-based inhibition. Afterwards, those compounds that

showed activities had their mechanism of enzyme inhibition and

affinity constants determined. Dose-response curves were used for

measuring the IC50 values and Michaelis-Menten curves in the

presence and absence of inhibitors in three different concentra-

tions, which allowed the determination of the mechanism of

inhibition and affinity constants. Since the identified active com-

pounds showed similar curves, representative curves are shown in

Figure 4A and 4B for Neq30 of Table S1 (see Supporting

Information). A similar approach for the discovery of cruzain

inhibitors is described elsewhere by Ferreira et al. (see reference

[44]). Using the docking strategy the authors were able to find one

inhibitor out of 17 screened compounds that displayed a Ki of

32 mM, via a competitive mechanism of cruzain inhibition. Our

consensus ligand-based virtual screening (LBVS) and target-based

virtual screening (TBVS) approaches also using the Lineweaver-

Burk plots in a similar fashion confirmed the competitive mode of

action of 12 out of 23 compounds whose average IC50 value is

40.3 mM (with 3 compounds in the range of 3.5 mM) – see Table S1.

The dose-response plot in Figure 4A shows the inflexion of the

semi-log curve fit with a pIC50 of 5.12 mM, which corresponds to

the potency exhibited by Neq30 listed in Table S1. As shown in

Figure 4B the increase in the concentration of inhibitor causes a

decrease in the affinity of substrate but no change in the maximum

velocity, thus indicating that the inhibitor competes for the same

site as substrate Z-FR-MCA.

Cruzain shares high similarity with the mammalian homolog

cathepsin L. Thus, it is of interest to evaluate selectivity [45] of

selected compounds on both these enzymes, since promising

trypanocidal scaffolds that act on cruzain could also be relevant to

target cathepsin L, which has been studied as target for the

treatment of cancer. Therefore, these compounds were tested

against both enzymes. The 2D molecular structure representations

of assayed compounds, IC50 and Ki values are shown in Table S1

of the Supporting Information.

The multi-step virtual screening protocol designed to identify

cruzain inhibitors was validated by the discovery of 12 hits with

affinity to the enzymes ranging from 3.7 to 89 mM among only 23

compounds assayed in the in vitro enzymatic assay. Recent studies

report the search for cruzain inhibitors in the ZINC database

using virtual screening methods. Ferreira et al. selected 17

Figure 3. (A) Structure of the co-crystallized cruzain inhibitor K11777 and (B–D) examples of complex structures predicted by our
molecular docking (Glide XP). Figure prepared using CCP4mg software [43].
doi:10.1371/journal.pntd.0002370.g003
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compounds using molecular docking and found one active

compound with an IC50 of 77 mM, which was further optimized

by SAR to yield an IC50 of 200 nM [44]. Using a ligand-based

virtual screening approach, Malvezzi et al. found one compound

with low micromolar potency among 19 selected by a pharma-

cophore model [46]. By comparison, the number of hits we found

using virtual screening methods was higher, which can be

attributed to the integrated TBVS and LBVS consensual strategy.

Consensus strategies and multi-step cascade protocols have been

shown to achieve higher hit-rates when compared to LBVS or

TBVS used separately [25,47–49]. In order to confirm the activity

of the scaffold found we carried out an initial SAR using the

approach called SAR by catalog. This is a particularly powerful

(and generally accessible) approach to the initial development of

fragments [50–52], which assists in progressing through scaffolds

with different R-groups.

The establishment of peptide SAR is often the first step in defining

a critical, minimum sequence SAR for modulation of a particular

target. The convenient and rapid synthesis of peptide analogs

facilitates the identification of peptides having attractive biological

properties. However, peptidomimetics possess well-recognized

burdens as potential drugs, including susceptibility to enzymatic or

chemical hydrolysis of peptide bonds and the metabolism of amino

acid side chains, which influences the investigator in favor of

discovering non-peptidic scaffolds with drug-like properties for

cruzain inhibitors. Therefore, among the most potent compounds,

there are new non-peptidic scaffolds including the compounds

Neq24, Neq25, Neq30 and Neq42, for instance. Thus, before hit

optimization, we evaluated trypanocidal activity of the six most

potent compounds with the aim of selecting the most promising for

molecular optimization. This assay was carried out at a single dose

of 250 mM using the same procedure described above. Figure 5

shows the results for the two active compounds Neq42 and Neq37.

Compound Neq42, which represents a new scaffold for non-

peptidic cruzain inhibitors, was able to kill the T. cruzi parasite and

displayed similar activity to benznidazole, which was used as

positive control in the assays. For this reason, we have chosen this

compound as a reference to investigate its SAR.

Due to the moderate molecular complexity of the compound

Neq42, a structure simplification strategy was adopted for SAR

investigation taking as reference not only its potency but also its

ligand efficiency (LE), a way of normalizing the potency and MW

of a ligand to provide a useful comparison between compounds

with a range of MWs and activities. The higher the LE of a hit, the

better its chance of being optimized to a potent drug-like

compound [53,54].

The structure of Neq42 was resolved into two main scaffolds:

the first containing the 2-acetamidothiophene-3-carboxamide

moiety, and the other the triazole ring moiety substituted in

positions 1 and 2 with the benzyl and piperidine, respectively, as

can be seen in Figure 6. Based on the predicted mode of binding

obtained by molecular docking, a series of structures was selected

from commercial databases to investigate the SAR of this

compound (Figure 6). When the 2-acetamidothiophene-3-carbox-

amidegroup was maintained, the piperidine and benzyl groups

were removed to assess their contribution to the potency. On the

other hand, when the triazole moiety was kept, three substances

were selected by replacing the 2-acetamidothiophene-3-carbox-

amide group to a phenyl group (hydrophobic), a nitrile (which

might covalently bind to the catalytic cysteine) and a cyclic sulfone

(hydrophilic). The 2D structures and biological activity of the

selected compounds are summarized in Figure 6.

The 2-acetamidothiophene-3-carboxamide is probably the one

responsible for the activity presented by compound Neq42. As can

be observed by the comparison between the active and inactive

series shown in Figure 6, molecules lacking this moiety completely

lose their activity against the cruzain enzyme. Nevertheless,

potencies of compounds Neq165, Neq176, Neq177 are still in a

similar order of magnitude as compound Neq42, notwithstanding

a significant MW lowering that results in an increased LE for

the analogs (0.33 kcal mol21 atom21 for compound Neq176).

This observation signals that the piperidine and benzyl groups

give rise only to a minor contribution to the potency, since

removal of both groups (compound Neq176) resulted only in a

slight decrease in potency, but with a significant LE improvement

to 0.33 kcal mol21 atom21. The compound Neq172, which is a

combination derived from compounds Neq38 and Neq42, resulted

in smaller LE and potency, once again evincing the importance of

2-acetamidothiophene-3-carboxamide for the activity. Not only

tailored LEs were substantially increased but also a new non-

Figure 4. (A) Dose-response and (B) Linewaver-Burk curves for Neq30 from Table S1. Non-linear fit method was employed in the analysis.
doi:10.1371/journal.pntd.0002370.g004
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peptidic scaffold, which is an excellent starting point for

optimization, was identified in agreement with the proposed

binding mode shown in Figure 7. [43]

In order to evaluate the mode of binding (MOB) for Neq176,

the crystallographic structure for cruzain-Neq176 complex was

determined to 2.62 Å resolution. The protein crystallized at

P43212 space group with five copies of cruzain in the asymmetric

unit, with the compound Neq176 bound in three of the copies

(chains A, B and C) in a similar mode of binding. The Neq176

binds in the S2 and S3 pockets, with the 2-acetamidothiophene-3-

carboxamide group making two hydrogen bond interactions with

the Na of Gly66 (3.15 Å) and with the alpha oxygen of Asp161

(3.08 Å). The N(2) atom of the inhibitor also makes an important

H-bond interaction with the alpha oxygen of Gly66 (3.09 Å). The

Figure 5. Preliminary trypanocidal activity of compounds Neq42 and Neq37 evaluated against the Tulahuen lacZ strain.
doi:10.1371/journal.pntd.0002370.g005

Figure 6. Molecular structure and cruzain inhibition of compound Neq42 analogs selected for SAR investigation. Molecules drawing
and figure generated with MarvinSketch software (www.chemaxon.com).
doi:10.1371/journal.pntd.0002370.g006

New Non-peptidic Cruzain Inhibitors

PLOS Neglected Tropical Diseases | www.plosntds.org 8 August 2013 | Volume 7 | Issue 8 | e2370



inhibitor is stabilized at the S3 site by the interaction of the N(4)

atom from the 1,2,4-triazole group with the c oxygen of Ser61

(2.67 Å). Crystal structure showing the binding mode (MOB) of

Neq176 with cruzain wild type can be found in Figure 7. Similar

hydrogen bonding pattern of interactions was previously recog-

nized for a covalent inhibitor (PDB entry 3IUT) [55]. Nonetheless,

our X-ray structural data analysis confirm that the fragment

Neq176, albeit within the active site, is not covalently bound to

native cruzain since the carbonyl center group in the thiophene

moiety is 4.20 Å distant from Sc of the Cys25. The coordinates

and structure factors of the protein were deposited in Protein Data

Bank (PDB) with the ID code 4KLB.

An important feature in these compounds is related to the

mechanism of inhibition they disclose, which are competitive and

reversible. The validation of these cruzain enzyme inhibitors,

along with their innovative molecular class pinpoint these

compounds as promising for the development of new trypanocidal

agents. In order to further strengthen the molecular basis of these

findings, active compounds shown in Figure 6 were assayed

against cultures of T. cruzi parasite following the protocol described

above. Results are summarized in Table 3.

As can be seen from Table 3, compound Neq42 analogs

presented trypanocidal activity at micromolar range validating

this molecular class not only as enzyme inhibitors, but also as

trypanocidal agents (pIC50 ca. 3.8 on average for compounds

Neq165, Neq172, Neq176, and Neq177, and 4.9 for compound

Neq42 versus 4.2 for benznidazole). Furthermore, as observed for

the activity against cruzain enzyme, the decoration in the triazole

ring does not significantly contribute to the trypanocidal activity

among the actives. This suggests that major contribution for activity

arises from the 2-acetamidothiophene-3-carboxamide group, which

put forward the idea that triazole replacement might be a crucial

element for designing new compounds with improved potency.

Compounds Neq177 and Neq176 are active cruzain and T. cruzi

inhibitors that are cytotoxic only at concentrations above 250 mM,

whilst compounds Neq42 and Neq172 are cytotoxic at IC50 of 50 and

23 mM, respectively (Table 3). These values were construed by

tailoring down the chemical complexity of compound Neq42, which

yielded the percentage of cell death caused by compounds Neq176

and Neq177 as evaluated against the cultured mouse spleen cells to

dramatically drop and to show a significant decrease in cytotoxicity

values. Thus, although compounds Neq176 and Neq177 are the least

cytotoxic trypanocidal agents toward the studied cells, their potencies

toward T. cruzi decreased along with decreased potencies against

cruzain. Compound Neq42, on the other hand, has the higher

potency in this series against cruzain, paralleling its higher

trypanocidal potency, but with increased cytotoxicity. Nevertheless,

it is noteworthy that the cytotoxicity ratio (IC50(cyto)/IC50)(T. cruzi)

for compound Neq42 and benznidazole is within the same magnitude

range values (5 and 8, respectively), and thus these structure-activity

and-toxicity relationships enlarge lead optimization opportunities.

In addition, it is known that compounds bearing the 2-

acetamidothiophene-3-carboxamide moiety are also found to be

inhibitors of IKKb kinase phosphorylation of IkB, thus being

inhibitors of NF-kB activation [56]. Cruzain knockout with

inhibitors are also lethal for T. cruzi via the signaling factor NF-

kB P65, which is colocalized with cruzain on the cell surface of

the intracellular wild T. cruzi [57]. Hence, we may envisage that

our compounds will be of interest in the search for new drug

candidates acting on inflammatory cardiomyopathy that is a

hallmark on Chagas disease, but acting as non-covalent inhibitors.

Conclusions
Chagas disease is a neglected trypanosomiasis with enormous

social and economic impact in most countries of Latin America. It

is of utmost importance to develop new and more effective drugs

with fewer side effects than the currently available chemotherapy.

Hitherto, significant efforts have been made focusing on cruzain

enzyme as a promising target and compound K11777, a cruzain

inhibitor set to enter clinical studies as a new antichagasic drug.

Here, we successfully used integrated in silico and in vitro

approaches, with X-ray crystallography as an orthogonal tool, to

discover new non-peptidic hits with trypanocidal activity against

cruzain. Thus, we identified new trypanocidal agents that bear the

2-acetamidothiophene-3-carboxamide as the group responsible for

enzyme inhibition and trypanocidal activity. The 2-acetamidothio-

phene-3-carboxamide binds non-covalently to cruzain, does not

violate the rule of five and actually is a fragment with proper

ligand efficiency (0.33 kcal mol21 atom21), with a low molecular

mass (283.3 g mol21) and CLogP of 0.7, properties that illuminate

the way ahead for maneuvering toward a lead-like molecule.

In summary, we present a new hit, 2-acetamidothiophene-3-

carboxamide, that non-covalently inhibits cruzain, has trypanocidal

activity and manageable structure-activity and structure-toxicity

relationships. We anticipate that this compound will advance the

lead optimization process for Chagas disease chemotherapy.

Figure 7. Crystal structure of Neq176 co-crystallized with
cruzain showing the mode of binding (MOB) of the inhibitor
at the catalytic site of chain B with the unbiased mFo-DFc
electron density map shown in cyan. Figure prepared using
CCP4mg software [43].
doi:10.1371/journal.pntd.0002370.g007

Table 3. Trypanocidal activity and cytotoxicity of cruzain
inhibitors evaluated against Tulahuen lacZ strain.

Compounds IC50 (mM) Cytotoxic IC50 (mM)

Bz 64.3612.3 .500

Neq42 10.660.1 49.962.7

Neq177 137614.4 .250

Neq165 153.460.6 N.d.

Neq176 108.3652.2 .250

Neq172 166.1612.9 23.162.7

Bz: benznidazole. N.d., not determined. See text for explanation.
doi:10.1371/journal.pntd.0002370.t003
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Further reading
Detailed information on cruzain EC 3.4.22.51 (also known as

cruzipain) can be found at http://www.brenda-enzymes.org/php/

result_flat.php4?ecno = 3.4.22.51&Suchword = &organism%5B%

5D = Trypanosoma+cruzi&show_tm = 0 and also at https://www.

ebi.ac.uk/chembldb/target/inspect/CHEMBL3563. For Cathep-

sin L, this site is also of interest: https://www.ebi.ac.uk/chembldb/

target/inspect/CHEMBL3837.

Supporting Information

Table S1 2D structure representation, Ki and IC50 of the
compounds assayed against cruzain and cathepsin L
enzymes.
(DOC)
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