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Abstract

Leishmaniasis is a neglected disease produced by the intracellular protozoan parasite Leishmania. In the present study, we
show that LABCG2, a new ATP-binding cassette half-transporter (ABCG subfamily) from Leishmania, is involved in parasite
virulence. Down-regulation of LABCG2 function upon expression of an inactive mutant version of this half-transporter
(LABCG2K/M) is shown to reduce the translocation of short-chain analogues of phosphatidylserine (PS). This dominant-
negative phenotype is specific for the headgroup of the phospholipid, as the movement of phospholipid analogues of
phosphatidylcholine, phosphatidylethanolamine or sphingomyelin is not affected. In addition, promastigotes expressing
LABCG2K/M expose less endogenous PS in the stationary phase than control parasites. Transient exposure of PS at the outer
leaflet of the plasma membrane is known to be one of the mechanisms used by Leishmania to infect macrophages and to
silence their immune response. Stationary phase/metacyclic promastigotes expressing LABCG2K/M are less infective for
macrophages and show decreased pathogenesis in a mouse model of cutaneous leishmaniasis. Thus, mice infected with
parasites expressing LABCG2K/M did not develop any lesion and showed significantly lower inflammation and parasite
burden than mice infected with control parasites. Our results indicate that LABCG2 function is required for the
externalization of PS in Leishmania promastigotes, a process that is involved in the virulence of the parasite.
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Introduction

Leishmaniasis is a neglected disease that is caused by different

species of the protozoan parasite Leishmania [1]. This parasite has a

digenetic life cycle in which it alternates between promastigote and

amastigote stages. Inside the insect (sandfly) vector, non-infective

promastigotes are transformed into infective parasites during

metacyclogenesis. After the host is bitten by the sandfly, an intense

neutrophilic infiltrate into the skin bite sites occurs accompanied

by a significant recruitment of macrophages. Afterwards, Leish-

mania metacyclic promastigotes attach to neutrophils as the initial

host cell, and are taken up by phagocytosis [2]. The uptake of

infected neutrophils by macrophages is a mechanism for ‘‘silent’’

entry of parasites into macrophages, where they differentiate into

the replicative amastigote forms that are responsible for mainte-

nance and propagation of the infection in the phagolysosomal

compartment of the mammal host [3,4].

Phosphatidylserine (PS), a phospholipid (PL) normally asym-

metrically confined on the inner leaflet of the plasma membrane of

eukaryotic cells [5], seems to play a critical role in the infection of

macrophages by Leishmania [6–9]. Indeed, PS exposure on the

outer leaflet of the plasma membrane of apoptotic mammalian

cells [10] constitutes the most central ‘‘eat-me’’ signal known for

macrophages, which also ‘‘silent’’ its activity to avoid an

inflammatory reaction [11]. In a process known as apoptotic

mimicry, surface exposure of PS in Leishmania promastigotes and

amastigotes is required for the infection of new mammalian cells

[6,7] and for down-regulation of the microbicidal activity of

macrophages [8,9,12] by inhibiting their nitric oxide production

and increasing IL-10 synthesis and TGFb1 secretion [8,13]. In

addition, the well-characterized higher infectivity of the stationary

phase promastigotes (metacyclic), as compared to the log phase

promastigotes, is also due to the specific exposure of PS on their

surface [14], among others factors including the lipophosphogly-

can (LPG) or the phosphatidylinositol-anchored surface molecule

gp63 [15]. Interestingly, it has been suggested that these PS-

exposing promastigotes could be genuine apoptotic cells destined

for death [12,16] instead of apoptotosis-mimicking parasites.

Indeed, their presence in the virulent inoculum, in an altruistic

behaviour, provides survival advantages for the viable parasites

and is necessary for progress of the disease [16]. Recently, it has

been demonstrated that PS exposure by intracellular amastigotes
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of L. amazonensis is associated with a modified host inflammatory

response, correlating with parasite infectivity and with clinical

parameters of diffuse cutaneous leishmaniasis [17]. Thus, Leish-

mania parasites able to expose higher amounts of PS, induce a

more severe and persistent human disease [17].

The plasma membrane PL asymmetry in eukaryotic cells is

maintained due to the bidirectional transport of PL (flip-flop),

which involves three protein-mediated activities [18]: i) flippases,

which promote active inward-directed PL migration, mediated by

aminophospholipid translocases (APT); ii) floppases, which are

responsible for the active outward transport of PL from the

cytoplasmic to the exoplasmic leaflet of the membrane, mediated

by various ATP-binding cassette (ABC) transporters; and iii)

scramblases, which are translocases that not require ATP to

equilibrate the PL between the two membrane bilayers. PS

externalization in apoptotic cells has been suggested to be due to i)

a scramblases activity, enhanced by loss of the APT function [19];

and ii) to a higher activity of ABC efflux pumps such as ABCA1

[20]. Additionally, it has been suggested that PS is also delivered to

the surface of lysosomes that fuse with the plasma membrane

during apoptosis [21]. In the case of Leishmania, a decrease in the

active out-to-in PS translocation, thus allowing ATP-independent

PS movement, has also been suggested to be responsible for the

loss of PL asymmetry [14]. However, disruption of the plasma

membrane APT of Leishmania (LdMT) does not lead to an

increased infectivity [22,23]. In addition, although a scramblase

activity has been described in Leishmania, its role in parasite

infectivity remains to be elucidated [24]. The molecular basis of

PS exposure in Leishmania therefore remains unsolved.

Functional ABC transporters consists of two homologous halves,

each of which is composed of a transmembrane domain (TMD),

which is involved in substrate binding and a cytosolic nucleotide

binding domain (NBD), which hydrolyses ATP to provide the

energy required for the transport [25]. The ATP sites are

reconstituted upon dimerization of both NBDs, which pack

together in a head-to-tail configuration to generate two ATP

binding and hydrolysis sites between the conserved Walker A and

B motifs of one NBD and the signature motif of the other [26].

ABC half-transporters with a single NBD therefore require

homo-/heterodimerization to reconstitute the ATP sites. Members

of the ABCA, ABCB and ABCG human subfamilies have been

implicated in PL translocation [18,27]. For example, human

ABCG2 (BCRP/MXR/ABCP), a protein involved in multidrug

resistance in cancer cells [28,29], is responsible for enhanced

exposure of PS at the plasma membrane of ABCG2 overexpress-

ing cells due to increased outward PS transport [30]. Members of

the ABCG subfamily of half-transporters have been identified in

Leishmania [31], and three of these have already been functionally

characterized. Thus, LABCG4 is localized at the plasma

membrane of the parasite and is involved in the translocation of

phosphatidylcholine (PC) analogues; it also confers resistance to

alkyl phospholipids [32]. LABCG6 is also localized at the plasma

membrane and is probably involved in PL trafficking as it reduces

the accumulation of PL analogues of PC, phosphatidylethanol-

amine (PE) and PS [33], and confers resistance to camptothecin

[34], miltefosine and sitamaquine [33]. LABCG5, in contrast, is

not involved in the translocation of PL at the plasma membrane or

drug resistance but participates in salvage of the heme released

after the breakdown of internalized haemoglobin [35]. Addition-

ally, it has been reported that other Leishmania ABC transporters

such as LABCB4 [36], LABCA1 [37] and LABCA2 [38] are

involved in PL translocation.

The aim of our work was to study the functionality of the

transporter LABCG2 from Leishmania, specifically its involvement

in PS translocation and its implication in parasite virulence. The

results show that down-regulation of LABCG2 produces a defect

in the exposure of endogenous PS at the external surface of the

parasite, and that this defect correlates with a significant decrease

in the ability of these parasites to infect mouse peritoneal

macrophages and to produce pathology in a mouse model of

cutaneous leishmaniasis.

Materials and Methods

Materials
3-(4,5-Dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide

(MTT), PMSF (phenylmethylsulfonyl fluoride), DFP (diisopropyl-

fluorophosphate), monoclonal anti a-tubulin, and amphotericin B

were obtained from Sigma Chemical Company (St. Louis, USA).

Anti-histone H2A was courtesy of Dr. Stephen M. Beverley

(Washington University, School of Medicine, St. Louis, Missouri,

USA). Polyclonal anti-GFP antibody was from Rockland Compa-

ny. Mouse monoclonal anti-gp63 was from Life Span BioSciences.

Polyclonal antisera against metacyclic marker protein HASPB was

a kind gift from Dr. Deborah F. Smith (University of York, UK).

The fluorescent analogues 1-palmitoyl-2-[6-(7-nitrobenz-2-

oxa-1,3-diazol-4-yl)amino]hexanoyl-sn-glycero-3-phosphocholine

(NBD-PC), -phosphoethanolamine (NBD-PE), -phosphoserine

(NBD-PS) and 6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino-hexa-

noyl-sphingosine-1 phosphocholine (NBD-sphingomyelin; NBD-

SM) were purchased from Avanti Polar Lipids (Birmingham, AL,

USA). Annexin V-Alexa 488, FM4-64, concanavalin A-Alexa

Red, MitoTracker Deep Red 633, Cell Tracker TM Green and

DAPI were from Molecular Probes (Invitrogen, Carlsbad, CA).

Ro-peptide (Ro09-0198), a tetracyclic peptide antibiotic, was

kindly provided by Dr. Masato Umeda (The Tokyo Metropolitan

Institute of Medical Science, Japan). Papuamide B (Flintbox,

LynseyHuxham), a novel depsipeptide obtained from extracts of

marine sponges, was kindly provided by Dr. Thomas Gunther

Pomorski and Dr. Rosa López (Department of Plan Biology and

Biotechnology, University of Copenhagen, Denmark). Peanut

agglutinin (PNA) and fluorescein-conjugated ricin agglutinin was

purchased from Vector (Burlingame, CA). The plasmids

Author Summary

Leishmania is a protozoan parasite that infects human
macrophages, producing the neglected tropical disease
known as leishmaniasis. As is the case for apoptotic cells,
transient exposure of phosphatidylserine (PS) on the
surface of the parasite is required for macrophage
engulfment and infection. Although the mechanism
involved in this lipid translocation remains unknown,
inhibition of PS exposure could therefore prove to be a
novel way to combat this parasitic disease. Here, we have
identified a new ABC transporter from Leishmania, namely
LABCG2, as a protein involved in this process. The
dominant-negative inhibition of LABCG2 showed that this
transporter is required for the normal exposure of PS on
the outer leaflet of the plasma membrane. This altered
phenotype was subsequently found to be correlated with
a deficient ability to infect mouse peritoneal macrophages.
In addition, studies in a mouse model of cutaneous
leishmaniasis showed that animals infected with parasites
with down-regulated LABCG2 activity did not develop any
lesions. Taken together, these results suggest a role for the
Leishmania LABCG2 transporter in PS exposure, determin-
ing the virulence of the parasite.

Leishmania Infectivity Involves an ABC Transporter
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pXG-GFP+29 and pXG-’GFP, which can be used to express GFP

fusion proteins in Leishmania with GFP at either the N- or the C-

terminus, respectively, were kindly provided by Dr. Stephen M.

Beverley.

Leishmania strains and cell cultures
Promastigote forms of Leishmania major clone V1 (MHOM/IL/

80/Friedlin), Leishmania infantum (MHOM/ES/1993/BCN-99)

and Leishmania donovani (MHOM/ET/67/HU3) were maintained

in vitro at 28uC in modified RPMI-1640 medium (Invitrogen,

Carlsbad, CA) supplemented with 20% heat-inactivated foetal

bovine serum (hiFBS, Invitrogen), as described previously [37,38].

To determine parasite sensitivity to the toxic peptides papuamide

B and Ro-peptide, and to amphotericin B, 106/mL parasites were

incubated in RPMI-1640 containing different concentrations of

peptides and the parasite viability determined by MTT analysis

after 72 h, as described previously [39].

DNA constructs and cell transfection
LABCG2 (GeneDB-L. major, Accession Code LmjF06.0090) was

isolated from the genomic DNA of L. major by PCR using sense (59-

ATATCGCTGTCTCTGCGTCG) and antisense (59- GGCA-

AACACACAGAGCGATG) primers. The nucleotide sequences

were determined automatically as previously described [40]. To

obtain parasites expressing non-functional LABCG2, a mutation

was introduced in the Walker A motif of the ATP binding domain,

replacing lysine 108 with a methionine (K108M) using the

QuikChange XL Site-Directed Mutagenesis kit (Stratagene, La

Jolla, CA). The resulting mutated gene LABCG2K108M

(LABCG2K/M) was cloned into the Leishmania expression vector

pUCNeoPlus [37]. The vector pXG-GFP+29 was used to create

GFP- LABCG2 and -LABCG2K/M versions with GFP fusions at

N-terminus [41]. The LABCG2 and LABCG2K/M open reading

frame for these N-terminus tagged versions was amplified by PCR

using sense (59-GCGGCCGCATGCCCCCTCCCGCAGCAA-

CACGTGC) and antisense (59-GCGGCCGCTCATGCC-

GTTCTCGCACAGCTCGCCA) primers. For the C-terminus

tagged versions, LABCG2 and LABCG2K/M were cloned in a

pXG-’GFP+ using sense (59-ACCGGTATGCCCCCTCCCG-

CAGCAACACGTGC) and antisense (59- GATATCTGCCGTT-

CTCGCACAGCTCGCCACGG) primers. Promastigotes of L.

major were transfected with the different constructs and selected for

G-418 resistance as described previously [42].

Gene expression analysis
Total RNA was prepared from control (empty vector) and

LABCG2K/M expressing promastigotes using the total RNA

isolation kit (Roche Biochemicals). cDNA was synthesized from

60 ng of total RNA using Superscript II TM RNaseH Reverse

Transcriptase (Invitrogen) and oligo (dT)12–18 primers (Invitro-

gen) following the manufacturer’s instructions. Semi-quantitative

PCR was performed with 50 mL aliquots using 50 pmol each of

sense and antisense primers corresponding to LABCG2 and

LmGAPDH using the following profile: initial denaturation at

95uC for 5 min followed by 25 cycles with denaturation at 95uC
for 1 min, annealing at 54uC for 30 s and extension at 68uC for

35 s, with a final extension of 5 min.

Fluorescence microscopy of Leishmania promastigotes
For endosome/lysosomal labelling, 107 stationary-phase pro-

mastigotes obtained after 4 day culture were incubated in 1 mL of

RPMI 1640 medium containing 50 mg/mL of concanavalin A-

Alexa Red for 2 h at 28uC or with 1 mM FM4-64 for 30 min at

28uC or 4uC. For mitochondrial labelling, 107 stationary-phase

promastigotes were stained with 50 nM MitoTracker Deep Red

633 for 30 min at 28uC and then washed in ice-cold phosphate-

buffered saline (PBS; 1.2 mM KH2PO4, 8.1 mM Na2HPO4,

130 mM NaCl and 2.6 mM KCl adjusted to pH 7). Parasites were

fixed for 30 min at 4uC with 2% paraformaldehyde and then

observed under a microscope. Images (one stack) were acquired

using an Olympus IX81 microscope and deconvolved using

Huygens Professional.

Analysis of fluorescent PL uptake
The NBD-phospholipid accumulation was determined by flow

cytometry as described previously [43]. Briefly, stationary-phase

promastigotes (107/mL) were incubated in HPMI buffer (20 mM

HEPES, 132 mM NaCl, 3.5 mM KCl, 0.5 mM MgCl2, 5 mM

glucose, 1 mM CaCl2, pH 7.4) supplemented with 0.3% (w/v)

BSA for 30 min at 28uC, then labelled with 10 mM NBD-PC,

10 mM NBD-PE, 10 mM NBD-SM or 30 mM NBD-PS for 30 min

at 28uC. HPMI was supplemented with either 500 mM PMSF or

5 mM DFP to block the catabolism of NBD-lipids [43]. Parasites

were washed twice with ice-cold PBS, supplemented with 0.3%

BSA and resuspended in PBS for flow cytometry analysis, using a

Beckton Dickinson FACScan (San José, CA) equipped with an

argon laser operating at 488 nm.

Measurement of NBD-PS outward transport in L. major
lines

To measure the NBD-PS outward transport from the cytoplas-

mic to the exoplasmic leaflet, Leishmania stationary-phase promas-

tigotes (107/ml) were labeled with 30 mM (control parasites) or

15 mM (LABCG2K/M) NBD-PS for 30 min at 28uC in HPMI

buffer (20 mM HEPES, 132 mM NaCl, 3.5 mM KCl, 0.5 mM

MgCl2, 5 mM glucose, 1 mM CaCl2, pH 7.4) supplemented with

0.1% (w/v) BSA to allow that inward movement of the NBD

analogue was equally, as previously described [30]. Afterwards,

NBD-PS remaining on the cell surface was extracted twice by

incubation with 2% (w/v) BSA in HPMI (supplemented with

5 mM glucose and 500 mM PMSF) for 5 min on ice. Before

starting the outward transport assay, the medium was removed

and parasites were washed with ice-cold PBS. For t = 0 min, the

cells were resuspended in HPMI (supplemented with 2% BSA,

5 mM glucose and 500 mM PMSF). Time dependent outward

transport was monitored at 28uC at different time points (5, 15, 30,

60 min) in the supernatants and the samples were analyzed by

SLM-Aminco 8000C spectrofluorimeter.

Annexin V- binding assay
Leishmania promastigotes were harvested in RPMI-1640 and

centrifuged at 25006 g for 10 min at 4uC. The cells were washed

with Annexin V-binding buffer (20 mM HEPES, 132 mM NaCl,

3.5 mM KCl, 5 mM CaCl2 and 0.5 mM MgCl2, pH 7.4 and

10 mM glucose), then resuspended in the same buffer and

incubated with Annexin V–Alexa 488 (1/20 dilution; at the

concentration indicated by the manufacturer) at 4uC for 15 min.

The parasites were subsequently labelled with propidium iodide

(0.4 mg/ml) and the mixture incubated for 5 min at 4uC. The cells

were washed for 1 min at 25006 g and 4uC, and resuspended to a

cell density of 46106 cells/mL. Controls measurements in the

absence of calcium were included using Annexin V–Alexa 488

plus 8 mM EGTA. Cellular fluorescence was quantified by

scanning the emission in a FACSCalibur and analysed using the

Cell Quest Pro software application. A total of 10,000 events were

harvested from each sample. The control cells were incubated in

Leishmania Infectivity Involves an ABC Transporter

PLOS Neglected Tropical Diseases | www.plosntds.org 3 April 2013 | Volume 7 | Issue 4 | e2179



Annexin V-binding buffer alone, without Annexin V–Alexa 488,

under identical conditions.

In vitro infection of mouse peritoneal macrophages
Peritoneal macrophages from BALB/c mice (Charles River Ltd.)

were harvested by lavage with ice-cold RPMI 1640 medium, plated

at a density of 56105 macrophages/well in RPMI-1640 medium plus

10% hiFBS in 24-well plates provided with glass coverslips (22 mm2)

and allowed to adhere for 4 h at 37uC under 5% CO2, as described

previously [7,8]. The adherent macrophages were infected at 35uC
with stationary-phase promastigotes of control and LABCG2K/M-

expressing L. major parasites with or without Annexin V (0.05 mg/

ml6107promastigotes), at a parasite-to-cell ratio of 5:1 in RPMI-1640

medium supplemented with 5% hiFBS. After 4 h of infection,

unphagocytosed parasites were removed by washing with serum-free

medium. The infected macrophages were further incubated in RPMI

1640 medium supplemented with 10% hiFBS for 24 h at 37uC in a

5% CO2 atmosphere. Following incubation, the cultures were fixed

with 2% paraformaldehyde/glucose, stained with DAPI and the rate

of infected macrophage analyzed using images acquired with an

Olympus IX81 microscope as described previously [44]. Parasites

were quantified using a cell counter provide with the Image J software

(http://rsb.info.nih.gov/ij/). The images were deconvolved using

Huygens Professional from Scientific Volume Imaging (http://www.

svi.nl). The percentage of macrophage infection was calculated by

dividing the number of infected macrophages by the number of

counted macrophages. The mean number of amastigotes per infected

macrophage was determined by dividing the total number of

amastigotes counted by the number of infected macrophages. Three

independent experiments were performed with duplicates.

Leishmania binding assays
The interactions between L. major stationary-phase promasti-

gotes and mouse peritoneal macrophages were measured as

previously described with some modifications [22]. Mouse

peritoneal macrophages (56105/well), maintained at 37uC with

5% CO2 in RPMI 1640 medium supplemented with 10% of

hiFBS, were labeled with 5 mM FM4-64 for 30 min at RT in

RPMI 1640 medium. LABCG2K/M and control L. major

promastigotes (107/ml) in stationary phase were labeled with

1 mM Cell Tracker TM Green for 40 min at 28uC in RPMI 1640

medium. Then, parasites and peritoneal macrophages were

washed four times in RPMI 1640 medium and finally resuspended

in RPMI 1640 medium supplemented with 5% of hiFBS. Binding

assays were performed using a parasite:macrophage ratio of 5:1.

Promastigote forms of L. major lines were added to the monolayer

cells. After 4 h incubation at 37uC, unbound promastigotes were

removed by thorough washing. The monolayers and bound

promastigotes were analysed by a Confocal Leyca SP5 microsco-

py. All the experiments were done in triplicate.

LPG and gp63 surface expression analysis
Expression analysis of the surface molecule LPG was performed

as described previously [45]. Thus, stationary-phase promastigotes

(107/mL) were washed twice with PBS and incubated with 5 mg/

mL fluorescein-conjugated ricin agglutinin in PBS for 10 min at

28uC, then washed with PBS and analyzed by flow cytometry

using a FACSCalibur (Beckton Dickinson). For quantification of

cell surface gp63, parasites were incubated with a 1:500 dilution of

a mouse monoclonal anti-gp63 on ice. The cells were subsequently

washed with PBS supplemented with 0.1% BSA and fixed at 4uC
in 2% paraformaldehyde for 20 min, then washed again and

incubated at room temperature with a 1:500 dilution of FITC

fluorescein isothiocyanate-labeled goat anti-mouse immunoglobu-

lin G (Sigma). These cells were washed three times with PBS-0.1%

BSA and the parasite-associated fluorescence was analyzed by flow

cytometry using a FACSCalibur.

Metacyclic purification assay
Metacyclic promastigotes were isolated from stationary cultures of L.

major promastigotes by negative selection using a previously described

peanut agglutinin (PNA) methodology [46]. Briefly, stationary-phase

promastigotes were collected after culture for 4 days, washed with PBS

and then incubated with 100 mg/mL of PNA. After incubation for

10 min at room temperature, cells were separated by centrifugation at

5006 g for 10 min. The non-agglutinated promastigotes (metacyclic)

collected in the supernatant were washed twice with PBS and

resuspended in PBS for further experiments.

Western blot analysis
Proteins from whole stationary-phase promastigotes (107/well)

were resolved in 10% SDS-PAGE and electroblotted onto PVDF

membranes. Western blot analysis was performed as described

previously [47], using a polyclonal antibody against metacyclic

promastigote protein HASPB (1:2000) or GFP (1:5000; Invitro-

gen), followed by detection with a horseradish peroxidase-

conjugated secondary goat anti-rabbit IgG (1:5000; Dako Den-

mark) antibody. Monoclonal antibodies against H2A histone or a-

tubulin (1:5000 or 1:10000; Sigma-Aldrich) were used to confirm

equivalent protein loading. Detection was carried out by enhanced

chemiluminescence reaction using the ECL kit (Amersham).

Analysis of in vivo infection
Six-week-old female BALB/c mice were purchased from Charles

River Breeding Laboratories and maintained in the Animal Facility

Service of our Institute under pathogen-free conditions. Animals (10

mice/group) were injected subcutaneously in their left hind footpads

with 104 L. major purified metacyclic promastigotes resuspended in

PBS, as described above. Disease progression was monitored by

measuring the inflammation edema and the area of the cutaneous

lesion of the infected footpad using a digital caliper (Mitutoyo,

Japan), in comparison with the values obtained in the uninfected

contralateral footpad. Parasite burdens in target tissues were

determined from the presence of amastigotes isolated from footpad,

spleen and lymph nodes at week five post-infection, after tissue

homogeneization and culture in promastigote culture medium,

using a limiting dilution assay, as described previously [48].

Ethics statement
All experiments were performed according to the National/EU

Guidelines for the Care and Use of Laboratory Animals in

Research and the approval of the Ethics Committee of the Spanish

National Research Council (CSIC, file CEA-213-1-11).

Statistical analysis
Statistical comparisons between groups were performed using

Student’s t test. Differences were considered significant at a level

p,0.05.

Results

Sequence features of LABCG2 and generation of a
Leishmania line expressing an inactive version of the
protein

LABCG2 (GeneDB-L. major, accession code LmjF06.0090) has

two additional tandem imperfect repeats in chromosome 6 of

Leishmania (LABCG1, accession code LmjF06.0080, and

Leishmania Infectivity Involves an ABC Transporter
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Figure 1. LABCG2 localizes to the intracellular vesicles of Leishmania parasites. L. major stationary promastigotes transfected with GFP-
LABCG2 (A and C) and GFP-LABCG2K/M (B and D) were incubated at 28uC with 1 mM FM4-64 (A and B) and 50 mg/mL concanavalin A-Alexa Red (C and
D) for 30 min and 120 min, respectively. (E) LABCG2K/M localizes into the flagellar pocket of Leishmania parasites. L. major stationary promastigotes

Leishmania Infectivity Involves an ABC Transporter
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LABCG3, accession code LmjF06.0100) [31]. LABCG1,

LABCG2 and LABCG3 are ‘‘half-transporters’’ with a single

NBD and a single TMD localized at their C-terminus (Appendix

in Supporting information, Fig. S1A). LABCG1 and LABCG2 codes

for a 657 and 663 amino acid protein, with a predicted molecular

weight of approximately 73.4 and 74.0 kDa, respectively.

LABCG1 and LABCG2 are almost identical (95.7% of identity).

LABCG3 protein is truncated, with Walker A and several

transmembrane segments being absent (Appendix in Supporting

information, Fig. S1B). LABCG2 shares 19.5% amino acid

identity with human ABCG1, 24.6% with human ABCG2 and

27.3% with the White protein from Drosophila [35].

The dimerization requirement for ABC half-transporters (such

as LABCG2) to become functional led us to test a dominant-

negative approach to down-regulate LABCG2 function, as

recently described for Leishmania LABCG5 [35]. To this end, we

first mutated in LABCG2 the lysine residue inside the Walker A

motif (108 position), which is known to be critical for ATP

hydrolysis in ABC transporters [35,49], to a methionine (K108M).

The expression of other ABCG half-transporters with a similar K/

M substitution produces a dominant-negative inhibition in the

wild-type transporters [35,50]. The resulting construct was

transfected into L. major and the expression of LABCG2K108M

(LABCG2K/M) was verified by RT-PCR (Appendix in Supporting

information, Fig. S2A). In contrast to the phenotype observed after

LABCG5K/M expression [35], parasites transfected with

LABCG2K/M grew at normal rates (Appendix in Supporting

information, Fig. S2B).

Subcellular localization of LABCG2
To study the localization of LABCG2, we fused LABCG2 and

LABCG2K/M with an N-terminal GFP-tag. These constructs were

transfected into L. major promastigotes and expression of these

proteins determined by Western-blot analysis of whole parasite

lysates. As expected, a band corresponding to GFP-LABCG2 was

observed at around 100 kDa (Appendix in Supporting informa-

tion, Fig. S3A). Additional higher molecular weight signals could

correspond to dimeric forms of the protein, as described for

LABCG5 [35], whereas the lower bands probably correspond to

degraded proteins.

Fluorescence microscopy studies showed that GFP-LABCG2

partially overlap with the endosomal markers FM4-64 [51] and

concanavalin A [52] in the stationary growth phase promastigotes,

which is depicted in representative micrographs in Fig. 1A and 1C.

In contrast, the stained vesicular structures do not co-localize with

the mitochondrial marker MitoTracker (data not shown). The

localization pattern of the protein does not change when GFP-

LABCG2K/M was expressed in Leishmania parasites (Fig. 1B and

1D). To evaluate whether GFP-LABCG2 was also localized in the

flagellar pocket, the sole site for endo-/exocytosis in Leishmania, we

subsequently performed the co-localization experiments with

FM4-64 at 4uC to block its vesicular trafficking. The results

showed that GFP-LABCG2K/M co-localizes in the flagellar pocket

of the stationary-phase promastigotes (Fig. 1E, yellow arrows).

Another part of the GFP-LABCG2K/M pool was detected in

intracellular vesicles localized in the apical part of the cell, at the

tip of the aflagellar pole of the parasite (Fig. 1E), a site that is

known to be involved in the interaction with host cells [53]. GFP-

tagged LABCG2 protein at the COOH-terminal showed a similar

pattern of localization (Appendix in Supporting information,

Fig. S3B), but its expression was unstable after few culture

passages, thus suggesting that the C-terminal TMD region is

critical for maintaining LABCG2 stability. Overall, these studies

suggest that LABCG2 localizes to intracellular vesicles of the

endosomal pathway, at the flagellar pocket and at the aflagellar

pole of Leishmania.

LABCG2 is involved in the exposure of PS on the outer
surface of Leishmania

To study the possible role of LABCG2 in PL transport, we first

investigated the accumulation level of fluorescent short-chain PL

analogues by flow cytometry. Thus, stationary-phase L. major

promastigotes transfected with the empty vector (control) or the

vector containing LABCG2K/M (LABCG2K/M parasites) were

incubated with NBD-PE, -PC, -PS and -SM, and the cell-

associated fluorescence analyzed by flow cytometry after back-

exchange with BSA to extract the NBD-PL located in the outer

plasma membrane leaflet. Under these conditions, accumulation

of NBD-PS by the LABCG2K/M parasites was significantly higher

than that observed for control cells (4.2 fold, n = 12, p,0.05;

Fig. 2A). In contrast, no significant differences were observed for

NBD-PC, NBD-PE and NBD-SM accumulation between control

and LABCG2K/M parasites (Fig. 2B–D). The change in NBD-PS

accumulation was not due to differences in endocytosis, as the

internalization of NBD-SM, which is taken up by this process, was

not affected by the functionality of LABCG2 (Fig. 2D). The above

results were validated in a second transfection event with

LABCG2K/M (Fig. 2E). To verify that the higher NBD-PS

accumulation observed was due to the dominant-negative

inhibition of LABCG2 activity, LABCG2K/M parasites were

cured for the plasmid pUCNeoplusLABCG2K/M (reverted line)

by culturing the parasites in the absence of plasmid drug selection

pressure for three months. This reverted line showed a similar

NBD-PS accumulation to the control line (Fig. 2F). We

subsequently tested whether LABCG2 was involved in NBD-PS

internalization in two other Leishmania species (L. infantum and L.

donovani). Down-regulation of LABCG2 function was also assayed

by expressing LABCG2K/M and a similar phenotype was observed

in these Leishmania species (Appendix in Supporting information,

Fig. S4A and B). To confirm that the higher accumulation of

NBD-PS in the LABCG2K/M parasites was due to a reduced

floppase activity, we measured the outward translocation of NBD-

PS from the cytoplasmic to the exoplasmic leaflet of the plasma

membrane in both Leishmania lines. Thus, control and

LABCG2K/M L. major promastigotes were loaded under conditions

that yielded similar amounts of intracellular NBD-PS after the

back-exchange step. Then, parasites were maintained in probe-

free culture medium containing BSA and the amount of NBD-PS

extracted from the external side of the plasma membrane was

measured at different time points. The results showed that the

outward translocation of NBD-PS was higher in control versus

LABCG2K/M promastigotes (Fig. 2G) suggesting a PS floppase

activity of LABCG2.

Next, we studied the translocation of endogenous, long-chain

PS labelling control and LABCG2K/M stationary growth phase

promastigotes with Annexin V-Alexa Fluor 488. This probe binds

transfected with GFP-LABCG2K/M were incubated with 1 mM FM4-64 for 30 min at 4uC. The parasites were fixed for 10 min in 2% with
paraformaldehyde at 4uC. (a) Nomarski images of b, c, d and e. Representative co-localization sites (f) are indicated by yellow arrows in the merged
images. Scale bar: 5 mm. N (nucleus) and K (kinetoplast) are stained with DAPI. FP: flagellar pocket; AP: aflagellar pole. The figure illustrates a
representative parasite of a total population of parasites with a similar fluorescence pattern.
doi:10.1371/journal.pntd.0002179.g001
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PS exposed in mammalian apoptotic cells [8] and Leishmania

promastigotes in a calcium dependent manner [16] (Appendix in

Supporting information, Fig. S5). Quantitative analysis by flow

cytometer (Fig. 3A) showed that LABCG2K/M parasites presented

a significantly reduced exposure of PS in the outer leaflet of the

plasma membrane compared with control cells (20.1% vs. 52.7%

of Annexin V positive/propidium iodide negative, respectively,

p,0.05). Additionally, we determined that the density of PS

molecules on the cell surface is significantly higher in the control

(53.3566.12) than in the LABCG2K/M parasites (38.1063.49), as

measured by the mean fluorescence intensity (Fig. 3B); however,

control and LABCG2K/M log phase parasites showed a low and

similar Annexin V-binding (10.97% vs. 11.06% of Annexin V
positive/propidium iodide negative, respectively, p,0.05; data not

shown). These results were supported by RT-PCR analysis of

expression of LABCG2 through the life cycle of L major that shows

higher expression of LABCG2 in stationary growth phase/

metacyclic promastigotes versus log phase parasites (Fig. 3C and

3D). To validate that the differences in Annexin V-Alexa Fluor

488 labelling were due to a defect in PS exposure, we tested the

sensitivity of control and LABCG2K/M parasites to papuamide B,

a pore-forming cytolytic peptide that specifically binds to PS at the

external surface of the plasma membrane [54]. The results showed

that LABCG2K/M parasites were less sensitive to papuamide B

than controls (EC50 = 3.2660.67 mM vs. EC50 = 2.1260.33 mM,

p,0.05, respectively) (Fig. 4A). As a control experiment, we tested

the sensitivity of both lines to Ro-peptide, which strictly recognizes

PE residues at the external surface of biological membranes [55].

The results of this study indicated that there were no differences in

sensitivity between LABCG2K/M and control parasites

(EC50 = 1.5860.09 mM vs. EC50 = 1.6460.12 mM, respectively)

(Fig. 4B). These results are in agreement with the absence of

Figure 2. Fluorescent PL accumulation in Leishmania parasites. Stationary promastigotes of Leishmania were incubated with the fluorescent
PL analogues NBD-PS (A), NBD-PC (B), NBD-PE (C) or NBD-SM (D) for 30 min at 28uC. After washing and back-exchange with BSA, cell-associated
fluorescence was measured by flow cytometry analysis. The grey histogram represents control cells transfected with the empty vector, the
uncoloured histogram represents parasites expressing LABCG2K/M and the dotted histogram represents non-labelled cells. (E) NBD-PS accumulation
in Leishmania lines after a second transfection event. The reverted line (F), which was maintained for 3 months without drug pressure, was also
included. The histograms correspond to a representative experiment from three independent experiments. (G) Outward transport of NBD-PS in
Leishmania parasites. Stationary promastigotes of control (black circles) and LABCG2K/M (black squares) Leishmania lines were incubated with the
fluorescent analogue NBD-PS for 30 min at 28uC. After washing and back-exchange with BSA, cells were incubated for different time points in a free
NBD-PS medium containing BSA and the fluorescence of the supernatant was measured by spectrofluorimetry. Results represent the means 6 SD of
four independent duplicated experiments. * P,0.05 vs. control parasites.
doi:10.1371/journal.pntd.0002179.g002
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alterations in NBD-PE translocation in LABCG2K/M parasites.

Several ABCG transporters have been implicated in sterol

transport [56]. Thus, differences in papuamide B sensitivity might

be indirectly caused by a general change in membrane lipid

organization in LABCG2K/M parasites. We study this possibility

by analyzing both sensitivity of control and LABCG2K/M parasites

to amphotericin B; the results shown that there were no significant

differences in sensitivity of both lines to amphotericin B (Fig. 4C),

suggesting that LABCG2 does not contribute greatly in the

distribution of sterols into the plasma membrane. Finally, we

confirmed that the parasites expressing GFP-LABCG2K/M used

for the subcellular localization analysis also maintained their

papuamide B resistance phenotype (data not shown).

Down-regulation of LABCG2 function decreases in vitro
parasite infectivity

As PS externalization by the parasite is a key mediator for infection

of the macrophages [12] and polymorphonuclear cells [16], we

evaluated whether down-regulation of LABCG2 function correlated

with a decreased infectivity of the parasites. Thus, we measured the

ability of control and LABCG2K/M stationary-phase promastigotes to

infect mouse peritoneal macrophages. The results showed that

whereas 80% of macrophages were infected by control parasites after

24 h post-infection, only 20% of cells were infected by LABCG2K/M

parasites (Fig. 5A). In contrast, the number of parasites per infected

macrophage was similar in both cases (Fig. 5B). We have shown that

the different infectivity values observed in LABCG2K/M parasites are

not due to differences in the interaction parasite-macrophages as

determined after 4 hours post-infection binding assays (Appendix in

Supporting information, Fig. S6A and B. The results showed there

were not differences in the percentage of interaction in control cells

(80.5065.77) compared with LABCG2K/M parasites (84.3367.35).

Additionally, we have determined that the overexpression of

LABCG2 in Leishmania parasites did not show differences in the PS

exposition nor in the % infectivity of mouse peritoneal macrophages

(data not shown).

Figure 3. The externalization of endogenous PS by stationary Leishmania promastigotes depends on LABCG2 function. (A) PS
exposure at the outer leaflet of the parasite plasma membrane was analyzed by flow cytometry using Annexin V–Alexa 488 as described in Materials
and Methods. The lower right quadrant in the density plots represents the percentage of Annexin V positive/Propidium iodide negative in control or
LABCG2K/M parasites. Markers were placed using non-stained parasites. (B) Density of PS molecules (GeoMean) on the cell surface. The grey histogram
represents control cells transfected with the empty vector, the uncoloured histogram represents parasites expressing LABCG2K/M and the dotted
histogram represents non-labelled cells. The results shown are representative of three independent duplicated experiments. (C and D) Gene
expression analysis of LABCG2 from L. major control determined by RT-PCR analysis through the different growth phases of Leishmania parasites:
early log (day 2), late log (day 3), stationary (day 4) and late stationary phase (day 5). RT-PCR was carried out for 35 cycles using RNA isolated from the
above parasites and the products were run in 2% agarose gel as described in Materials and Methods. Lower imagine in C shows the expression of
GADPH used as internal loading control. The arrows indicate amplified 280 bp LABCG2 fragment and 227 bp GADPH fragment. Lower imagine in D
shows the mRNA level of LABCG2 normalized with GADPH in different points of the growth curve. The results shown are the means of three
independent experiments 6 SD.
doi:10.1371/journal.pntd.0002179.g003
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We have repeated the infection experiments masking most of

the PS in the metacyclic forms by incubating stationary-phase

control and LABCG2K/M parasites with Annexin V. As expected,

PS masking reduced the macrophage infection percentage of

control parasites by approximately 82%. Annexin V-mediated

masking of PS in LABCG2K/M parasites did not significantly

altered their lower ability to infect peritoneal macrophages,

reaching similar values to those obtained with Annexin V treated

control parasites (Fig. 5C). Furthermore, we assessed whether

other molecules, such as lipophosphoglycan (LPG) or the

phosphatidylinositol-anchored surface molecule gp63 [15], both

of which are implicated in Leishmania infectivity, could be altered in

LABCG2K/M parasites. Flow cytometry analysis of stationary-

phase promastigotes marked with fluorescein-conjugated ricin

agglutinin, which specifically label LPG [45], showed no

differences between control and LABCG2K/M parasites (Appendix

in Supporting information, Fig. S6C). Additionally, flow cytometry

analysis using a specific monoclonal antibody for Leishmania gp63

showed no significant differences between expression of this

surface molecule in the control and LABCG2K/M stationary-phase

promastigotes (Appendix in Supporting information, Fig. S6D).

Finally, we evaluated whether the infectivity differences observed

may be due to an alteration in the metacyclogenesis of the

parasites produced by down-regulation of LABCG2 function.

Thus, we purified infective metacyclic forms from stationary-phase

promastigotes of control and LABCG2K/M parasites by binding to

the lectin peanut agglutinin (PNA) [57], and found that the

percentage of metacyclic parasites (PNA2) obtained was similar in

both cell lines (Appendix in Supporting information, Fig. S7A).

Furthermore, both parasite lines were morphologically elongated,

highly mobile, there were no rounded shapes and differences in

size (FSC-H) between control (427.26613.82) and LABCG2K/M

(413.61614.53) lines, respectively (Appendix in Supporting

information, Fig. S7B). We also analysed expression of the

metacyclic marker protein HASPB (hydrophilic acylated surface

protein B) [58], which is implicated in host-cell infection. Western

blot analysis indicated that there were no differences in expression

of this 32 kDa protein between control and LABCG2K/M

parasites (Appendix in Supporting information, Fig. S7C).

LABCG2 is required for disease development in a mouse
model of cutaneous leishmaniasis

As down-regulation of LABCG2 function decreased the in vitro

macrophage infectivity of metacyclic parasites, we analysed

whether this defect was correlated with a lower in vivo virulence

of the parasites using a mouse model of cutaneous leishmaniasis.

Thus, susceptible female BALB/c mice were infected with 104

metacyclics purified from control and LABCG2K/M parasites by

footpad inoculation. As we had previously observed during the

assays to cure LABCG2K/M parasites for the plasmid pUCNeo-

plusLABCG2K/M (reverted line) that the defect on the external-

ization of NBD-PS remained unaltered for at least five weeks in

the absence of antibiotic pressure, we were able to use transfected

parasites for this model. After infection, the measure of inflam-

mation and the development of skin lesions in the footpad with

time were monitored weekly up to a maximum of five weeks. At

this time, control animals had to be sacrificed due to the severity of

the lesions. Mice infected with control parasites showed progres-

sive inflammation and lesion pathology after the first two weeks

(Fig. 6A–C), whereas mice infected with LABCG2K/M parasites

showed no detectable lesions pathology at any time, and presented

significantly lower footpad inflammation (Fig. 6A–C). As observed

in Fig. 6B, the curve for footpad lesion size is the same for non-

infected control animals and for the animals infected with

LABCG2K/M L. major metacyclic parasites, which shows no

lesions during the time of the infection assay.

Additionally, we decided to determine whether these infected

mice presented parasites in different target tissues and whether these

parasites maintained the expression of LABCG2K/M and increased

NBD-PS accumulation. Thus, at the indicated time, mice were

euthanized and their footpad, spleen and lymph nodes collected for

parasite isolation following the limiting dilution assay. As can be

seen from Fig. 6D–E, a lower parasite burden was recovered from

the footpad of mice infected with the LABCG2K/M parasites

compared to the control mice (Fig. 6D), and no parasites were

isolated from the spleen or lymph nodes of mice infected with the

LABCG2K/M parasites (Fig. 6E) after one week of in vitro culture.

Moreover, we confirmed by RT-PCR that the mutant

LABCG2K/M gene was still expressed in parasites isolated from

Figure 4. Leishmania LABCG2K/M parasites present resistance to papuamide B. Sensitivity of control and LABCG2K/M parasites to the PS-
binding peptide papuamide B (A), PE-binding peptide Ro09-0198 (B) and amphotericin B (C). Logarithmic-phase promastigotes were diluted to 106/
mL in RPMI 10% hiFBS containing different concentrations of these peptides; after 72 h, cell viability was analysed by a MTT analysis as described in
Materials and Methods. Results represent the means 6 SD of four independent duplicated experiments. * P,0.05 vs. control parasites.
doi:10.1371/journal.pntd.0002179.g004
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the footpad of mice infected with the LABCG2K/M parasites

(Fig. 7A), and that its phenotype of increased NBD-PS accumula-

tion remained unaltered (Fig. 7B). To confirm that the loss of

virulence exhibited by the mutant line was due to the expression of

LABCG2K/M, these experiments were repeated with a second line

of LABCG2K/M parasites generated from an independent trans-

fection event. The results of this study were similar to those

described above (Appendix in Supporting information, Fig. S8 ),

thus indicating that the dramatic differences in the virulence of

LABCG2K/M parasites were due to down-regulation of LABCG2

function and suggesting that the Leishmania LABCG2 gene is crucial

for disease development.

Discussion

The exposure of PS on their cell surface is one of the

mechanisms known to be used by Leishmania amastigotes and

metacyclic promastigotes to infect host macrophages and to

Figure 5. LABCG2K/M parasites are less infective to mouse peritoneal macrophages. Infection of mouse peritoneal macrophages with
stationary Leishmania promastigotes from control and LABCG2K/M parasites was performed as described in Materials and Methods. The percentage of
infected macrophages (A) and the mean number of parasites per macrophage (B) were determined 24 h post-infection. The results represent the
means 6 SD of three independent experiments. *P,0.05 vs. infection level of control parasites. Additionally, the effect of Annexin V-binding on
macrophage infectivity was determined (C) using control and LABCG2K/M stationary parasites incubated in the presence (+) or absence (2) of Annexin
V (0.05 mg/ml6107 stationary promastigotes) for 4 h. The results shown are the means of three independent experiments 6 SD. *P,0.05 untreated
control vs.: Annexin V-treated control, untreated LABCG2K/M parasites and Annexin V-treated LABCG2K/M parasites.
doi:10.1371/journal.pntd.0002179.g005
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inhibit their microbicidal activity [7–9,11,14,16]. PS is usually

asymmetrically distributed in the cell membrane of eukaryotic

cells and is present only in the cytoplasmic leaflet of the plasma

membrane [18]. Although the PS synthesis in Leishmania have

been a matter of intense debate [59,60], in which the growth

state of Leishmania parasites could be the possible discrepancy

factor, it could be concluded that parasites in late logarithmic

phase contain PS.

Figure 6. LABCG2K/M parasites are less infective in a cutaneous leishmaniasis mouse model. Susceptible BALB/c mice were infected with
104 control and LABCG2K/M L. major metacyclic parasites as described in Materials and Methods. Disease development was monitored weekly by
measuring the inflammation (A) and lesion size (B). The pictures in C show the lesion at week 5 post-infection. Parasite burden was determined in
footpad (D) and tissues (E): lymph nodes (LN) and spleen (SP). The results represent the means 6 SD of three independent experiments, with 10 mice
per group. Mice were euthanized when the lesion size in controls reached a value of 50–70 mm2. * P,0.05 vs. control parasites; n.d. stands for not
detected.
doi:10.1371/journal.pntd.0002179.g006
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Although the molecular basis for this outward PS translocation

in Leishmania remains unknown, herein we provide experimental

evidence supporting the involvement of a new ABCG half-

transporter (LABCG2) from Leishmania in this process.

Thus, down-regulation of LABCG2 function in L. major upon

expression of an inactive version of the transporter (LABCG2K/M)

diminishes the outward translocation of fluorescent short-chain

analogues of PS (NBD-PS). This dominant-negative phenotype

seems to be specific for the head of PL, as the movement of

fluorescent analogues of PC, PE or SM was not affected. This

substrate specificity contrasts with the broader spectrum of PL

translocated by other lipid floppases [33,36] and flippases [42]

characterized in Leishmania. Similar results were obtained after

expression of LABCG2K/M in L. donovani and L. infantum, thereby

suggesting that the functionality of LABCG2 could be conserved

in Leishmania spp. It should be noted, however, that this phenotype

was not due to an LABCG2-mediated alteration of PL endocytosis

as the internalization of NBD-SM (which is taken up by lipid-

phase endocytosis) was not altered. In addition, Annexin V-Alexa

488 binding assays showed that LABCG2K/M promastigotes in the

stationary phase exposed less endogenous PS than control

parasites. As Annexin V is not entirely specific for PS, despite its

widespread use in labelling it, and could bind to other anionic PL

[60–62], we performed an additional control using papuamide B,

a cytolytic peptide that specifically recognizes PS residues in

biological membranes [54]. The reduced exposure of PS on the

outer face of the plasma membrane in LABCG2K/M parasites was

correlated with an increased resistance to papuamide B. Although

these differences in resistance to papuamide B were not so higher,

such differences were statistically significant and reproducible even

in GFP-LABCG2K/M parasites, considering that extreme changes

in the phospholipid asymmetry of the eukaryotic membranes lead

to cell death [5,22,63]. The differences in Annexin V labelling

between control and LABCG2K/M parasites were not observed

during the log growth-phase of parasites, where the labelling was

very low. This finding is in agreement with previous reports for L.

donovani and L. tropica [14] and suggests that LABCG2-mediated

PS exposure could be induced during metacyclogenesis of the

parasite and is probably maintained in the intracellular amastigote

stage. The constitutive expression of LABCG2 in both life-cycle

stages of L. donovani has been described recently [34]. Although not

discussed in detail in that study, LABCG2 expression seems to be

higher in the amastigote forms than in the log-phase promastigote

forms [34], as would be expected for a protein involved in PS

externalization. In our case, the results have shown that the

expression of LABCG2 increases in the early and late stationary

phase compare with the log phase and this increase would be

involved in the redistribution of PS to the outer leaflet of the

plasma membrane in the metacyclic forms of the parasite. On the

other hand, the localization of LABCG2 at both the flagellar

pocket and the aflagellar pole as well as in intracellular vesicles,

suggests a possible mechanism for PS exposure in Leishmania,

similar to that described for human ABCG2, namely as an

intracellular sterol transporter [64]. It remains possible that

LABCG2 could transfer PS and other factors (as virulent factors)

to the inner leaflet of these vesicles before their fusion with the

plasma membrane at the flagellar pocket, followed by a

redistribution of PS/other factors to the outer leaflet of the plasma

membrane of the parasite (Fig. 8). In the case of LABCG2 K/M,

the content of PS and other factors could be reduced in the

intracellular vesicles and in the outer leaflet of plasma membrane,

consequently influencing in the infectivity and virulence. A similar

situation has been described for the LtrABCA2 transporter of

Leishmania, involved in phospholipid trafficking and localized at the

flagellar pocket and internal vesicles [43]. Additionally, LABCG2

could function as a floppase of PS/other factors due to their

localization in the flagellar pocket of the parasite (Fig. 8).

In addition, the defect in PS externalization produced by down-

regulation of LABCG2 function was found to be correlated with a

significant reduction of the infection of mouse peritoneal

Figure 7. LABCG2K/M parasites isolated from footpad lesions of infected mice retained the increased NBD-PS accumulation
phenotype. (A) RT-PCR gene-expression analysis of wild-type and mutated LABCG2 in control and LABCG2K/M Leishmania parasites. The lower image
shows the expression of GADPH used as internal loading control. RT-PCR was carried out for 35 cycles using RNA isolated from the above parasites
and the products were run in 2% agarose gel. The positions of molecular markers (bp) are indicated on the left. (B) Accumulation of NBD-PS in control
(grey histogram) and LABCG2K/M (uncoloured histogram) parasites. Parasites recovered from the footpad lesions of infected mice were maintained in
culture medium and the stationary promastigotes incubated with the fluorescent phospholipid analogue NBD-PS for 30 min at 28uC. After washing
and back-exchange with BSA, cell-associated fluorescence was measured by flow cytometry analysis as described in Materials and Methods. The
dotted line represents non-labelled parasites.
doi:10.1371/journal.pntd.0002179.g007
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macrophages by LABCG2K/M parasites. This finding agrees with

previous reports [7,14], which showed that PS exposure was

important for macrophage engulfment of the promastigote and

amastigote forms of Leishmania. As suggested [12], we believe that

the only process probably affected would be the phagocytosis and

consequently the variation of PS exposure could not be important

for the interaction; this consideration would explain the observed

differences in % of infected macrophages. Additionally, the

reduced infectivity was not due to changes in the metacyclogenesis

process considering that LABCG2 function does not affect either

expression of the metacyclic marker protein HASPB or the

number of metacyclic promastigotes produced.

Furthermore, the virulent factors LPG and gp63 are probably

not affected by the function of LABCG2, as deduced by the

absence of variations in the expression levels of these surface

molecules, both of which have been suggested that play important

roles in establishment of the infection. However, we cannot

discard the possibility that other unknown factors involved in the

virulence of Leishmania could be transported by LABCG2, and

their expression could be affected in the LABCG2K/M parasites.

The decrease of the in vitro ability to infect macrophages

observed in mutant parasites with a defect in PS exposure was

found to be correlated with lower infectivity in an in vivo mouse

model of cutaneous leishmaniasis, thereby supporting the proposal

that LABCG2 function is required in order to develop the lesion.

The role of the apoptosis-like PS exposure in the establishment of a

Leishmania infection has been widely discussed. One possibility in

this respect is that PS-positive cells do not necessarily die but use

PS exposure, in an apoptosis-mimicking fashion, to infect

macrophages and inhibit their microbicidal activity [8,11,16,65].

The second possibility suggests that PS-positive forms are indeed

‘‘altruistic’’ apoptotic parasites that have been sentenced to death

but are nevertheless required in order that the PS-negative

infective parasites invade the host cell, in a truly cooperative

system [16,66]. Should be noted considered that these experiments

were made using late stationary phase Leishmania parasites, where

they begin to appreciate the apoptotic round shapes described

above. In our case, the experiments were performed using early

stationary phase Leishmania parasites, where rounded apoptotic

forms were not detected. In any case, PS exposure is the relevant

phenotype for macrophages infection and subsequent inactivation

of microbicidal activity in both these scenarios, thereby allowing

parasite persistence in the host [65].

The need for ABC half-transporters such as ABCG proteins to

dimerize in order to reconstitute the ATP-binding sites and

become functional has allowed us to test a dominant-negative

approach to down-regulate LABCG2 function. Dominant-nega-

tive inhibition of mammalian ABCG2 [50,67] and Leishmania

LABCG5 [35] has also been described upon expression of

different mutants of these transporters. Although the inhibition

of homodimeric LABCG2 function is the most likely explanation

for expression of the inactive version of LABCG2, we cannot rule

out the inhibition of other putative partners. Indeed, some ABCG

proteins, such as human ABCG5/8 [68] and Drosophila White,

Brown and Scarlet, work as heterodimers [69]; the latter can even

change the substrate transported as a function of the partner of the

White protein. However, as expression of inactive versions of

LABCG4 [32] and LABCG5 does not affect the translocation of

PS [35] or the infectivity of the parasites, it is more likely that

LABCG2 does not heterodimerize with these other Leishmania

ABCG proteins; it could however dimerize with LABCG1, which

is almost identical in its TMD.

A further attractive alternative could be that truncated

LABCG3, which only includes the conserved Walker B, the

signature motifs and two transmembrane segments and is

expressed at least at mRNA levels [31,34], could dimerize with

Figure 8. Schematic diagram of the localization of LABCG2 in intracellular vesicles and flagellar pocket of Leishmania parasites. It
remains possible that LABCG2 could transfer PS and other factors (as virulent factors) to the inner leaflet of intracellular vesicles before their fusion
with the plasma membrane at the flagellar pocket, followed by a redistribution of PS/other factors to the outer leaflet of the plasma membrane of the
parasite.
doi:10.1371/journal.pntd.0002179.g008
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LABCG2 to produce an inhibitory effect on LABCG2 function.

This could be a novel way to regulate protein function in this

parasite, although further experiments will be required to confirm

this hypothesis.

Finally, LABCG2 belongs to the same subfamily as mammalian

ABCG2, a well-characterized PS transporter [30] that also pumps

drugs conferring a MDR phenotype in cancer cells [70,71]. Others

LABCG proteins, such as LABCG4 and LABCG6, also confer

resistance to leishmanicidal agents [32,33]. Future work in our

group will examine the implication of LABCG2 in drug resistance.

In conclusion, we have provided evidence that strongly suggests

the involvement of Leishmania LABCG2 function in the PS

externalization required for the infection of host macrophages

and development of the disease. Nonetheless, new approaches will

be needed to fully understand the molecular mechanism by which

LABCG2 affects the infectivity and virulence of Leishmania.

Additionally, these findings indicate that LABCG2 could be

considered as a promising drug target for leishmaniasis. Further-

more, as mutant parasites could be isolated from infected mice

despite the absence of lesions, null mutants for LABCG2 could

potentiality be used for live vaccination studies and to understand

the role of LABCG2 in Leishmania pathogenesis.

Supporting Information

Figure S1 (A) Membrane topology model of the Leish-
mania half-transporters LABCG1, LABCG2 and
LABCG3. The nucleotide binding domain (NBD) is located N-

terminal with respect to the transmembrane domain (TMD). The

putative membrane-spanning helices of the TMD are shown as

cylinders passing through the lipid bilayer. The ATPase catalytic

Walker A, Walker B, and the signature motif C localized in the

nucleotide binding domain (NBD) are shown (boxes A, B and C,

respectively). The arrow indicates the catalytic site mutation

(K108M) engineered into the Walker A motif. The topology model

was predicted using TMHMM (http://www.cbs.dtu.dk/services/

TMHMM-2.0/) and TMRPres2D ((http://biophysics.biol.uoa.

gr/TMRPres2D/) softwares. (B) Amino acid sequences and
alignment (Clustal W) of L. major LABCG1, LABCG2 and
LABCG3. Putative transmembrane segments predicted by

TMHMM and TMRPres2D are underlined. The Walker A/

Walker B motifs, and the ABC family signature motif C are boxed.

Identical amino acids present in the three sequences are indicated

by *, the amino acid similarity is indicated by : and weak similar

amino acid are indicated by . . Gaps introduced for the sequence

alignment are indicated by -.

(TIF)

Figure S2 Gene-expression analysis of LABCG2 in
Leishmania lines. (A) Upper panel: gene expression of

LABCG2 by RT-PCR as indicated by the amplified 280 bp

LABCG2 fragment. Lower panel: gene expression of GADPH as

internal loading control. The arrow indicates amplified 227 bp

GADPH fragment. Lane 1: DNA marker phi 174 HaeIII; lane 2:

control parasites; lane 3: LABCG2K/M parasites. RT-PCR was

carried out for 35 cycles using RNA isolated from the above-

mentioned parasites and the products run in 2% agarose gel. (B)

Growth curve of control (black circles) and LABCG2K/M (black

squares) parasites at different time points (24, 48, 72, 96 and

120 h). The results represent the means 6 SD of three

independent experiments.

(TIF)

Figure S3 Protein expression in GFP-LABCG2 and GFP-
LABCG2K/M Leishmania parasites. Immunodetection of

GFP (A) or H2A histone (lower inset) in L. major lines expressing

control GFP (lane 1), GFP-LABCG2 (lane 2) and GFP-

LABCG2K/M (lane 3). Western blot analysis of total proteins

from parasites incubated with antibodies against GFP or H2A

histone, as loading control, at a 1:5000 dilution. The molecular

mass standards (kDa) from Bio-Rad are indicated on the left. (B) L.

major stationary promastigotes transfected with pXG-GFP+ and

LABCG2K/M-GFP were fixed for 10 min in 2% paraformalde-

hyde at 4uC. a and c, Nomarski images of b and d, respectively. b

shows the cytoplasmic localization of the protein GFP and d

corresponds to localization sites of LABCG2K/M-GFP, indicated

by white arrows in the merged images. Scale bar: 5 mm. FP:

flagellar pocket; AP: aflagellar pole. The figure illustrates a

representative parasite of a total population of parasites with a

similar fluorescence pattern.

(TIF);

Figure S4 Fluorescent PS accumulation in Leishmania
parasites. Stationary promastigotes of L. infantum (A) or L.

donovani (B) were incubated with the fluorescent PL analogue

NBD-PS for 30 min at 28uC. After washing and back-exchange

with BSA, cell-associated fluorescence was measured by flow

cytometry analysis. The grey histogram represents control

parasites transfected with the empty vector, the uncoloured

histogram represents parasites expressing LABCG2K/M and the

dotted histogram represents non-labelled cells. The histograms

correspond to a representative experiment from three independent

experiments.

(TIF);

Figure S5 The externalization of endogenous PS in
Leishmania parasites. PS exposure at the outer leaflet of the

parasite plasma membrane was analyzed by flow cytometry using

Annexin V–Alexa 488 in control parasites as described in

Materials and Methods. Controls measurements in the absence

of calcium were included using Annexin V–Alexa 488 plus 8 mM

EGTA. The results shown are representative of three independent

duplicated experiments 6 SD. * P,0.05 vs. control parasites.

(TIF)

Figure S6 LABCG2K/M parasites has not affected its
capacity of binding to macrophages. (A) Binding of control

and LABCG2K/M metacyclic promastigotes to mouse peritoneal

macrophages. Percentage of positive interaction of promastigotes

to macrophages after 4 h interaction was determined by a

fluorescence microscopy analysis counting 100 macrophages/well.

The results represent the means 6 SD of three independent

experiments. (B) Micrograph of double-fluorescence labeling of the

binding of Leishmania control and LABCG2K/M metacyclic

parasites to mouse peritoneal macrophages. Cell Tracker TM

Green-labeled parasites were added (5:1) to mouse peritoneal

macrophages relabeled with FM4-64 (red). a and c, Nomarski

images of b and d, respectively. b and d shows the binding and

intracellular localization of control and LABCG2K/M parasites.

Scale bar: 10 mm. The expression levels of two surface molecules,

LPG (C) and gp63 (D), were determined in control and

LABCG2K/M parasites marked with fluorescein-conjugated ricin

agglutinin that specifically labels LPG (C) and a specific

monoclonal antibody for Leishmania gp63 (D). The fluorescence

intensity was determined by flow cytometry analysis, as described

in Materials and Methods. The data are means of the geometrical

mean channel fluorescence values (g.m.) 6 SD of three

independent experiments versus controls.

(TIF)
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Figure S7 LABCG2K/M Leishmania parasites do not
show defective metacyclogenesis. (A) Control and

LABCG2K/M metacyclic parasites were purified from stationary

promastigotes using negative selection with the lectin PNA, as

described in Materials and Methods. The results represent the

means 6 SD of four independent experiments. (B) Analysis by flow

cytometry of the FSC-H of control and LABCG2K/M metacyclic

parasites; right panel shows a Nomarsky micrography of the same

samples. Scale bar: 5 mm. (C) Total cell lysates from stationary

promastigotes were analyzed by Western blotting with an antibody

to the metacyclic protein HASPB. Anti-alpha tubulin antibody

was used as loading control. The positions of molecular marker

(kDa) are indicated on the left.

(TIF)

Figure S8 LABCG2K/M parasites are less infective in a
mouse model of cutaneous leishmaniasis. A second

independent transfection event using control and LABCG2K/M

parasites was inoculated in mice, as described in Materials and

Methods. The inflammation (A), lesion size (B) and parasite

burden in footpad (D) and tissues (E) such as lymph nodes (LN)

and spleen (SP) were determined weekly. The pictures in C show

the lesion at week 5 post-infection. The results represent the means

6 SD of three independent experiments, with 10 mice per group.

Mice were euthanized when the lesion size in controls reached a

value of 50–70 mm2. *P,0.05 vs. control parasites; n.d. stands for

not detected.

(TIF)
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