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Abstract

Introduction: An accurate early warning system to predict impending epidemics enhances the effectiveness of preventive
measures against dengue fever. The aim of this study was to develop and validate a forecasting model that could predict
dengue cases and provide timely early warning in Singapore.

Methodology and Principal Findings: We developed a time series Poisson multivariate regression model using weekly
mean temperature and cumulative rainfall over the period 2000–2010. Weather data were modeled using piecewise linear
spline functions. We analyzed various lag times between dengue and weather variables to identify the optimal dengue
forecasting period. Autoregression, seasonality and trend were considered in the model. We validated the model by
forecasting dengue cases for week 1 of 2011 up to week 16 of 2012 using weather data alone. Model selection and
validation were based on Akaike’s Information Criterion, standardized Root Mean Square Error, and residuals diagnoses. A
Receiver Operating Characteristics curve was used to analyze the sensitivity of the forecast of epidemics. The optimal period
for dengue forecast was 16 weeks. Our model forecasted correctly with errors of 0.3 and 0.32 of the standard deviation of
reported cases during the model training and validation periods, respectively. It was sensitive enough to distinguish
between outbreak and non-outbreak to a 96% (CI = 93–98%) in 2004–2010 and 98% (CI = 95%–100%) in 2011. The model
predicted the outbreak in 2011 accurately with less than 3% possibility of false alarm.

Significance: We have developed a weather-based dengue forecasting model that allows warning 16 weeks in advance of
dengue epidemics with high sensitivity and specificity. We demonstrate that models using temperature and rainfall could
be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the
timing, scale of vector control operations, and utilization of limited resources.
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Introduction

Dengue fever is a rapidly spreading viral infection that is endemic

in more than 100 tropical and subtropical countries in Africa, the

Americas, and the Asia Pacific regions. It is caused by any one of the

four serotypes of dengue virus, and infection of one serotype of

dengue virus does not provide cross immunity against the other

three serotypes. Dengue viruses are spread by female Aedes

mosquitoes through blood-feeding on human hosts. Patients

suffering from dengue fever experience sudden onset of fever,

rashes, muscle aches, joint pain, and leucopenia. A dengue patient

usually recovers within 14 days. Nevertheless, some patients develop

severe dengue which is a potentially lethal complication character-

ized by hemorrhagic manifestations, severe plasma leakage, and

severe organ impairment [1]. Globally, about 500,000 severe

dengue cases with 12,500 deaths have been reported annually [2].

Singapore has recently experienced an upsurge of dengue

incidence with a 5–6 year cyclical epidemic pattern since 1980.

The frequency of epidemics has increased in recent years and the

nation has experienced four outbreaks over the past eight years

(2004–5, 2007, and 2011). During the period 2000–2010, the

annual incidence rates of dengue cases per 100,000 populations in

Singapore increased from 17 in 2000 to 332 in 2005 before

declining to 106 in 2010. Dengue was mainly detected in the

eastern region of Singapore before 2004. Subsequently, dengue

cases have been reported island-wide with the highest incidence

rates in the Central and Southeast dengue zones as demarcated by

the National Environment Agency of Singapore (NEA). Over the

last decade, the Central and Southeast zones contributed 31% and

25% of total national reported dengue cases, respectively. Reasons

for dengue expanding into western region of the island could be

complex. Studies have reported that herd immunity among

Singapore residents has declined from 47% in the early 90 s to

about 29% by 1998; this implies a rise in susceptible populations

[3,4]. A recent seroprevalence study in Singapore showed a ratio

of 23 asymptomatic cases to each reported clinical case [5]. These
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asymptomatic cases can possibly infect the Aedes mosquitoes and so

form a reservoir of infection. The two main vectors of dengue in

Singapore are Aedes aegypti and Aedes albopictus and studies have

shown that they are able to disperse up to the 21st floor of a

residential building [6]. All four serotypes of dengue virus (DENV

1–4) have been detected simultaneously in Singapore during the

study period, except 2001. DENV 1 was the predominant

circulating serotype during the outbreaks in 2004–2005 and

DENV 2 was the predominant serotype in 2007 [7]. A study by

Lee et al. (2012) has suggested that clade replacement in a

predominant dengue serotype could also increase dengue

incidence in Singapore [8].

Generally, dengue epidemiology is influenced by a complex

interplay of factors that include rapid urbanization and increase in

population density, capacity of healthcare systems, effectiveness of

vector control systems, predominant circulating dengue serotypes,

herd immunity, and social behavior of the population. Most

dengue endemic countries in Asia Pacific have limited resources

and/or lack of preparedness to contain dengue epidemic [9,10].

Rising international and domestic trade and population movement

contribute to the increases in domestic and cross border dengue

transmission. As a result, the region is experiencing dengue

epidemics with increasing frequency and magnitude. Until a

vaccine or drug for dengue is available, vector control operations

that eliminate adult mosquitoes and their larvae through breeding-

source reduction remain the only effective method to curb dengue

transmission. However, vector control can be resource and labor

intensive, which poses an economic burden on nations with limited

resources.

An early warning system is an essential tool for pre-epidemic

preparedness and effectiveness of dengue control. In recent

decades, weather variables such as temperature and rainfall have

been widely studied for their potential as early warning tools to

fend off climate-sensitive infectious diseases such as Malaria,

Dengue, and West Nile Virus [11,12,13,14].

Numerous studies have revealed the influence of weather

variables on the magnitude of dengue distribution

[15,16,17,18,19,20] through the effects on life cycle development,

biting rates, infective and survival rates of vectors and on the

incubation period of dengue virus [21,22,23]. As temperature

increases, Aedes mosquitoes display shorter periods of development

in all stages of the life cycle leading to increased population

growth; the mosquito feeding rate also increases; and dengue

viruses in Aedes adult mosquitoes require shorter incubation

periods to migrate to salivary glands [21,22,24]. Conversely, high

temperatures above 35uC or heavy rainfall possibly lower dengue

transmission by reducing the survival rate of Aedes [21,23,25].

Heavy rainfall creates abundant outdoor breeding sources for Aedes

in the long run, but dry spells in some settings trigger an increase

in water storage containers which can serve as breeding habitats.

In recent years, the National Environment Agency of Singapore

has been using rising ambient temperature as an indicator of

increase in dengue cases. During periods with median ambient

temperatures above 27.8uC, the national vector control unit

increases surveillance and control operations and the community

are urged to increase efforts to reduce mosquito breeding habitats

in the relevant residential areas [26]. Nevertheless, a more

comprehensive weather-based forecasting tool is required to

obtain precise information on the correlation between risk of

dengue epidemic and weather conditions favorable for Aedes

mosquitoes, so that dengue control efforts in the nation can be

made more effective in the future.

Objectives
Previous study by Hii et al. (2009) has shown that elevated

weekly mean temperature and cumulative rainfall influence the

risks of dengue cases in Singapore at lag times up to 20 weeks with

higher relative risks of dengue cases at time lag of 3–4 months

[15]. Also, a recent study by Hii et al. (2012) has suggested that a

dengue early warning issues about 3 months in advance could

provide sufficient time for an effective mitigation [27]. Based on

previous findings, this study aims to develop a simple, precise, and

low cost early warning model to enhance dengue surveillance and

control in Singapore. Hence, our objectives were first to develop a

weather-based dengue forecasting model to project dengue cases

or potential outbreak that would allow sufficient time for local

authorities to implement preventive measures and second to

validate and report the performance of the forecast.

Materials and Methods

Study area
Singapore is a highly urbanized island state nation situated at

1u.179N and 103u.509E of the equator with a land size of about

700 km2. As of 2011, the island accommodates a population of

around 5.2 million with about 93% of the population residing in

either government or private high rise residential buildings [28].

As a tropical country, Singapore experiences high temperature,

rainfall, and humidity year round. Weather in Singapore is

influenced by the monsoon rain-belt with highest rainfall between

December and early March [29].

Data collection
Weekly dengue cases from 2000 to 2011 were obtained from the

weekly infectious diseases bulletins of Communicable Diseases

Division, Ministry of Health (MOH) Singapore [30]. The

Infectious Diseases Act in Singapore stipulates mandatory disease

notification within 24 hours of diagnosis by all medical clinics and

laboratories.

Daily mean temperature and rainfall recorded by the Changi

Airport meteorological, southeast of Singapore, for the period of

2000–2011 were extracted from the National Climatic Data

Author Summary

Without effective drugs or a vaccine, vector control
remains the only method of controlling dengue fever
outbreaks in Singapore. Based on our previous findings on
the effects of weather on dengue cases and optimal timing
for issuing dengue early warning in Singapore, the
purpose of this study was to develop a dengue forecasting
model that would provide early warning of a dengue
outbreak several months in advance to allow sufficient
time for effective control to be implemented. We
constructed a statistical model using weekly mean
temperature and rainfall. This involved 1) identifying the
optimal lag period for forecasting dengue cases; 2)
developing the model that described past dengue
distribution patterns; 3) performing sensitivity tests to
analyze whether the selected model could detect actual
outbreaks. Finally, we used the selected model to forecast
dengue cases from 2011–2012 week16 using weather data
alone. Our model forecasted for a period of 16 weeks with
high sensitivity in distinguishing between an outbreak and
a non-outbreak. We conclude that weather can be an
important factor for providing early warning of dengue
epidemics, long term sustainability of forecast precision is
challenging considering the complex dynamics of disease
transmission.

Forecast of Dengue Incidence in Singapore
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Centre, National Oceanic and Atmospheric Administration

(NOAA), USA [31]. Weather data were provided to the NOAA

by the Meteorological Department of National Environment

Agency, Singapore under the regional data collaboration agree-

ment. The daily mean temperature was based on 24 hours

average temperature; while daily rainfall was the summation of

24 hours rainfall collected using rain gauges.

Statistical method
We developed a dengue forecasting model using time series

Poisson multivariate regression that allowed over-dispersion of

data. Mean weekly predicted cases were estimated through

regression on multiple independent variables that include retro-

spective dengue cases, weekly mean temperature, weekly cumu-

lative rainfall, trend, epidemic cycles and seasonal factors. The

forecasting model was developed using three processes: 1) model

construction and training using data from 2000–2010; 2) model

validation by forecasting cases in 2011–2012; and 3) sensitivity

tests on outbreak diagnoses. Our statistical analysis was conducted

using R [32] and STATA 11 (2009 StataCorp LP, Texas) based

on 95% confidence interval.

Model construction
We modeled dengue distribution patterns using retrospective

data and then extrapolated the patterns several weeks ahead. We

developed dengue forecasting models based on assumption that

the past dengue distribution patterns will, to a large extent,

continue in the future [33]. Bivariate equation (Dx) for each

independent variable was first formulated using quasi Poisson

regression and subsequently combined to form a multivariate

model that takes multiple factors into consideration.

Let us denote Dx*Poisson(mt),

where Dx represents weekly average number of predicted dengue

cases as a function of independent variable x.

Serial correlation of dengue cases
One characteristic of infectious disease is the influence of past

cases on the number of current cases. Therefore, autoregression

was included in the model to account for the serial relationship

between past and current cases. We derived possible lag time of

serial correlation through data analysis using Autocorrelation

Function (ACF), Partial Autocorrelation Function (PACF), and

prior knowledge on dengue transmission. ACF analysis on dengue

data showed gradual decreasing spikes that indicated strong

autocorrelation between past and current cases; whereas, PACF

cut off after the 4th spike suggesting a lag time of 4 weeks.

However, previous studies have shown possible autocorrelation of

dengue cases for longer period due to complex reasons that

influence the dynamic of dengue transmission [34]. Thus, we

examined lag times ranging from 4–12 weeks and selected the

optimal lag order using model selection and validation tests.

We denote DAR as the autoregression of dengue cases k weeks

before forecast in week t. The effects of autoregression on dengue

cases are computed as:

DAR~w0z
Xv

k~1

wt{kARt{k, ð1Þ

where ARt{k = dengue cases at lag week k,

w0 = the constant number of dengue cases,

wt{k = parameter of autoregression at lag week k.

Lag term and meteorological data cycle
We examined the time gap between exposure to weather

conditions and subsequent occurrence of dengue cases using cross

correlation function and literature reviews. Correlation between

temperature and dengue showed sine wave oscillating at about 24-

weeks cycle or interval with stronger positive association between

lag week 9 and 17. While correlation between rainfall and dengue

revealed different length of time cycles with a negative relationship

from week 0 to 22. It is possible for dengue transmission to occur

several months after favorable weather conditions as mosquito

eggs can withstand desiccation for several months with an average

egg survival time of 18.3 weeks for Aedes aegypti [35]. We identified

the optimal lag term and weather time cycle for forecasting by

testing lag terms 1–20 weeks with various data cycle periods of

weather variables ranging from 12 to 24 weeks. Piecewise

regression was used to consider a non-linear relationship between

weather and dengue cases. Thus, we partitioned weather data into

4 equally spaced percentiles with knots at 25th, 50th, and 75th

percentiles using spline function.

The impact of weekly weather on dengue cases is estimated as

follows:

Let DTempdepicts the number of dengue cases as a function of

weekly mean temperature:

DTemp~a0z
Xt{L

f ~t{(Lzn)

afpTempfp, ð2Þ

where a0is the baseline number of dengue cases; afp = parameter

of mean temperature at lag term f in p range of mean temperature;

f = t - (L+n); t = week; L = lag term in week; n = data cycle period of

weekly mean temperature; p = temp11 to temp14 derived from

piecewise spline function.

Let DRain denotes number of dengue cases as a function of

weekly cumulative rainfall:

DRain~b0z
Xt{L

g~t{(Lzm)

bgqRaingq, ð3Þ

where b0 is the baseline number of dengue cases; bgq = parameter

of rain at lag term g in q range of weekly cumulative rain; g = t -

(L+m); t = week; L = lag term in week; m = data cycle period of

weekly cumulative rainfall; q = rain11 to rain14 derived from

piecewise spline function.

Season, epidemic cycle, and trend
To account for non-climatic factors such as vector control,

circulating serotypes of dengue virus, and other factors that

influence the number of dengue cases, we performed graphical

examination on the trend, cycle, and seasonal distribution patterns

of dengue cases over the period 2000–2010. The trend of dengue

cases increased with cyclic variation from 2000 to peak at 2005

before declining thereafter. Increases in dengue cases were

generally observed in the second half of each year; while major

epidemics occurred in 2004–5 and 2007. We included a

curvilinear or parabola and sine function to account for trend,

epidemic cycle and seasonal influence on dengue cases during the

study period, respectively.

Let DTrend represents dengue cases influenced by trend over the

study period:

Forecast of Dengue Incidence in Singapore
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DTrend~h�0{h2 t{t�ð Þ2, ð4Þ

whereas,

h�0~
h2

1z4h2h0

4h2
2

= constant,

{h2 = parameter measures the trend,

t = week,

t �~
h1

2h2

= point in time where maximal impact of trend is

reached.

Let DCSeason depicts cyclical and seasonal impacts on dengue

cases:

DCSeason~S0zS1Sin
2pt

3 � 52

� �
, ð5Þ

where S0 = constant or baseline contribution of cycle and season,

S1~eS0 = parameter that gives rise to cyclical and seasonal

effects,

t = week.

Model formulation, selection, and validation
Dengue cases are subject to interactions of multiple complex

factors. Thus, we composed a Poisson multivariate regression

model by combining equations (1) to (5) to account for influences

of multiple factors on dengue cases. We also adjusted our findings

for population change by offsetting midyear population (offset = log

(pop)) during the study period.

Now we summarize our model as follows:

Dx*Poisson(mt)

and

Log mtð Þ~DARzDTempzDRainzDTrendzDCSeasonzlog(pop)

~D0z
Xv

k~1

wt{kARt{kz
Xt{L

f ~t{(Lzn)

afpTempfpz
Xt{L

g~t{(Lzm)

bgqRaingq

{h2 t{t�ð Þ2zS1Sin
2pt

3 � 52

� �
zlog popð Þ,

ð6Þ

where

Log mtð Þ is the average predicted dengue cases at week t,

D0 is the constant derived from multivariate model, and

D0~a0zb0zw0zh�0zS0 if all the independent variables

remain constant.

Model selection was based on lowest Akaike’s Information

Criterion (AIC) or Bayesian Information Criterion (BIC) and

standardized Root Mean Square Errors (SRMSE) of prediction.

Residuals diagnoses were performed to examine and validate a

good fit of the model using sequence plots to ensure sufficiency of

model and constant variation of errors, and residual normality

plots to examine normal distribution of errors. Furthermore, plots

of fitted versus reported dengue cases were also examined for good

fit of the model.

Model validation and forward forecast of dengue cases in
2011 and in 2012

Upon selection of a model that best described the data based on

2000–2010 dengue cases, we used the model to forecast cases for

years 2011 and 2012. In the first 16 weeks of 2011, we used data in

the last quarter of 2010 to forecast dengue incidence from

January–April 2011. Subsequently, we input only weather data for

January–December 2011 and prompt our model to forecast

dengue cases from week 17 of 2011 to week 16 of 2012. Only

weather data that were known at the time of issuing the 16 weeks

forecast were used. Forecasted dengue cases in each period were

then computed as autoregression for subsequent 16-week forecast.

The forecast was repeated iteratively over time to generate the

forecast for 2011–2012. Finally, we analyzed forecast precision by

comparing forecasted cases against real-time clinical and labora-

tory-confirmed dengue cases (external data) reported by the MOH

in each week. We also performed sensitivity tests on these data.

Sensitivity tests based on ROC curve
An effective dengue forecast provides accurate information and

minimizes false alarms so as to reduce unnecessary wastage of

limited resources. We therefore further identified the optimal

model using C-statistics or a Receiver Operating Characteristics

(ROC) curve to evaluate and compare the sensitivity of the

selected model in detecting true dengue outbreaks during both the

model development and forecasting periods. The ROC curve

analyzes the sensitivity or true positive rate of a model to predict

outbreaks versus the false positive rate (1-specificity). The area of

the ROC curve is the proportion of accurate prediction and this

measures overall ability of a model to distinguish between a true

outbreak and non-outbreak. We obtained annual outbreak or

epidemic thresholds that were available for 2004–2011 from

epidemiological reports published by the MOH Singapore. The

local authorities computed warning level and epidemic threshold

annually and dengue epidemic would be declared if total weekly

cases exceed the epidemic threshold. We computed binary

outcome of positive or negative outbreaks in each year based on

given epidemic threshold values.

Results

During the study period, the heaviest rainfall occurred in

December (max = 394 mm, mean = 70 mm, std dev = 74 mm);

whereas the highest temperature occurred in May (max = 30.3uC,

mean = 28.7uC, std dev = 0.7uC). As shown in Figure 1, the

average weekly mean temperature increased from week 1 and

peaked at week 21 before declining gradually to the end of the

year, whereas rainfall, which had less distinctive pattern generally

demonstrated a wide ‘U’ pattern with the lowest amount of rainfall

during weeks 19–42. Dengue incidence was generally higher

during June–October period or between week 23 and 43, except in

2005 when Singapore experienced a dengue outbreak in early

2005 which was a spillover from the end of 2004. From 2000–

2010, dengue outbreaks occurred in years 2004, 2005, and 2007.

Our findings showed that dengue cases with 6 weeks serial

relationship best fitted the selected model. The cross correlation

between temperature and dengue cases showed a symmetrical sine

wave oscillating about the zero line at a time frame of about 24

weeks per cycle. The symmetrical pattern suggested a consistent

and stable relationship between mean temperature and dengue

incidence; indicating that mean temperature could be a strong

predictor for dengue forecast. Simultaneously, cross correlation

between weekly cumulative rainfall and dengue revealed

Forecast of Dengue Incidence in Singapore

PLOS Neglected Tropical Diseases | www.plosntds.org 4 November 2012 | Volume 6 | Issue 11 | e1908



asymmetrical oscillation at less consistent time cycles. Our findings

showed that a model using weather time cycle of 20–24 weeks at

lag term of 16 weeks performed with consistency during both

training and forecast periods compared with models with other lag

terms and time cycles. We selected the model that exhibited

consistency in performance, high prediction precision, and lowest

SRMSE in the forecast period. Standardized prediction errors

(SRMSE) of the selected model were 0.3 and 0.32 of the standard

deviation of reported dengue cases during the model development

period (2000–2010) and forecast in 2011–2012, respectively. The

SRMSE can be interpreted as the average error in the forecast of

weekly dengue counts. Weather time cycles included in the

selected model were 24 weeks for mean temperature and 20 weeks

for rainfall.

According to our findings, the autoregressive term (k) in

equation (1) v = 6; lag term (L) in equation (2) and (3) = 16; time

cycle of mean temperature (n) in equation (2) = 24; and time cycle

for rainfall (m) in equation (3) = 20.

The R2 (0.84) of our model suggests that mean temperature,

rainfall, past dengue cases, season and trend explained 84% of the

variance of weekly dengue distribution. The time series of fitted

cases against actual reported cases as shown in Figure 2 exhibited a

good fit of the model. The model was able to predict the peaks of

the outbreaks that occurred in years 2004, 2005, and 2007. A

scatter plot of fitted versus reported dengue cases illustrated that

most of the fitted cases are scattered about the zero value with

constant variance; suggesting no violation of model assumptions.

Residual histograms exhibited a single modal and almost

symmetrical pattern, the residual normal probability plot present-

ed a reasonably straight line, and a residual sequence plot showed

that distribution is consistent about the zero value and within

upper and lower limits of +/2100. Thus, suggesting approximate

normal distribution of residuals.

Forecast of dengue cases in 2011 and 2012
During the forecast for 2011–2012, the optimal model

forecasted cases versus actual clinical reported dengue cases gave

an average error of 0.32 of the standard deviation of reported

cases. As shown in Figure 3, the model forecasted cases with lower

errors against actual reported cases in the 2nd half of the year. In

2011, reported clinical cases exceeded the epidemic threshold for 5

consecutive weeks between weeks 27 and 31. Our model

forecasted all the cases above the epidemic threshold with one

false positive case at week 32. We have matched our forecast

against external data or the real-time reported weekly cases from

MOH up to week 12 of 2012; thus far, the model forecasted

dengue incidence within the estimated range of errors.

ROC analysis suggested that our model performed with

sensitivity ranging from 98–99% during outbreaks in 2004,

2005, and 2007. Estimated ROC areas for the period 2004–

2010 indicated that the selected model performed at about 96%

(CI = 93%–98%) sensitivity in distinguishing between outbreaks

and non-outbreaks (Figure 4: Graph A), and in 2011 forecast with

98% (CI = 95%–100%) sensitivity in detecting a true outbreak

Figure 1. Average weekly distribution of dengue cases, mean temperature, and cumulative rainfall. Graphical presentation of lag
relationship between weather predictors and dengue cases using weekly average over the period 2000–2010.
doi:10.1371/journal.pntd.0001908.g001

Forecast of Dengue Incidence in Singapore
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(Figure 4: Graph B). ROC curves as shown in Figure 4 suggest a

sensitivity for diagnosing true outbreaks between 90% and 98%

during years 2004–2010 corresponding with a 10% to 20% risk of

false alarm; whereas, in 2011 the forecasting model showed 100%

sensitivity with less than 3% risk of false positive. Overall, the

ROC suggested that the selected model performed consistently at

above 90% during both model development and forecast periods.

Discussion

Our model forecasted dengue cases up to 16 weeks ahead using

retrospective weekly mean temperature and cumulative rainfall. It

showed a consistent ability to separate weeks and years with

epidemic and non-epidemic transmission in the training data, as

well as outside the training time period in 2011. Based on lagged

weather data and dengue counts the model predicted 5 out of the

5 epidemic weeks in 2011 correctly, using a 16 week lead time,

thus, allowing sufficient time to prepare and potentially curb the

epidemic. During the forecasting period in 2011, forecast precision

based on prediction error (SRMSE) and sensitivity (ROC) tests

suggested that the model forecast cases with high sensitivity for

detecting outbreaks with a low risk of false alarms. The tests results

during both training and forecast periods showed small discrep-

ancy in SRMSE with absence of over fitting; thus demonstrating

the stability of the model since the forecast in 2011 was performed

without using actual reported cases as autoregression.

In recent years, the ability to predict local and regional weather

in terms of accuracy and lead times has rapidly been improved due

to advances in technology. This had allowed a better understand-

ing of the interaction between climate and the temporal-spatial

distribution of infectious diseases as well as stimulating research

interest on epidemic prediction modeling [36]. We developed the

weather-based dengue forecasting model based on scientific

evidence that temperature and rainfall has significant influence

on vectors and dengue viruses [21,22,23,24,35,37,38]. Dengue

cases are influenced by complex interactions of ecology, environ-

ment, human, vectors, and virus factors. The lag time between

weather and dengue cases could be partly accounted for by the

impact of weather conditions on the biological development of the

mosquito vector including long egg hatching periods and high

possibility of Aedes’ eggs to survive waterless for several months

[21,22,23,24,35].

Several studies have documented relationship between weather

variables and dengue cases in Singapore. In the late 90 s, a study

that examined the links between dengue cases and Aedes mosquito

population as well as weather conditions in Singapore shows that

escalating temperature precedes rising dengue incidence by 8–20

weeks [16]. A recent study on the association between weather

variables and dengue cases in Singapore using data from 2000–

2007 has suggested that minimum and maximum temperature are

strong weather predictors for the increase of dengue cases;

whereas, rainfall and relative humidity have little correlation with

Figure 2. Fitted dengue cases versus reported dengue cases in 2000–2010. Model-based predicted or fitted dengue cases were plotted
against actual reported dengue cases during the model training period.
doi:10.1371/journal.pntd.0001908.g002

Forecast of Dengue Incidence in Singapore
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dengue cases [39]. Using a different approach in study design, Hii

et al. (2009) have quantified the effects of weekly mean temperature

and cumulative rainfall on the risks of dengue cases across lag

times up to 20 weeks [15,27]. In their study they considered lag

relationship between weather and dengue cases, impact of

previous outbreaks on current number of cases, and influences

of non-climatic factors. In addition, they applied smoothing

functions to allow non-linear relationship between exposures

(mean temperature and rainfall) and responses (risk of dengue

cases) as well as adopted quasi-Poisson to permit over dispersion of

data. Their findings show impacts of mean temperature and

cumulative rainfall on risks of dengue cases vary according to each

unit change in weather predictors in different lag windows (1–20

weeks). Overall, higher relative risks of dengue cases were

identified at lag weeks 9–16. Evidence that weather is also a

driver of dengue epidemics and trends of dengue has recently been

confirmed by Descloux et al. (2012) in a study in New Caledonia

[40]. It therefore seemed reasonable to assume that weather would

be a precipitating factor in dengue epidemics in Singapore.

This study demonstrates that weather variables could be

important factors for the development of a simple, precise, and

low cost functional dengue early warning. A weather-based

dengue early warning system could benefit local vector surveil-

lance and control in several ways. First, an early warning system

enhances efforts of dengue control to reduce the size of an

outbreak which in turn decreases disease transmission, averts

possible mortality, and lowers healthcare burden and operating

costs incurred during an outbreak. Second, the use of publicly

available weather variables removes the necessity for financial

investment in weather-based predictive methods and further

allows vector control units to focus their operations on high risk

period; thus, maximizing limited vector control resources. Third,

reports and study have suggested that local authorities require a

maximum 3 months to curb a localized dengue outbreak [7,27].

The forecast window of 16 weeks shown in this model offers ample

time for local authorities to mitigate a potential outbreak

effectively. Finally, high precision and sensitivity of a forecast

minimizes the use of resources and prevents unnecessary vector

control operations triggered by false alarms. Vector control can be

resource and capital intensive; hence, high operating costs and

unnecessary psychosocial stress in the population subsequent to

false alarms could possibly hamper the decision to adopt a dengue

early warning. Thresholds for true or false positive rates could vary

according to scale of operational complexity and its consequences.

We recommend an economic study on cost-effectiveness analysis

to identify thresholds of true and false positive rates of forecast to

serve as yardstick for decision making as well as to evaluate the

long term benefits of an early warning against operating costs.

Nevertheless, a dengue forecasting model faces the challenge of

long term sustainability of forecast precision since it assumes that a

historic distribution pattern will be repeated in the future; while

dengue epidemiology is influenced by a combination of factors

Figure 3. Forecasted dengue cases versus reported dengue cases in 2011–2012. Weekly forecasted dengue cases compared with reported
cases during the validation period from 2011 week 1 to 2012 week 16. Epidemic threshold was 191 cases for 2011 and 200 cases for 2012.
doi:10.1371/journal.pntd.0001908.g003
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which are dynamic and possibly evolving over time. Implemen-

tation of a new vector control policy could exert direct impact on

the size of the vector population and dengue incidence rate in the

locality. These changes are likely to influence the trend and

epidemic cycle in the long run. Though changes of dengue

distribution in the long term are inevitable due to the dynamics of

disease transmission and changes of relevant policy, forecast errors

can be minimized by making appropriate adjustment of the model

through anticipating 1) changes in risk factors and 2) changes in

related fields that will eventually influence the disease transmis-

sion. Therefore, current knowledge of factors influencing dengue

distribution patterns can be used to re-calibrate the model in the

future to maintain long term forecast precision.

A weather-based dengue forecast is often geographically fixed

due to variability of local weather conditions. Likewise, the

dynamics of dengue disease transmission in a community can be

influenced by risk factors unique to that local context. Therefore, a

locality based dengue forecast is usually applicable only to a

specific study area. Nevertheless, the methodology of a weather-

based dengue forecasting model could be extrapolated to other

geographical areas. Partly due to an exponential growth of

regional travels and trades, the Asia Pacific region has experienced

an upsurge of dengue incidence in recent years. This suggests that

a dengue endemic nation such as Singapore will no longer be able

to curb or eliminate dengue without wider regional efforts. A

regional dengue early warning system could signal risk of epidemic

to all neighboring countries and help to prevent the regional chain

effects of dengue outbreaks and so reduce the burden of dengue

disease in neighboring countries. Therefore, a regional dengue

forecast using weather anomaly such as El Nino index or sea

surface temperature will inevitably complement and enhance the

success of both national and regional dengue control.

In recent years, local authorities in Singapore heighten alert for

the risk of increase in dengue cases as ambient temperature

increases. Our study results demonstrate that a weather-based

dengue forecasting model could provide more precise information

on occurrence, timing, and size of dengue epidemics. A forecast

that diagnoses outbreaks accurately and simultaneously gives

about a four months window for implementing control measures

could be invaluable in making control or even elimination of the

cyclical dengue epidemic in Singapore a feasible possibility. We

recommend a further study to analyze the possibility of

incorporating a weather-based dengue early warning into the

national dengue surveillance system. Further studies to improve

long term sustainability of forecast precision will help to maintain

the performance of a forecasting model. Moreover, a research to

transform the forecasting model into a user-friendly or non-

technical operational instrument comprehensible by users without

specialist knowledge would encourage widespread adoption of

such a dengue early warning system.

Figure 4. Analysis of sensitivity of model to detect reported dengue epidemics using ROC curves. ROC curves in graph A and B show
sensitivity of model to detect true outbreak with corresponding probability of false alarm in year 2004–2010 and 2011, respectively.
doi:10.1371/journal.pntd.0001908.g004
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