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Abstract

Schistosomiasis, a neglected tropical disease, owes its continued success to freshwater snails that support production of
prolific numbers of human-infective cercariae. Encounters between schistosomes and snails do not always result in the snail
becoming infected, in part because snails can mount immune responses that prevent schistosome development.
Fibrinogen-related protein 3 (FREP3) has been previously associated with snail defense against digenetic trematode
infection. It is a member of a large family of immune molecules with a unique structure consisting of one or two
immunoglobulin superfamily domains connected to a fibrinogen domain; to date fibrinogen containing proteins with this
arrangement are found only in gastropod molluscs. Furthermore, specific gastropod FREPs have been shown to undergo
somatic diversification. Here we demonstrate that siRNA mediated knockdown of FREP3 results in a phenotypic loss of
resistance to Schistosoma mansoni infection in 15 of 70 (21.4%) snails of the resistant BS-90 strain of Biomphalaria glabrata.
In contrast, none of the 64 control BS-90 snails receiving a GFP siRNA construct and then exposed to S. mansoni became
infected. Furthermore, resistance to S. mansoni was overcome in 22 of 48 snails (46%) by pre-exposure to another digenetic
trematode, Echinostoma paraensei. Loss of resistance in this case was shown by microarray analysis to be associated with
strong down-regulation of FREP3, and other candidate immune molecules. Although many factors are certainly involved in
snail defense from trematode infection, this study identifies for the first time the involvement of a specific snail gene, FREP3,
in the phenotype of resistance to the medically important parasite, S. mansoni. The results have implications for revealing
the underlying mechanisms involved in dictating the range of snail strains used by S. mansoni, and, more generally, for
better understanding the phenomena of host specificity and host switching. It also highlights the role of a diversified
invertebrate immune molecule in defense against a human pathogen. It suggests new lines of investigation for
understanding how susceptibility of snails in areas endemic for S. mansoni could be manipulated and diminished.
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Introduction

Schistosomiasis is one of the world’s most tenacious neglected

tropical diseases, infecting an estimated 207 million people, mostly

children [1]. The persistence of schistosome parasites stems in part

from their use of freshwater snails for their larval development and

transmission. Snails are often abundant and difficult to control,

and it is in snails that the cercariae infective to humans are

produced in prolific numbers. It takes only a single schistosome

miracidium to establish a snail infection capable of producing

hundreds of cercariae on a daily basis for months [2]. The

amplification of schistosomes that occurs within snails creates a

reoccurring problem for control efforts and is a significant obstacle

for sustained prevention. It highlights the importance of

understanding the dynamics of schistosome infections in snails

and is the reasoning behind studies focused on characterizing the

mechanistic basis for snail resistance to schistosome infection. If we

could understand the underlying factors that enable snails to resist

schistosome infection, then we could better understand the basis of

compatibility in field snails. The level of compatibility exhibited

will directly influence both transmission dynamics and control

efforts. We could also potentially exploit resistance to favor

development of more sustainable control strategies that go beyond

today’s largely one-dimensional control programs that depend

primarily on treatment of infected people with praziquantel [3].

Not all snails are created equal: some are susceptible and

some resistant to schistosome infection. Resistance is genetically

controlled and affects immunological factors [4,5] that vary among

snail species, strains or age categories. For example, the human

parasite Schistosoma mansoni infects only certain species of

Biomphalaria (such as B. glabrata). Furthermore, only some strains

of B. glabrata are compatible with this parasite. Many studies have

focused on characterizing the transcriptional profiles of schisto-

some resistant strains compared to susceptible counterparts, and

have identified a number of putative resistance-associated factors

in the process [6,7]. Amongst these molecules are the fibrinogen-

related proteins (FREPs), members of a multi-gene family that

undergo somatic diversification and point mutation events. FREP

proteins couple together fibrinogen and immunoglobulin super-

family domains, to generate a protein that is unique as far as

presently known to gastropod molluscs [8]. FREPs are capable

of precipitating secretory/excretory products from digenetic
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trematode sporocysts [9], and binding to diversified glycoproteins

produced by parasites [10]. One individual FREP, FREP3, has

been singled out for further study because of its role in the snail

defense response against the trematode Echinostoma paraensei [4].

FREP3, like other FREPs, is a lectin-like molecule that recognizes

a number of monosaccharides and is able to enhance the

phagocytic uptake of targets, acting as an opsonin [11].

Knockdown of FREP3 in a normally resistant snail phenotype,

and subsequent challenge of those snails with E. paraensei resulted

in a significant proportion of the snails becoming infected with E.

paraensei [11].

Trematode infection of a snail host is achieved, in part, by

evading and suppressing the snail defense response. This provides

a window for establishment of infection and then preventing the

immune response from interfering with parasite development.

These immune-evasion strategies can be observed in vitro [12], and

also by transcriptional analysis [7], which suggests that many of

the transcripts expressed by resistant snails during successful

defense are suppressed in susceptible snails that become infected

[11]. Immunosuppression is especially strong following exposure

to E. paraensei, a parasite that can alter snail hemocyte morphology

and interfere with hemocyte function [12], and that can suppress

the expression of important immune molecules almost immedi-

ately upon entry into the snail [7]. One of the factors we identified

as being suppressed by E. paraensei during infection is FREP3 [11].

This observation prompted us to use, in one of the experiments

described below, a protocol first employed by Lie and Heyneman

[13] in which pre-exposure of schistosome-resistant snails to E.

paraensei was used to abrogate resistance to subsequent schistosome

infection. We hypothesized specifically that this treatment would

interfere with FREP3 expression (and likely with expression of

other immune components as well), as compared to schistosome-

resistant control snails not exposed to E. paraensei.

In this study, we report on the results of two different

manipulations undertaken with the intention of abrogating

resistance to S. mansoni in the naturally resistant BS-90 strain of

B. glabrata. We first examined the effects of knocking down FREP3

using RNAi on the subsequent ability of BS-90 snails to support S.

mansoni development. Secondly, we also expressly repeated the

classic experiment of Lie et al. (1977) [14], using both BS-90 snails

and accompanying microarray monitoring for the first time. We

first exposed BS-90 snails to radiation-attenuated miracidia of E.

paraensei, and then assessed their resistance level to S. mansoni as

compared to snails not pre-exposed to E. paraensei. Radiation-

attenuated E. paraensei parasites do not establish long-term,

proliferative infections in snails, avoiding the potential complica-

tion that persistent larvae of this species would prevent the

potential development of S. mansoni.

It is known, however, that irradiated E. paraensei larvae, during

their brief lifespan, exert a potent immunosuppressive effect just

as do normal E. paraensei larvae [7,11,13]. Infection with S.

mansoni of FREP3 knockdown snails and those first exposed to

irradiated E. paraensei was also assessed by histological examina-

tion as well as by checking for shedding S. mansoni cercariae,

which were tested for infectivity to mice. We compared the

transcriptional profiles of BS-90 snails exposed only to irradiated

E. paraensei to those exposed to irradiated E. paraensei and then

challenged with S. mansoni. Our study seeks to demonstrate the

involvement of a specific molecule in snail resistance to S. mansoni

infection, and to provide a plausible natural mechanism by which

trematode-mediated immunosuppression of the defense responses

of a snail could facilitate infection by a parasite that it would

normally successfully resist.

Materials and Methods

Live material
BS-90 and M-line strain Biomphalaria glabrata (B.g.) snails, and

Schistosoma mansoni (S.m.) and Echinostoma paraensei (E.p.) were

maintained as previously described [15].

FREP3 knockdown
Four independent 27 nucleotide oligos were designed to

specific regions of FREP3 that displayed high conservation

within the known diversified FREP3 transcripts. These oligos

were combined and diluted in sterile snail saline at a final total

concentration of 2 mg/ml, which was then injected into snails in a

5 ml volume. BS-90 snails were separated into two groups, the

first to be injected individually with FREP3-specific siRNA oligos,

and the second as a control, with GFP-specific oligos [16], siRNA

oligo design and injection techniques have been previously

described [11]. Four hours later, all snails were exposed

individually to 30 S.m. miracidia. Snails were collected for

histology at 2, 8, 18, 21, and 28 dpe. Snails were examined for

the presence of infection (presence or absence of primary and

secondary sporocysts) as described above for signs of infection at

21, 28, 34, 41, 48, and 54 dpe. Snails that shed cercariae were

collected for histology and the rest were dissected to look for

infections.

Knockdown of FREP3 was confirmed by RT-PCR and western

blot analysis both of which have been previously described [11].

Specific knockdown of FREP3 protein levels was confirmed by

probing the same samples with a FREP4 specific antibody. For

both Western blot analyses, 100 mg of cell free plasma was loaded

into each well of an SDS acrylamide gel. FREP3 was detected

using a FREP3 specific antibody, and the Western blot was

developed using the Supersignal West Femto Chemiluminescent

Substrate (Pierce). FREP4 was detected using a FREP4-specific

antibody and the Western Blot was developed using alkaline

phosphatase. Injection of siRNA oligos and challenge of both

FREP3 knockdown and GFP knockdown snails with S. mansoni

resulted in similar mortality in both groups of snails. 36% of the

FREP3 knockdown snails and 31% of the GFP knockdown snails

died as a result of treatment.

Author Summary

Schistosomiasis, a neglected tropical disease, owes its
continued success to freshwater snails that support
production of prolific numbers of human-infective cercar-
iae. Encounters between schistosomes and snails do not
always result in the snail becoming infected, in part
because snails can mount immune responses that prevent
schistosome development. Understanding the factors
important for snail resistance to schistosome infection will
facilitate new lines of investigation to 1) understand the
underlying basis of compatibility between schistosomes
and snails in endemic areas and how this affects
transmission dynamics and control efforts; and 2) to reveal
ways to manipulate natural snail populations to enhance
their resistance to schistosome infections. Here, we
present the first evidence that a snail immune molecule,
fibrinogen related protein 3 (FREP3), is important for
successful defense against schistosome infections in
Biomphalaria snails. In addition, we demonstrate that
FREP3 is a target suppressed by trematode parasites to
facilitate their establishment within the snail.

Determinants of Snail Resistance to Schistosomes

www.plosntds.org 2 March 2012 | Volume 6 | Issue 3 | e1591



Microarray confirmation of FREP3 RNAi-mediated
knockdown specificity

In addition to RT-PCR and Western blot confirmation of

FREP3 knockdown using FREP3-specific siRNA oligos as

previously described [11], we confirmed the specificity of FREP3

knockdown using microarray analysis. BS-90 snails (4–8 mm) were

injected with either FREP3 or GFP-specific siRNA oligos, and

2 hours later exposed to 30 S.m. miracidia. At 2 and 4 dpe, ten

snails from each group were collected, RNA was extracted and

then used to generate template for the microarray as previously

described [15]. Ten arrays were completed. Each array was

probed with template from an individual FREP3 knock-down snail

labeled with Cy5 and an individual GFP knock-down snail labeled

with Cy3. Hybridization, scanning, and analysis of the microarrays

were previously described [7], using a significance cutoff of +/

2log 1.5, and a false detection rate of 5%. Microarray results were

submitted to GEO under the accession number GSE33525. The

microarray revealed that indeed FREP3 expression was reduced at

the transcriptional level by 2.4 fold at 2 dpe and by 5.1 fold at 4

dpe. The only other significant results from that array revealed a

slight reduction in FREP13 expression by 1.2 fold at 2 dpe and 2

fold at 4 dpe and a slight up-regulation of TGFR-1 at 1.8 fold at 2

dpe and 2.6 fold at 4 dpe (Fig. S1). 18 other transcripts including

FREP2 and FREP6 displayed slight alterations in expression

however these changes were not considered statistically significant;

none of these other 16 transcripts were FREPs.

Confirmation of S. mansoni infectivity to a mouse from a
FREP3 knock-down snail

To confirm viability of the cercariae produced from the FREP3

knock-down BS-90 snails that shed at 31 dpe we collected all

cercariae produced (,150), and exposed one mouse, using

standard procedures as previously described [17]. Seven weeks

post-exposure, the mouse was injected with a heparin solution and

perfused by cutting the hepatic portal vein and injecting a

standard RPMI medium into the heart. S. mansoni adult worms

were collected and the liver was homogenized to collect S. mansoni

eggs. The presence of adult worms confirmed the cercariae

isolated from BS-90 snails were viable and the miracidia hatched

from the eggs were also viable, being able to infect M-line B.

glabrata snails (data not shown).

Echinostoma paraensei immunosuppression and
schistosome challenge

Size (4–8 mm shell diameter) matched snails were distributed

into five groups: 1). BS-90 exposed to 25–30 irradiated E.p.

miracidia at day 0 and secondarily challenged 4 days later with 15

S.m. miracidia, 2). BS-90 exposed to 25–30 irradiated E.p. only at

day 0, 3). BS-90 unexposed control, 4). BS-90 exposed to only 15

S.m. miracidia at day 4, and 5). M-line exposed to only 15 S.m.

miracidia at day 4 to confirm S.m. infectivity. For groups 2 and 3,

RNA was collected at 1, 2, and 4 days post-exposure (dpe) to E.p.

RNA was collected from groups 1, 2 and 4 at 1, 2, 4, and 8 dpe to

S.m. and snails were collected for histology from groups 1 and 4 at

2, 8, 18 and 28 dpe to S.m. Snails from group 5 at 18 dpe to S.m.

were also collected for histology. At days 18, 28, and 34 post-

exposure to S.m., all remaining snails were placed into large tissue

culture wells with artificial spring water and examined for the

presence of developing primary sporocysts in the head foot or

mantle, or secondary sporocysts in the mantle or digestive gland/

ovotestes. Snails that were shedding S.m. cercariae were collected

for histology. All snails that did not shed cercariae, were

individually placed in snail saline, dissected and examined with

the aid of a dissecting microscope for any signs of infection

(sporocysts, germ balls, cercarial embryos) which dissection of

known infected snails indicates can be seen under the 406
magnification used. Irradiation of E.p., and RNA extraction were

previously described [15].

Microarray analysis of resistance loss due to infection
with E. paraensei

RNA was collected from whole snails at 2 and 4 dpe to 15 S.m.

miracidia from groups 1 and 2 above, and was used to generate

template for the microarray as previously described [15]. Each

array was probed with RNA from an individual snail from the

experimental group (1 from above), labeled with Cy5 and with

RNA from a snail from control group 2, labeled with Cy3. There

were twelve arrays in total, six from 2 dpe and six from 4 dpe, as a

previous study revealed a great differentiation in transcription

between these two time points [7]. Hybridization, scanning, and

analysis of the microarrays were previously described [7], using a

significance cutoff of +/2log 1.5, and a false detection rate of 5%.

Microarray results were submitted to GEO under the accession

number GSE28293.

Histological analysis of S. mansoni infection
Snails were collected and placed whole into tubes containing

Railliet-Henry’s fixative (930 ml H2O, 50 ml formalin, 20 ml

acetic acid, and 6 g NaCl) to both fix the tissue and dissolve the

shell. Any remaining shell was removed before the tissue was

transferred into 10% buffered formalin. All tissue processing,

sectioning, mounting, and hematoxylin and eosin staining was

performed by TriCore Reference Laboratories in Albuquerque,

New Mexico. The images generated from these sections were

taken using a Nikon D5000 SLR camera attached to a Zeiss

Axioskop compound microscope with an MM-SLR adapter and

T-mount by Martin Microscope Company.

Results

Abrogation of resistance to S. mansoni following RNAi
knockdown of FREP3

Specific siRNA-mediated suppression of FREP3 expression in

BS-90 snails was confirmed at both the transcriptional (Fig. 1A)

and protein levels (Fig. 1B) using RT-PCR and Western blot

respectively. To assess whether FREP3 participated in an anti-S.

mansoni defense response a total of 70 S. mansoni-resistant BS-90

strain snails were injected with FREP3-specific siRNA oligos to

assess the impact of FREP3 knockdown on the subsequent ability

of S. mansoni to develop. Knockdown of FREP3 resulted in

cercariae-producing S. mansoni infections in 15 (21.4%) of these

normally resistant snails (Fig. 1C). In contrast, none of 64 control

BS-90 snails receiving GFP specific siRNA oligos shed cercariae.

As a check of the viability of the S. mansoni miracidia used in this

experiment, over 85% of schistosome-susceptible M-line snails

exposed to infection in both trials became infected, a level of

infection typical for exposure of such snails (Fig. 1C).

Histological analysis of FREP3 knockdown BS-90 snails
positive for S. mansoni infection

Histological observations revealed that S. mansoni miracidia

penetrated snails receiving either FREP3 or GFP siRNA oligos.

The early stage mother sporocysts (from 2 to 4 days post-infection)

we observed were not conspicuously encapsulated in either group

of snails. In most of the FREP3 knockdown snails that shed

cercariae, shedding was light and intermittent over a 1–2 week

Determinants of Snail Resistance to Schistosomes
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observation period, after which they were fixed for histology at 31

days post-exposure to S. mansoni. Histological examination of S.

mansoni-challenged FREP3 knockdown BS-90 snails revealed a

small number of large sporocysts in the head-foot of each of these

snails (Fig. 2 B, C). No disseminated daughter sporocysts were

found in the digestive glands of these snails, however (Fig, 2A).

The head-foot sporocysts had clearly grown considerably in size

beyond that of young mother sporocysts, and whether they

represented mother, or ectopic daughter sporocysts could not be

determined. They were not encapsulated by hemocytes, nor were

hemocytes prominently found near them. Developing cercariae

Figure 1. Knockdown of FREP3 reduces resistance to S. mansoni
infection in BS-90 strain B. glabrata. A) RNAi knockdown of FREP3 in
BS-90 B. glabrata snails confirmed at the transcriptional level by RT-PCR
(25 cycles) over the course of 96 hours post injection. Shown are
representative results from injection of FREP3-specific siRNA oligos and
control GFP-specific siRNA oligos on FREP3 transcript expression.
Experimental values are compared to the endogenous control
elongation factor 1-a (EF-1a). B) Confirmation of protein-level
knockdown of FREP3 in 4 individual BS-90 snails (A–D) before, and 4
days after injection of FREP3-specific siRNA oligos. FREP3 was visualized
using a specific anti-FREP3 antibody. As a control for protein loading
100 mg of cell-free plasma was loaded into each well, and the same
samples were probed for FREP4, using an anti-FREP4 antibody. FREP4 is
a different FREP family member, related to FREP3, and was detectable in
all individuals both before and after FREP3 knockdown. C) Percentage
of BS-90 snails shedding S. mansoni cercariae (21%) after knockdown of
FREP3, as compared to controls which were either susceptible M-line
snails exposed to S. mansoni (85%) or BS-90 snails injected with the GFP
siRNA constructs and challenged with S. mansoni (0%).
doi:10.1371/journal.pntd.0001591.g001

Figure 2. Histological sections of BS-90 strain B. glabrata snails
treated with siRNA oligos targeting FREP3, at 31 dpe to S.
mansoni. A. Snail digestive gland showing lack of S. mansoni infection
in this organ. B. Enlarged sporocyst (arrow) in the head-foot. C. Another
example from a different snail of enlarged, head-foot sporocyst (large
arrows) showing germ balls (short arrows). D. Hemocyte reaction of
snail to sporocyst material in the digestive gland. Scale bar = 10 um.
doi:10.1371/journal.pntd.0001591.g002

Determinants of Snail Resistance to Schistosomes
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were not seen within them but the sporocysts were of a size that

easily could have supported cercariae development.

One of the infected FREP3 knock-down snails more persistently

released cercariae over a 2 week observation period. Histological

examination revealed this snail to have daughter sporocysts

disseminated throughout the digestive gland. Hemocytes were

conspicuous around them and encapsulation responses were noted

(Fig. 2D). Only one of eight control BS-90 snails injected with

GFP-specific siRNA oligos and sectioned at 28 days post-exposure

to S. mansoni was observed to contain S. mansoni sporocysts, but they

had not grown and did not contain germ balls.

Immunosuppression of the snail defense response by E.
paraensei makes BS-90 snails permissive to S. mansoni
infection

BS-90 snails exposed to irradiated E. paraensei miracidia were

challenged with S. mansoni miracidia 4 days later. After another 35

days, the snails were checked for shedding of viable S. mansoni

cercariae, an indication that the infection was successful. Of 48

snails, 22 (46%) shed S. mansoni cercariae, compared to 0% (n = 35)

of control BS-90 snails exposed to only S. mansoni (Fig. 3). To

confirm the infectivity of the S. mansoni used, 22 M-line B. glabrata

were challenged and 82% were successfully infected (Fig. 3).

Histological comparison of S. mansoni cercariae-shedding BS-90

snails to normal resistant control BS-90 snails (Fig. 4A) showed

they had disseminated S. mansoni sporocysts throughout the

digestive gland (Fig. 4B, C) typical of normal infections. Snails

exposed to irradiation-attenuated E. paraensei only did not develop

disseminated E. paraensei infections, as expected. Degenerating E.

paraensei sporocysts could be observed in the hearts of the sensitized

snails, including those subsequently challenged with S. mansoni

(Fig. 4E). To confirm the viability of the E. paraensei cohort used,

BS-90 snails were exposed to non-irradiated control miracidia

from the same cohort that was irradiated and were successfully

infected by 28 dpe, as expected (not shown).

Successful infection of BS-90 snails by S. mansoni
perpetuates the suppression of important defense
factors

BS-90 snails first exposed to irradiated E. paraensei miracidia

were challenged four days later with S. mansoni miracidia.

Microarray analysis was then undertaken on individual snails

either 2 or 4 days post-exposure to S. mansoni. Schistosome-specific

markers on the array were used to indicate whether each snail had

been successfully infected with S. mansoni, or if it had resisted the

challenge. At both 2 and 4 days post S. mansoni challenge, 50% of

the snails assayed using the array were positive for S. mansoni

infections (3 positive, and 3 negative for S. mansoni for each time

point). Immunosuppression (as indicated by the greater number of

down-regulated than up-regulated features) resulting from expo-

sure to irradiated E. paraensei miracidia was noticeable for all 12

snails studied with the arrays (Fig. 5A).

However, snails negative for S. mansoni markers displayed

increased expression of a variety of known and putative defense-

related factors (Fig. 5B). For some factors (FREP3, Dermato-

pontin, Heat shock protein 70, Superoxide dismutase 1 Cu-ZnA,

Serpin B4, and Matrilin-1A) increased expression in snails

negative for S. mansoni was contrasted by a suppression of

expression in snails positive for this parasite. Other factors

(FREP2, Coagulation factor XI, Dual oxidase, Galectin 4,

Migration inhibition factor, Peroxiredoxin, and SOD Cu-Zn B)

increased in expression in snails not infected by S. mansoni, but

remained unaltered as compared to control values in snails that

were successfully infected. FREP4 expression differed from other

putative resistance molecules in that it was increased compared to

control levels in both snails positive or negative for S. mansoni

(Fig. 5B).

Discussion

Schistosome parasites, including those that infect people,

continue to thrive the world over, in no small measure owing

their success to their productive use of snails as intermediate hosts.

Particularly given that schistosome infection is harmful to the snail

and results in its castration [18], it is reasonable to expect that the

snail would mount defense responses to prevent infection.

Although schistosomes obviously frequently prevail and establish

long-term, infections, it is likely that many schistosome-snail

encounters in the field result in failed infections. Such failures go

overlooked but may well have a significant impact on transmission.

Furthermore, the efficacy of present-day chemotherapy-based

control operations could potentially be enhanced if we could also

exploit snail resistance responses to further limit the number of

new snail infections that arise. After all, it is in snails where

cercariae - the source of reinfections in people that so frustrate

control efforts - are produced in such prodigious numbers. To fully

understand the potential impact of snail defenses on schistosome

transmission to people, we need to achieve a better understanding

of the mechanistic basis of snail defenses to infection, and how

these defenses are overcome by schistosomes. In the process, we

will also learn a great deal about the general nature of invertebrate

(snail) defense mechanisms and the intimate interplay between

host and parasite.

With respect to the immune responses of snails, our studies have

lead us to focus on fibrinogen related proteins, or FREPs. One of

the most noteworthy aspects of their biology is that two FREPs

(first shown for FREP3, then FREP2) have been shown to undergo

somatic diversification driven by gene conversion events and point

mutations, creating a diversity of expressed sequences from a

limited number of germ-line source sequences [10,11,19].

Recently, functional assessment of FREP3 demonstrated that it

is capable of binding to carbohydrates and acts as an opsonin to

enhance phagocytosis of targets by snail hemocytes. RNAi-

mediated knockdown of FREP3 in snails resistant to the digenetic

trematode Echinostoma paraensei resulted in an abrogation of

resistance, resulting in one third of the snails developing

established E. paraensei infections. Additionally, this study identified

that FREP3, while increased in expression in resistant snails

challenged with S. mansoni or E. paraensei, was suppressed in snails

that were successfully infected by either parasite [11]. FREP2,

another FREP that has the capacity for diversification, has been

Figure 3. Percentage of BS-90 snails shedding S. mansoni
cercariae after attenuation with irradiated E. paraensei mira-
cidia. Experimental snails (46% infection rate) were compared to S.
mansoni-susceptible M-line B. glabrata (82% infected), and to BS-90
snails challenged with S. mansoni only (0% infected).
doi:10.1371/journal.pntd.0001591.g003
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co-immuno-precipitated with S. mansoni polymorphic mucins,

suggesting that this complex family of diversified parasite

molecules may be the targets for FREPs [10].

Building on these earlier studies, here we demonstrate that

FREP3 also plays a role in defense against S. mansoni infection.

Knockdown of FREP3 resulted in 21% of the resistant BS-90

strain B. glabrata snails becoming successfully infected (shedding

cercariae) with S. mansoni. In contrast, none of the 64 snails injected

with GFP siRNAs shed cercariae. As previously hypothesized,

FREP3 is likely working in combination with other defense

mechanisms to manifest the resistant qualities of the BS-90 snails.

However, this study clearly demonstrates that it is an important

component of defense against S. mansoni.

Examination of sectioned snails revealed that S. mansoni

miracidia penetrated both control GFP and experimental FREP3

knockdown snails, but observations of sporocysts at 2 and 8-days

post-infection did not yield obvious evidence in either group of

snails of sporocysts under conspicuous attack by hemocytes

including within multilayered hemocyte capsules. Rather, sporo-

cysts were found with only loose aggregates of hemocytes in their

vicinity. This is compatible with observations reported by Galvan

et al., 2000 [20] who noted that mother sporocysts of S. mansoni

could remain viable in BS-90 snails for as long as 33 days.

However, none of the S. mansoni-exposed BS-90 snails that they

observed, nor any that we have observed over the years prior to

this study, have ever shed cercariae. Our observations suggest that

the inability of S. mansoni to thrive in BS-90 snails - at least in some

cases - may be more dependent on inhibitory humoral factors than

on overt hemocyte aggression and dismemberment. For example,

humoral factors might serve to inhibit S. mansoni larval develop-

ment or nutrition acquisition.

In all but one of the BS-90 FREP3 knockdown snails from

which cercariae were shed, cercariae production must have

originated from a small number of sporocysts in the head-foot of

the snail. This likely explains why cercariae were produced by

them in small numbers and intermittently. The daughter

sporocysts producing these cercariae were either within or

adjacent to the mother sporocyst that produced them. As these

snails were fixed for histology, it is not clear how long they might

have persisted in shedding cercariae. We suggest FREP3

knockdown in these snails allowed sporocysts to persist and

enlarge, but was insufficient to enable them to proliferate and

establish disseminated infections in the digestive gland. Hemocytes

were not prominent around the head-foot sporocysts suggesting

they had acquired some ability to protect themselves from attack.

In snails receiving GFP siRNAs, in only one snail examined could

sporocysts be found. They were small and showed no evidence of

germ ball development. Based on these results, one possibility is

that FREP3 plays a role in suppressing development of S. mansoni

sporocysts in BS-90 snails, and if its effects are temporarily

reduced, sporocysts may be released from this inhibition

sufficiently well to enable some sporocyst development and

multiplication to occur. As the knock-down effects inevitably

wane, then the sporocysts may be prevented from further

development such that proliferative infections do not usually

result.

Figure 4. Histological sections of BS-90 snails made susceptible
to S. mansoni infection by previous infection with irradiation-
attenuated E. paraensei. A. Control snail not exposed to S. mansoni
infection showing normal architecture of digestive gland. B–D. BS-90
snails with disseminated S. mansoni infections (arrows) following

exposure to irradiated E. paraensei, including in the digestive gland. E.
Exposure to irradiated E. paraensei did not result in disseminated
infection or shedding of E. paraensei cercariae, however degenerating
irradiated E. paraensei sporocysts were observed in the heart, as
expected. Two degenerating sporocysts (arrows) of E. paraensei in the
heart of a sensitized snail (28 dpe to S. mansoni). Scale bar = 10 um.
doi:10.1371/journal.pntd.0001591.g004
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For the one FREP3 knockdown snail noted to have a disseminated

infection, hemocytes accumulated in the digestive gland and in some

cases were seen to be encapsulating daughter sporocysts. This is

reminiscent of what was noted by Lie et al. [21] in some of the 10-R2

B. glabrata snails they observed in which resistance to S. mansoni had

been broken down by pre-exposure of these snails to irradiated

miracidia of E. paraensei. In about 30% of these snails, ‘‘self-cure’’ was

eventually noted, characterized by hemocyte reactions to daughter

sporocysts. Results of both experiments imply that snails inherently

resistant to S. mansoni can reinvigorate an effective resistance response

later in the course of infection, even though their ability to prevent

establishment and development of infection had been earlier

compromised by experimental manipulation. This suggests that

the machinery for generating resistance is still intact. Furthermore,

even though their collective biomass is large, daughter sporocysts

may not be as effective as newly-penetrated (and much smaller)

mother sporocysts in preventing effective responses.

As noted in the previous paragraph, and initially documented in

studies by Lie and co-workers (13,25), both normal and irradiated

sporocysts of E. paraensei have a potent ability to interfere with the

resistance of B. glabrata to trematode infection. Their classic work

has since stimulated a number of studies to reveal the underlying

mechanisms of immunosuppression. Hemocytes collected from B.

glabrata infected with E. paraensei exhibited reduced adhesive,

spreading and phagocytic capacity compared to uninfected

controls [22,23]. B. glabrata hemocytes exposed to live E. paraensei

sporocysts in vitro actively move away from the parasite [12], and

eventually lose adherence to the substrate if exposed to parasite

excretory/secretory (ES) products [24]. Furthermore, (ES) prod-

ucts of a related parasite, Echinostoma caproni, significantly impact

the functional capacity and behavior of snail hemocytes, including

a loss of adhesion, spreading and phagocytosis [25]. As these

effects seem to be specific to suitable snail hosts, not extending to

echinostome-resistant snail strains [25] or species [12,26], the

Figure 5. A. Total number of transcripts exhibiting increased (above zero line) or decreased (below zero line) expression in BS-90
snails immunocompromised by irradiated E. paraensei before challenge with S. mansoni (see key for bar colors on figure). Analysis
compared experimental snails at 2 or 4 days post S. mansoni challenge to time and size matched control BS-90 snails exposed to irradiated E.
paraensei only. Of the 6 individual snails analyzed at each time point, 3 were successfully infected with S. mansoni, and 3 remained resistant. B)
Expression profiles of transcripts deemed important to S. mansoni resistance in snails. Fold-changes in expression of snails suppressed by irradiated E.
paraensei before S. mansoni challenge are compared to snails exposed only to irradiated E. paraensei. Bars represent standard error (n = 3).
doi:10.1371/journal.pntd.0001591.g005
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mechanism of their effects must be tailored to specific aspects of

the defense system of compatible snails.

To pursue the molecular basis of E. paraensei-induced immuno-

suppression, we have followed the transcriptional responses of

exposed snails using microarrays. By as early as 12 hours post-

exposure, E. paraensei provokes down-regulation of snail defense

responses, including FREP3 expression [7]. Many of the targets of

E. paraensei immunosuppression are putative or known resistance-

associated factors such as FREPs 1, 3, 5, 8, 9, and 10 [8],

migration inhibition factor [27], dermatopontin [28], alpha-2-

macroglobulin receptor [29], mannose receptor [30], peroxire-

doxin [31], and galectins 4 and 7 [32]. Reduction in the presence

of these factors theoretically would impact many aspects of defense

function such as activation and phagocytosis by hemocytes

(FREPs, mannose receptor, alpha-2- macroglobulin receptor),

intra- and extra-cellular killing (peroxiredoxin), hemocyte adhe-

sion and encapsulation (dermatopontin, migration inhibition

factor), and coagulation (galectins).

Based on these results, we sought to repeat the basic design of

the experiment of Lie et al. [14], to see if we could use pre-

exposure of irradiated miracidia of E. paraensei to interfere with

resistance of BS-90 snails to S. mansoni. Our experiment represents

the first repeat of their classic experiment that has been

accompanied by molecular (microarray) studies, and it is the first

experiment to employ the naturally resistant BS-90 snails as hosts

as opposed to other resistant B. glabrata snails of the 10-R2 or 13-

16-R1 strains that were bred and selected for resistance [14].

We show that irradiated E. paraensei sporocysts suppress the BS-

90 defense response sufficiently to allow 46% of the snails so

treated to develop patent S. mansoni infections. When snails that

permitted S. mansoni development were compared with those that

did not using the B. glabrata microarray, we observed a number of

immune-relevant transcripts that exhibited expression patterns

indicating S. mansoni contributed to the suppression as well. FREP

2 and 3, coagulation factor IX, dermatopontin, dual oxidase,

galectin 4, MIF, peroxiredoxin, superoxide dismutase Cu-Zn, and

heat-shock protein 70 all exhibited increased expression in snails

that successfully resisted infection compared to those that were

infected by S. mansoni. Thus, we confirm previous hypotheses [7]

suggesting that S. mansoni also utilizes a program targeted at

suppressing the expression of important defense factors involved in

killing larval parasites. This past work indicates that S. mansoni and

E. paraensei differ in the timing and targets suppressed, E. paraensei

beginning aggressive immunosuppression by 12 hours post

challenge, S. mansoni beginning between 2 and 4 days post

challenge [7].

Our results also suggest that irradiated echinostome larvae are

more effective than our FREP3 knockdown protocol in protecting

S mansoni sporocysts in resistant snails. This may be because

irradiated echinostomes provide more persistent down-regulation

of FREP3, and also have effects on other immune factors as well.

The irradiated echinostome experiment indicates that if S. mansoni

sporocysts are sufficiently protected, they can reliably develop

disseminated infections in resistant snails. This may be because

irradiated echinostomes provide S. mansoni sporocysts a longer

interval to acquire and express their own immunosuppressive

effects.

Our studies indicate that both echinostomes and schistosomes

employ means of immunosuppression to colonize snails, and that

this property can be manipulated to increase the breadth of strains

of a single species, B. glabrata, that can be colonized. This work also

bears on two important related general issues in parasitology, host

specificity and host switching. Even though most digenetic

trematodes are very host specific with respect to their choice of

snail hosts, phylogenetic studies suggest that host-switching with

respect to snails has been common in the history of trematodes like

schistosomes [33]. The suppression we document offers one

potential mechanism to resolve this apparent paradox: down-

regulation of defense responses by one parasite may open the door

for colonization of another parasite normally incompatible with

that host. Field studies indicating the ability of one trematode to

facilitate infection with another are consistent with this possibility

[34,35]. Cercariae produced in this study, both from BS-90 B.

glabrata infected by S. mansoni due to reduced FREP3, or E.

paraensei-mediated immunosuppression, were viable and able to

infect mice. Thus, there is the potential for continuation of a

trematode life cycle from a normally resistant snail host. It remains

to be seen whether eggs produced from these mice have improved

success at infecting BS-90 B. glabrata. We suggest that this study

provides proof of principle that parasite-induced immunosuppres-

sion improves the chances that normally incompatible parasites

can be successful in new, and hostile host environments.

Furthermore, it provides a specific mechanism and molecules to

target for future studies aimed at experimentally studying host

specificity and host switching.

Another potential application of this work relates to the role of

FREP3 in resistance of wild B. glabrata to infection with S. mansoni.

Although it is clear that other factors are involved in resistance,

this line of work suggests efforts to up-regulate FREP3 expression

in snails from natural populations could have the effect of

diminishing S. mansoni infections. We now must focus our efforts

on understanding whether snails from endemic areas mount

FREP3 responses following exposure to natural schistosome

infections. It also raises the question as to whether snails differ in

their inherent FREP3 responsiveness, and if this trait can be

manipulated or favored to diminish natural schistosome infec-

tions.

Supporting Information

Figure S1 Graph showing the fold change in expression of the

transcripts observed to have altered expression patterns following

knockdown of FREP3. A number of random transcripts (shown on

the right side of the graph, separated by the vertical bar) are also

shown to demonstrate the expression patterns observed for the

majority of the transcripts on the array.
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