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Abstract

P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) are ATP-dependent transporters involved in efflux
of toxins and xenobiotics from cells. When overexpressed, these transporters can mediate multidrug resistance (MDR) in
mammalian cells, and changes in Pgp expression and sequence are associated with drug resistance in helminths. In addition
to the role they play in drug efflux, MDR transporters are essential components of normal cellular physiology, and targeting
them may prove a useful strategy for development of new therapeutics or of compounds that enhance the efficacy of
current anthelmintics. We previously showed that expression of Schistosoma mansoni MDR transporters increases in
response to praziquantel (PZQ), the current drug of choice against schistosomiasis, and that reduced PZQ sensitivity
correlates with higher levels of these parasite transporters. We have also shown that PZQ inhibits transport by SMDR2, a Pgp
orthologue from S. mansoni, and that PZQ is a likely substrate of SMDR2. Here, we examine the physiological roles of SMDR2
and SmMRP1 (the S. mansoni orthologue of MRP1) in S. mansoni adults, using RNAi to knock down expression, and
pharmacological agents to inhibit transporter function. We find that both types of treatments disrupt parasite egg
deposition by worms in culture. Furthermore, administration of different MDR inhibitors to S. mansoni-infected mice results
in a reduction in egg burden in host liver. These schistosome MDR transporters therefore appear to play essential roles in
parasite egg production, and can be targeted genetically and pharmacologically. Since eggs are responsible for the major
pathophysiological consequences of schistosomiasis, and since they are also the agents for transmission of the disease,
these results suggest a potential strategy for reducing disease pathology and spread.
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Introduction

Schistosomiasis is a major endemic disease that affects hundreds

of millions worldwide, causes nearly 300,000 deaths annually, and

has an estimated human health burden on a par with malaria or

tuberculosis [1–3]. The causative agents of schistosomiasis are

parasitic flatworms of the genus Schistosoma. Adult schistosomes

reside in the vasculature of the host, where they take up nutrients

and deposit eggs which evoke a host immunopathological response

that is responsible for the development of the pathophysiological

effects of chronic schistosomiasis. Like other organisms, schisto-

somes must eliminate toxic metabolites and xenobiotics, and, as

parasites, must in addition deal with potentially toxic compounds

generated by the host [4].

Multidrug resistance (MDR) proteins are cellular efflux

transporters with broad substrate specificities that likely play

essential roles in this process, as well as in other significant aspects

of parasite physiology. Several of these transporters are members

of the ATP binding cassette (ABC) superfamily of proteins,

including P-glycoprotein (Pgp), multidrug resistance-associated

proteins (MRPs), breast cancer resistance protein (BCRP), and

others [5,6]. Their major role in normal cellular physiology is to

remove or exclude xenobiotics and metabolic toxins, but they are

also involved in a wide array of physiological functions [7–9],

including regulation of cell death [10] and immune function [11].

As their name suggests, MDR transporters also mediate

multidrug resistance, a phenomenon in which cells that develop

resistance to a particular drug also show unexpected cross-

resistance to several structurally unrelated compounds. Though

MDR transporter-mediated multidrug resistance was described

originally in mammalian cells [12], MDR transporter expression

levels and allele frequencies are also altered in anthelmintic-

resistant populations of helminths, including schistosomes [13–22].

The role these transporters might be playing in helminth and other

parasite drug resistance has recently been reviewed [23–27].

Praziquantel (PZQ) is the current drug of choice against

schistosomiasis. It is highly effective against all schistosome species,

and shows minimal adverse effects [28–30]. However, schisto-

somes show stage- and sex-dependent differences in susceptibility

to PZQ [31–33], and the mode of action of the drug remains

unresolved three decades following its introduction [34,35].

Though currently there is little compelling evidence that PZQ
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resistance constitutes a major problem in the field, several reports

of worm isolates exhibiting reduced PZQ susceptibility following

drug pressure have appeared in the literature, and could be

harbingers of the emergence of more widespread resistance [36–

38]. Recent studies on changes in gene expression in response to

PZQ may provide clues to the mode of action of the drug and to

possible molecular mechanisms underlying development of

resistance [39,40].

ABC transporter cDNAs that have been characterized in

schistosomes include SMDR2 [41], a S. mansoni orthologue of Pgp,

and SmMRP1 [42], a S. mansoni orthologue of MRP1. SMDR2

RNA is expressed at higher levels in female parasites than in males

[21,41], while males express higher SmMRP1 RNA levels than

females [42]. Notably, S. mansoni adults upregulate expression of

both of these transporters in response to PZQ [21,42].

Furthermore, higher basal levels of both SMDR2 and SmMRP1

correlate with reduced PZQ susceptibility [21,42], and PZQ

inhibits, and is also a likely substrate of, SMDR2 [43]. Based on

these findings, we have hypothesized that schistosome MDR

transporters may be modulating the responsiveness of parasites to

PZQ [44]. We also predict that schistosome multidrug transporters

play critical roles in worm physiology, development, and perhaps

in modifying host responses.

In this report, we use genetic and pharmacological approaches

to examine the effects on schistosomes of interference with normal

MDR transporter function. We find that knockdown of SMDR2

or SmMRP1 expression in adult worms, or exposure of parasites

to pharmacological inhibitors of these transporters, disrupts egg

production in S. mansoni cultured ex vivo. Furthermore, adminis-

tration of any of four structurally diverse Pgp inhibitors to

schistosome–infected mice results in a reduced egg burden in the

livers of those infected mice. Schistosome eggs are associated with

the majority of morbidity in chronic schistosomiasis, and are the

agents of disease transmission. Our findings indicate that MDR

transporters may be essential components of pathways involved in

schistosome reproduction, and may serve as highly ‘‘drugable’’

targets for new antischistosomals that decrease egg-dependent

pathology and could serve to reduce disease transmission.

Results

Knockdown of SMDR2 and SmMRP1 RNA and protein in
S. mansoni adults

We used electroporation of SMDR2 and SmMRP1 siRNAs to

knock down expression of the multidrug resistance proteins SMDR2

and SmMRP1 in adult worms. As shown in Fig. 1, electroporation of

adult parasites with siRNA targeted against either sequence results in

substantial reduction of the relative expression level of that gene,

both at the RNA and protein levels. Levels of RNA expression for

both genes in pooled adult schistosomes are reduced by 50–70%

compared to controls. Addition of SmMRP1 siRNA to the SMDR2

siRNA does not appear to affect RNA levels of SMDR2, nor does

addition of SMDR2 siRNA appear to additionally decrease levels of

SmMRP1 RNA. Protein expression, as measured by immunoblot-

ting with anti-Pgp and anti-MRP1 antibodies, is also reduced.

Knockdown of SMDR2 or SmMRP1 decreases egg
production in S. mansoni adults

Adult schistosomes perfused from the murine host and

maintained in vitro will continue to produce eggs, though only

those deposited during the first 48 h following perfusion from the

host appear to be viable [45]. We compared the cumulative

number of eggs produced by worms over a 2–3-day span following

electroporation with siRNA against SMDR2 or SmMRP1 (or

both). We also counted eggs produced by control worms

electroporated with luciferase siRNA or with no treatment. As

shown in Fig. 2, knockdown of either MDR transporter gene (or

both) resulted in a significant reduction in cumulative egg

production compared to controls.

Exposure of adult S. mansoni to MDR inhibitors disrupts
egg production

As shown above, knockdown of MDR transporter expression in

adult S. mansoni results in decreased parasite egg production.

Previous work described in a patent [46] showed that exposure of

worms to verapamil, a mammalian L-type voltage-gated Ca2+

(Cav) channel blocker and also an inhibitor of SMDR2 [43] and

mammalian Pgp [47,48], reduces egg production. We have

confirmed these results for verapamil, finding no eggs whatsoever

following incubation of adults in 10 mM verapamil for 2 days.

Based on these results, we examined other structurally diverse

Pgp and MRP1 inhibitors for their effects on S. mansoni egg

production. Drugs tested included: the immunosuppressant

cyclosporin A (CSA), which is also an inhibitor of mammalian

Pgp; R(+)-verapamil (dexverapamil), an enantiomer of verapamil

which is significantly less active than the S(2) enantiomer against

Cav channels, but which retains potent and selective competitive

inhibitory activity against Pgp [49]; C-4, a curcumin derivative

that is a cell-permeable, reversible Pgp inhibitor [50]; tariquidar

(aka XR9576), a third-generation, selective and highly potent Pgp

inhibitor [51–53] (which also appears to be a substrate of BCRP at

low concentrations and an inhibitor of BCRP at .100 nM

concentrations [54]); and MK 571, a potent inhibitor of MRP1

[55]. As shown in Fig. 3, exposure of adult worms to any of these

compounds ex vivo resulted in a dramatic, dose-dependent

reduction in cumulative parasite egg production over two

(tariquidar, MK 571) or five (CSA, dexverapamil, C-4) days in

culture. Specifically, exposure of worms to CSA (Fig. 3A) results in

a ,75% decrease in egg production at concentrations of 1 mM–

22.5 mM. Worms exposed to C-4 (Fig. 3B) show a 62% decrease at

10 mM and a 92% decrease at 25 mM concentrations, while

dexverapamil (Fig. 3C) produces a ,65% decrease at 1–2 mM.

Author Summary

Schistosomes are parasitic flatworms that are the causative
agents of schistosomiasis, a major tropical disease. As
adults, schistosomes reside within the host vasculature,
taking up nutrients, evading host defenses, and expelling
wastes and toxins. Multidrug resistance transporters are
involved in removal of toxins and foreign compounds,
including drugs, from cells. These transporters have broad
selectivity, and when upregulated or mutated, can confer
resistance to a wide spectrum of drugs against mammalian
tumor cells. They are also associated with drug resistance
in various parasites, including helminths. In this report, we
have used knockdown of expression of these proteins and
pharmacological inhibition of their transport function to
dissect their physiological role in the schistosome life
cycle. We find that either reducing transporter expression
or pharmacologically inhibiting transporter function leads
to disruption of egg production by adult worms. Eggs
deposited within the host are the major cause of disease
pathology, and eggs excreted by the host are the means of
continuation of the life cycle and transmission of the
disease. The capability to interfere with schistosome egg
production could have major implications for develop-
ment of new treatment strategies.

Function of Schistosome MDR Transporters
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Exposure of parasites to tariquidar at concentrations $12.5 mM

results in no eggs being deposited whatsoever (Fig. 3D), and in

apparent worm lethality (absence of movement or response to

stimuli) after 72 h exposure (data not shown). The MRP1 inhibitor

MK 571 also disrupts egg production, with no eggs deposited

following exposure to 50 mM MK 571 (Fig. 3E). Disruption of egg

production also occurs when females cultured alone are exposed to

Pgp inhibitors (Fig. 3F). Drug-treated females could not be rescued

by addition of untreated males; egg production was still inhibited

(data not shown), indicating that the process being targeted is likely

autonomous to the female worms or the eggs themselves. Drug

treatment, exemplified by dexverapamil, appears to affect the

morphology of female reproductive organs (Fig. S1).

Those eggs that were deposited by worms treated with MDR

inhibitors such as tariquidar were often morphologically abnormal

(Fig. 4), appearing malformed, necrotic, and sometimes disintegrat-

ed or in the process of fragmentation. However, other than C-4, the

Pgp inhibitors do not appear to be acting on the eggs themselves.

Thus, eggs isolated from infected mouse livers and subsequently

exposed to CSA, dexverapamil, or tariquidar hatch normally (data

not shown). Eggs exposed to C-4 do not appear to hatch.

Administration of Pgp inhibitors to S. mansoni-infected
mice decreases liver egg burden

To test whether MDR inhibitors would also disrupt egg

production by parasites within the murine host, we administered

three intraperitoneal doses (100 ml volume each) of either CSA

(60 mg/kg), C-4 (50 mg/kg), dexverapamil (60 mg/kg), or tariqui-

dar (15 mg/kg) to S. mansoni-infected mice at 5–6 weeks post-

infection. Livers of infected mice treated with any of the four Pgp

inhibitors showed significantly reduced egg burden compared to the

vehicle-injected control (Fig. 5A). Egg burden was reduced

approximately 80% following administration of C-4, 65% following

administration of dexverapamil, 55% following administration of

tariquidar, and 50% following administration of CSA. These

changes were reflected in significant reductions in the number of

liver granulomas found in drug-treated and control mice, except in

the case of CSA, which showed no difference from control (Fig. 5B).

The largest reduction in granuloma number per cm2 (45%) was

found for dexverapamil. We also observed a significant reduction in

granuloma size when infected mice were treated with any of the four

Pgp inhibitors (Table 1). To determine whether the effects of these

drugs on parasite egg production persist outside of the host, we

perfused adult worms from C-4-, dexverapamil-, and CSA-treated

mice and measured subsequent egg production during culture ex

vivo. These cultured adult worms do not show a significant decrease

in egg production, except for those parasites perfused from mice

that had been treated with CSA (Fig. 5C).

Discussion

In this report, we used genetic and pharmacological approaches

to disrupt normal MDR transporter function in S. mansoni.

Figure 1. Knockdown of SMDR2 and SmMRP1 expression in adult parasites. Adult parasites were perfused at 6–7 weeks post infection and
electroporated with 3 mg of siRNAs or water. Following electroporation, pooled adult worms (males and females) were incubated as described in
Materials and Methods, and the expression of SMDR2 and SmMRP1 analyzed for changes in RNA and protein abundance (A, B). Western blot analysis
of anti-Pgp (A) or anti-MRP1 (B) cross-reactive proteins (upper panel) isolated from worms treated with SMDR2 siRNA (A, lane 2), SmMRP1 siRNA (B,
lane 2), or water (Control, lane 1). Note the decrease in immunoreactivity for both target sequences. Anti-b-tubulin was used as a loading control. (C,
D) Relative expression of SMDR2 (n = 6–7) or SmMRP1 (n = 3–4) RNA in adult worms treated with water (H2O, white bars), luciferase siRNA (grey bars),
SMDR2 siRNA or SmMRP1 siRNA (black bars), or both SMDR2 and SmMRP1 (hatched bars). SMDR2 and SmMRP1 siRNAs efficiently knock down the
mRNA expression levels of SMDR2 by $50% and SmMRP1 by $70%, respectively. The fold changes were determined by quantitative RT-PCR using
18S RNA as the reference gene. *, ** indicate P,0.05 and P,0.01, respectively, compared to the water control, ANOVA.
doi:10.1371/journal.pntd.0001425.g001

Function of Schistosome MDR Transporters
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Strikingly, both approaches produced quite similar phenotypes.

Knockdown in adult schistosomes of SMDR2, SmMRP1, or both

resulted in a marked reduction in parasite egg production ex vivo, as

did exposure of adult worms to the different MDR inhibitors.

Notably, schistosomes residing within the murine host were also

apparently susceptible to disruption of MDR function. S. mansoni-

infected mice treated with any of four different Pgp inhibitors,

including the potent third-generation inhibitor tariquidar, showed

significant reductions in parasite egg burden in their livers. These

results point to an essential role for ABC-type MDR transporters

in schistosome reproduction.

Previous studies by us and others have investigated the

involvement of these transporters in PZQ action and susceptibility.

For example, we showed that PZQ interacts directly with the S.

mansoni Pgp orthologue SMDR2, acting to both inhibit substrate

transport, and as a likely substrate itself [43]. Furthermore, both

SMDR2 and SmMRP1 are upregulated in response to PZQ and

higher expression of these transporters is associated with reduced

PZQ susceptibility [21,42]. Here, however, we show that SMDR2

and SmMRP1 additionally appear to play important roles in

schistosome reproductive physiology.

Though the MDR inhibitors we used in these experiments are

structurally diverse and have wholly different molecular targets and

modes of action, one characteristic they share is that they all inhibit

mammalian Pgp or MRP1. CSA has previously been shown to have

schistosomicidal activity at higher concentrations, most potently

during the early course of infection [56]. This activity appears to be

independent of the drug’s immunosuppressive properties [56,57],

and the precise mode of the drug’s antischistosomal action remains

largely undefined [58]. CSA has also been shown to ‘‘sterilize’’

worms when administered every day over an eight-day period to S.

mansoni-infected mice (days 28–35 post-infection), essentially

eliminating liver egg burden [59], a result comparable to ours.

CSA also enhances the pulmonary granuloma response in egg

injection assays [60], which appears to be consistent with the lack of

reduction we observe in the number of liver granulomas in CSA-

treated infected mice (Fig. 5B). Interestingly, CSA was the only drug

treatment in infected mice that appeared to have significant lasting

effects on schistosome egg production after parasites had been

removed from the CSA-treated host (Fig. 5C), perhaps indicating a

long-lived or irreversible effect on reproductive physiology.

A second drug we used, dexverapamil, is an enantiomer of

verapamil that is far less active against L-type Cav channels than

the active enantiomer, but which retains potent inhibitory activity

against mammalian Pgp. It too significantly disrupted egg

production. Interestingly, a racemic mixture of verapamil was

previously claimed in a patent to reduce egg production in S.

mansoni [46], and we have confirmed that finding. The reduction

in egg production following exposure of worms to dexverapamil,

along with our results showing that verapamil is a potent inhibitor

of SMDR2 [43], point to inhibition of S. mansoni Pgp, and not

disruption of Cav channel function, as a likely mode of action.

C-4 is a derivative of curcumin that reverses the MDR phenotype

and that reversibly inhibits mammalian Pgp transport of rhodamine

[50]. Interestingly, curcumin, which also reverses MDR [61–63],

has been shown to have antischistosomal activity at high (50–

100 mM) concentrations and to reduce parasite egg production ex

vivo at lower (5–10 mM) concentrations [64]. Tariquidar is one of the

third-generation Pgp inhibitors developed specifically for high

potency and selectivity against Pgp, and it completely eliminates S.

mansoni egg production ex vivo at concentrations $12.5 mM. Finally,

MK 571, an MRP1 inhibitor, also disrupts egg production.

Pairing of male and female worms is required for normal

development and maturation of female schistosomes (reviewed in

[65]). Thus, it is possible that the MDR inhibitors primarily affect

male worms, and indirectly affect egg production in females.

However, all of the Pgp inhibitors we tested decrease egg

production in female worms cultured in the absence of males

(Fig. 3F), and treated females are not ‘‘rescued’’ by addition of

untreated males to the culture. Thus, inhibition of egg production

does not appear to be due to effects of the drugs on male worms,

and pairing is not required for those effects to appear.

All four of the Pgp inhibitors we tested ex vivo reduce liver egg

burden in S. mansoni-infected mice. Use of other drug concentra-

tions or routes of administration may enhance this effect and

reduce pathology more dramatically. However, the fact that both

genetic (RNAi) and pharmacological interference with normal

MDR transporter function in schistosomes affects egg production

suggests a common mode of action underlying this outcome, and

that proper functioning of the parasite reproductive system may be

dependent on MDR transporter activity. Furthermore, since

excretion of eggs is essential for parasite transmission, and since

host responses to egg deposition represent the major source of

pathology in chronic schistosomiasis, disruption of egg production

by interference with MDR transporter function could signal a

vulnerability for exploitation in development of new antischisto-

somal therapeutics that exploit a multifaceted approach to reduce

morbidity and the spread of the disease [66]. Furthermore, since

higher levels of schistosome MDR transporters are associated with

reduced PZQ susceptibility [21,42], it will be interesting to

determine whether knockdown or inhibition of these transporters

potentiates the antischistosomal activity of PZQ.

Figure 2. Knockdown of SMDR2 or SmMRP1 in adult schisto-
somes disrupts parasite egg production. Adult schistosomes were
electroporated with H2O or 3 mg siRNAs and incubated in RPMI medium
for 48 h. Following electroporation, 2–3 adult pairs (n = 4–7) were
cultured in 16-well plates for 4–5 days and the number of eggs
counted. RNAi treatments were luciferase siRNA (grey bar), SmMRP1
siRNA (black bar), SMDR2 siRNA (hatched bar), or both SmMRP1 and
SMDR2 siRNA (dotted bar). Egg counts within each experiment were
normalized to the corresponding worms treated with H2O (white bar).
Treatment with the MDR transporter siRNAs significantly reduced egg
production by $ 60%, but no significant change in egg production was
found for worms electroporated with luciferase siRNA or H2O.
*, *** indicate P,0.05 and P,0.001, respectively, ANOVA.
doi:10.1371/journal.pntd.0001425.g002
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Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the U.S. National Institutes of Health.

Animal handling and experimental procedures were undertaken in

compliance with the University of Pennsylvania’s Institutional

Animal Care and Use Committee (IACUC) guidelines (Animal

Welfare Assurance Number: A3079-01; IACUC protocol number

802105).

Reagents
C-4 [(E)-4-Chloro-N-(3-(3-(4-hydroxy-3-methoxyphenyl)acryloyl)

phenyl)benzamide] was from EMD Biosciences and cyclosporin A

was from Enzo Life Sciences. R(+)-verapamil HCl (dexverapamil)

and MK 571 were from Sigma-Aldrich. Tariquidar was from

MedKoo Biosciences. The mouse monoclonal antibodies against

Pgp (C219) and MRP1 (ab3371) were from Abcam. The anti-rabbit

tubulin antibody was from Santa Cruz Biotechnology (H-235).

Suppliers of molecular biology reagents are designated within the

text.

Figure 3. Exposure of S. mansoni adult worms in culture to MDR inhibitors disrupts egg production. Adult worm pairs (n = 3–4) were
incubated in different concentrations of MDR inhibitors (black bars) for 48 h. Cumulative egg counts were normalized to those of control worms
(white bars), which were exposed to DMSO carrier. Addition of the Pgp inhibitors C-4 (A), dexverapamil (B), cyclosporin A (C), tariquidar (D), or the
MRP-1 inhibitor MK 571 (E) significantly disrupts egg production. (F) The effect of the Pgp inhibitors on egg production by females is independent of
presence of male worms. Adult females were incubated in the absence of males for 48 h in the culture media alone (Control), or in the presence of
10 mM cyclosporin A (CSA), tariquidar, dexverapamil, or C-4. Shown are the cumulative egg counts per female, n = 3–5 for each treatment. *, **, and
*** indicate P,0.05, P,0.01, and P,0.001 respectively, ANOVA.
doi:10.1371/journal.pntd.0001425.g003

Function of Schistosome MDR Transporters
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Isolation of schistosomes
Female Swiss Webster mice infected with S. mansoni (NMRI

strain) obtained from the NIAID Schistosomiasis Resource Center

at the Biomedical Research Institute in Rockville, MD were

perfused 6–7 weeks post-infection, as described [67]. Perfused

worms were maintained in RPMI (Invitrogen) plus 10% FBS

(Sigma), 1% penicillin/streptomycin, and 0.012% Timentin

(Plantmedia) at 37uC and 5% CO2.

RNA interference
Knockdown of RNAs encoding SMDR2 (NCBI Acc. #

L26287) or SmMRP1 (NCBI Acc. #GU967672) was as described

[68,69]. Briefly, following an overnight incubation in RPMI, adult

worms (5 males plus 5 females) were placed in a 0.4 cm

electroporation cuvette (USA Scientific Plastics) containing 50 ml

siPORT (Ambion) and 3 mg SMDR2 siRNA (IDT), SmMRP1

siRNA (IDT), or luciferase siRNA (Ambion). For electroporation,

a 20 ms square wave pulse of 125 volts was applied. The siRNAs

were designed using IDT SciTools RNAi Design and the target

sequences used in the studies were: SmMRP1 siRNA, 59-

GACCAATCAGCTAACCATAAATTTGTT- 39, which maps

to bp 3834–3860 of the SmMRP1 coding region RNA; and

SMDR2 siRNA, 59-TCGATCAAACCAACCAATCTCCTGT-

TT- 39, which maps to bp 2332-2358 of the SMDR2 coding

region RNA. The luciferase siRNA used for our control shows no

significant similarity to any sequences from the S. mansoni gene

database. Following electroporation, worms were incubated en masse

in RPMI medium for 2 days. They were then sorted into 2–3 males/

female pairs per well in a 12-well plate, in which they were

maintained for an additional 48 to 72h, and subsequently removed

from the medium, quick-frozen in liquid nitrogen, and stored at

280uC until further use. The number of eggs deposited in each well

by these worms over this 48 to 72 h period was counted (see below).

RNA and protein extractions
Total RNA was extracted as described [42], using either

RNAqueous-4-PCR (Ambion) or NucleoSpin RNA XS (Ma-

cherey-Nagel), and subsequently treated with Turbo-DNAase

(Ambion) or rDNAase (Macherey-Nagel) according to the manu-

facturer’s instructions. For protein extractions, worms were

homogenized in cell disruption buffer (Ambion Paris Kit) with a

cocktail of protease inhibitors (Sigma) at 4uC and incubated for

Figure 4. Eggs produced by worms exposed to MDR inhibitors show morphological abnormalities. Micrographs of S. mansoni eggs
collected from adult worm pairs cultured in the absence (A) or presence (B) of tariquidar for 48 h. Control eggs appear normal and oval shaped with a
lateral spine, in contrast to malformed, necrotic, and disintegrated eggs from worms exposed to tariquidar.
doi:10.1371/journal.pntd.0001425.g004

Figure 5. Administration of MDR inhibitors to S. mansoni-infected mice reduces host liver egg burden. (A). Mean egg burden/g of liver
(n = 3–5) from mice at 6–7 weeks post infection with approximately 200 cercariae, normalized to Control within each experiment. Mice were treated
with 3 doses on alternating days of: diluted DMSO/Cremophore EL carrier (Control; white bar, n = 8); C-4 (50 mg/kg, n = 6); tariquidar (15 mg/kg,
n = 3); dexverapamil (60 mg/kg, n = 3), or cyclosporin A (CSA, 60 mg/kg, n = 6). (B) Granulomas/cm2 found in livers of infected mice (n = 6) treated
with carrier or drugs, as in A. (C) Mean ex vivo egg production (n = 4–6) from 3 pairs of adult parasites perfused from mice that were treated with the
MDR inhibitors dexverapamil (60 mg/kg), C-4 (50 mg/kg), or cyclosporin A (CSA; 60 mg/kg) and subsequently cultured in RPMI for 48 h. Control
represents eggs from parasites perfused from mice treated with carrier alone (diluted DMSO/Cremophore EL). Only CSA continues to disrupt egg
production through the culture period. *, **, ***, and **** indicate P,0.05, P,0.01, P,0.001, and P,0.0001, respectively, unpaired, two-tailed t-tests.
doi:10.1371/journal.pntd.0001425.g005
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15 min on ice. Lysates were centrifuged at 13,000 rpm for 10 min

at 4uC and the supernatant collected was used immediately or

stored at 220uC. Total protein concentrations were measured using

a Bradford assay (Fermentas) with BSA (Sigma) as a standard.

Real-time RT-PCR
Real-time RT-PCR was used to measure RNAi knockdown. It

was performed using the Brilliant II SYBR green qRT-PCR Master

kit (Stratagene) on an Applied Biosystems 3500 according to the

manufacturer’s recommendations. Primers used for the amplifica-

tion of SMDR2, SmMRP1 and 18S ribosomal RNA have been

described previously [21,42]. Data were analyzed using the 22DDCt

method [70] to determine the relative expression ratio between

target (SmMRP1, SMDR2) and reference genes (18S RNA).

Immunoblotting
Knockdown was also measured at the protein level by

immunoblotting. Protein samples (25 mg) were electrophoresed

on Bis-Tris gels in MOPS running buffer (Invitrogen), blotted, and

probed with anti-Pgp, anti-MRP, or anti-b-tubulin antibodies, as

described [21,42].

Treatment of worms with pharmacological compounds
Drugs were dissolved in dimethyl sulfoxide or ethanol for stock

solutions, which were subsequently diluted 1:1 into Cremophor-EL

(Sigma), and finally to an appropriate concentration in culture

media. For in vitro treatments, 2 or 3 adult worm pairs were

incubated in our standard media with different concentrations of

drug (or carrier for controls) for two days. For treatments of S.

mansoni-infected mice, drugs dissolved in 1:1 DMSO/Cremophore-

EL (or carrier alone for controls) were diluted to 100 or 200 ml in

PBS and administered intraperitoneally to mice beginning at 5–6

weeks post infection with approximately 200 cercariae. Each

infected mouse was treated once per day on three alternate days

with R(+)-verapamil (dexverapamil) HCl (60 mg/kg), C-4 (50 mg/

kg), tariquidar (15 mg/kg) or cyclosporin A (60 mg/kg).

Egg counts ex vivo
Worms subjected to different treatments were placed in individual

wells of a multiwell plate, with 2–4 worm pairs (male + female) per

well, and maintained in our standard worm culture medium at 37uC
and 5% CO2. As reported by others [45,71], adult worms perfused

from mice will produce eggs while cultured ex vivo. At various times

(typically 2d or 5d), we counted the cumulative number of eggs

produced from treated and control worms, using a dissecting

microscope. The number of eggs per control females typically ranged

from 20 to 100, and varied within that range between different

batches of perfused worms. For that reason, for all experiments

except those in Fig. 3F, worm counts within each experiment were

normalized to the mean value for the control worms for that

experiment. The state of pairing of males and females was dynamic

over the course of the incubation; paired worms would often separate,

and these separated worms would often become paired again, In

addition to obtaining egg counts, abnormal morphology of eggs was

also noted and photographed. Adult schistosomes were fixed, stained

with hydrochloric carmine (Sigma), and examined on a Leica SP5

two-photon confocal microscope, as described [72,73].

Enumeration of egg burden in mouse livers
Approximately 24 h following drug treatment, and while

simultaneously collecting adult schistosomes, livers from drug-

treated and control mice were isolated and weighed. A 0.25–0.5 g

portion from the equivalent lobe of liver from different treatment

conditions was dissected and incubated in 4% KOH for 16 to 24 h

at 37uC as described [67]. The suspensions were examined for S.

mansoni eggs, which were sampled and counted under a dissecting

microscope multiple times for each mouse, and the number of eggs

per gram of liver calculated. In some experiments, egg numbers

were also corrected for the number of females perfused from each

mouse, though that value did not vary significantly between the

different treatments. In order to correct for variation between

experiments, average egg counts per gram of liver within each

experiment were normalized, with the mean control value set as 1.

Remaining liver tissue was formalin-fixed, paraffin-embedded, and

stained with haematoxylin and eosin. Granulomas within a set

area of the sections were counted and the number of granulomas

per cm2 calculated. To calculate granuloma area, the diameter of

those granulomas surrounding a single egg from each section were

measured using QCapture Pro software. Granulomas were

assumed to be a spherical shape [74] and sizes calculated from

the different fields of the histopathological sections.

Statistics
Data are expressed as mean 6 SEM, and were tested for

statistical significance using either ANOVA or unpaired t-tests, as

noted in the figure legends.

Supporting Information

Figure S1 Dexverapamil exposure alters the morphol-
ogy of the female reproductive system. Confocal micro-

graph of untreated (A) and 10 mM dexverapamil-treated (B) female

S. mansoni. Following a 48 h incubation, worms were carmine-

stained and examined by laser-scanning confocal microscopy as

described [72,73]. Arrows indicate cluster of developing, immature

oocytes in control (A) vs. the second cluster of apparently mature

oocytes in the dexverapamil-treated worms (B). Scale bar is 25 mm.

(TIF)
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Table 1. Mean granuloma area (mm2 6 s.e.m) in livers from S.
mansoni-infected mice treated with Pgp inhibitors.

Control C-4 Dexverapamil CSA Tariquidar

(n = 31) (n = 33) (n = 24) (n = 34) (n = 29)

3593 6 381.4 2670 6 287.8* 1562 6 177.7*** 2313 6 287.8** 2525 6 236.1*

*, **, and *** indicate P,0.05, P,0.01, and P,0.001, respectively, compared to
Control, ANOVA. n = number of granulomas measured.
doi:10.1371/journal.pntd.0001425.t001
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